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Abstract:

Ground penetrating radar (GPR) utilizes the reflection of electromagnetic waves for high reso-

lution imaging of shallow subsurface structures. The goal of this paper is to study the potential

of using GPR in combination with pattern recognition for rapid location of avalanche victims.

Real world experiments and simulations have shown that avalanche victims reflect radar waves

and appear as diffraction hyperbolas in the recorded radar data. This paper deals with a two

level algorithm based on a fast active contour method and a matched filter for computer aided

locating of diffraction hyperbolas.

1 Introduction and motivation

GPR relies on the reflection of electromagnetic waves on discontinuities [4]. In contrast to

radar detection of aircrafts in the sky the radar antennas are moved over the surface rather

than rotated around a center. The various applications of GPR include archeological research

and landmine and pipeline detection [6].

In the GPR technology a short electromagnetic pulse is emitted from a transmitting antenna.

The induced electromagnetic wave propagates unhindered until it collides with structures of

different electromagnetic properties. The scattered electromagnetic field is then detected with

a receiving antenna and represented in radargrams.

We apply the GPR technology for locating avalanche victims mounted on a flying helicopter

under the reasonable assumption that the background media consists of the three different

regions air, snow and subsurface. Consequently in the radargram there appear reflections

caused by jumps in the value of the background velocity of propagation and reflections on

small buried objects [10]. A small buried object manifests itself as a diffraction hyperbola.

The idea of using GPR for location of avalanche victims is not new [9]. However there was

a need for experts who sought for diffraction hyperbolas in the radargrams. In contrast to

former research this paper is concerned with the development of a real-time software package

for semi-automatic locating of avalanche victims with radar technology from helicopters.

Our algorithm consists of two steps. First we adopt a parametric active contour method [2, 12]



for automatic extraction of the snow layer. Such an active contour approach has not been

used in the processing of GPR data so far. For enhancing diffraction hyperbolas in radargrams

we use a matched filter algorithm. We note that the optimal choice of a template diffraction

hyperbola that is compared with the radar data is crucial. In Section 2 we present results of

our simulations of diffraction patterns of extended objects.

This paper is organized as follows: In Section 2 we describe the collecting of radar data sets

and introduce the two level algorithm for computer aided location of avalanche victims. The

applied preprocessing is presented in Section 3. Details on the active contour algorithm used

to extract the snow layer are given in Section 4 and in Section 5 we present the matched filter

algorithm. Results of the algorithm applied to real life data show its potential and robustness.

Finally in Section 6 we discuss limitations and possible further improvements.

2 The nature of radar reflection data and simulation of radargrams

In this Section we describe the collecting of radar data sets. For simplicity of the presentation

we assume, that the helicopter with the emitting and receiving radar dipole-antenna travels

on the straight line xant := (xant, 0, 0) and that the diploe-antennas point in direction of

motion e := (1, 0, 0). The left image in Figure 1 illustrates the basic principle of transmission,

reflection and recording of radar pulses out of a flying helicopter.
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Figure 1: Principal of collecting radar data. Left image: At each position the radar antenna

emits a short radar pulse. The induced electromagnetic wave gets reflected, and the scattered

signals are recorded and collected in radagrams. Right image: Temporal shape of the emitted

electromagnetic pulse.

At each position xant the radar dipole-antenna emits a short electromagnetic pulse. According

to [11] the electric field component of the emitted radar wave at location x and time τ̂ is given

by

Eant(x, τ̂) = e
sin(θ)want

(

τ̂ − |x − xant| /c
)

|x − xant|
. (1)

Here θ is the angle between e and x − xant, want is the temporal shape of the emitted radar



pulse, and c denotes the velocity of propagation in air. The function want represents the

spectral characteristics of the used dipole antenna [11] and can be approximated by the second

derivative of a small Gaussian, see Figure 1.

The electromagnetic pulse propagates trough the background media and is reflected at scat-

terers, that hold different electromagnetic properties (cf. Figure 1). The scattered electric

field

Escat(x, τ̂) = e
(

E1(x, τ̂) + Eob(x, τ̂) + E2(x, τ̂)
)

(2)

at position x and time τ̂ is the sum of the field eE1(x, τ̂) scattered on the interface between air

and snow, reflections eEob(x, τ̂ ) resulting from objects within in the snow layer, and the field

eE2(x, τ̂ ) scattered on the interface between snow and subsurface. For simplicity we assume

that the scattering of radar waves does not change the polarization vector e.

The receiving antenna at location xant is modeled as projecting the scattered field Escat(xant, ·)

onto the axis e followed by the convolution ∗ in time with want. The one dimensional signal

u0(xant, ·) := (Escat(xant, ·) · e) ∗ want (3)

is recorded within the time window τ̂ ∈ [0, τ̂end] and is called a-scan.
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Figure 2: Example of radar raw data collected in St. Anton am Arlberg. The left image shows

a-scan signal recorded within the time window [0, τrange]. The right image shows a radargram.

By varying xant ∈ [0, xend] and after using the re-scaling x = xant/xend, τ = τ̂ /τ̂range the radar

data set forms a two dimensional gray-scale image

u0 : [0, 1] × [0, 1] → R : (x, τ) 7→ u(x, τ) ,

which is called radargram. A small buried object manifests itself in the radargram as a

diffraction hyperbola. Figure 2 shows an example of an a-scan and a radargram gathered



during a field experiment in St. Anton am Arlberg in Tyrol, Austria in early 2005 [7]. Here

the central wavelength of the used dipole antenna is approximately 0.3 meters. The radargram

contains a small diffraction hyperbola descending from the reflections of a buried object that

almost disappears between clutter and noise.

To substantiate the relation between targets and the corresponding diffraction hyperbolas we

performed extensive simulations of radargrams based on Huygens principle [13]. We note that

only a point scatterer in the idealized situation of homogenous non-absorbing background gives

an exact hyperbola. Two examples of diffraction patterns of extended objects are illustrated

in Figure 3. Furthermore the refraction of radar waves on a curved air-snow interface causes

displacement between the horizontal position of a target and its diffraction hyperbola. We

conclude that a diffraction hyperbola in the snow layer is a definite indicator for the presence

of a buried object and can be used to narrow large avalanche cones down to certain small

areas of suspicious.

Figure 3: Simulated diffraction patterns of non-punctual objects assuming horizontal air-snow

interface. The first column shows two velocity profiles (depth versus x) and the second column

shows the corresponding radargrams (τ versus x). The extend of the imaged objects is several

times larger than the central wavelength of the used dipole-antenna.

We note that in this paper we do not touch the problem of discriminating between human

victims and debris, such as trees or rocks [10]. Our aim is to produce a pseudo-image of the

snow layer that peaks at the vertex of a diffraction hyperbola. We proceed as follows: After

removing clutter and noise we extract the reflections coming from within the snow. Finally a

matched filter algorithm is applied to detect diffraction hyperbolas.



3 Preprocessing and the removal of clutter and noise

In this Section we give some details on the applied preprocessing [4]. In practical applica-

tions the radargram is sampled at x[i] := (i− 1)/(N− 1) and tau[j] := (j− 1)/(N− 1) for

i, j ∈ {1, . . . , N}, and we denote the digitalizes radargram by

u0[i, j] := u0(x[i], tau[j]) , i, j = 1, . . . , N .

For simplicity we assume that the number of a-scans is equal to the number N of time samples.

Here all models are presented in a continuous setting and implemented after discretization.

The actual radargram (see Figure 2) decomposes into the sum

u(x, τ) = u0(x, τ) + uc(x, τ) + un(x, τ)

of the wanted signal u0(x, τ), the clutter uc(x, τ) and the noise un(x, τ). In the GPR com-

munity the term clutter is used to characterize signal components that contain the spectral

characteristics of the dipole antenna but are not correlated with scattering from buried objects

[4]. Clutter occurs from multiple reflections on fixed structures and reflections resulting from

the inhomogeneous background. Separating out the clutter from the target signals is a main

factor in the successful interpretation of the GPR data and is an active research area [5, 17, 3].

In our application the main part of disturbing signals consists of horizontal lines, presumably

resulting from multiple reflections on the helicopter (cf. Figure 2). In this case mean a-scan

subtraction [4, p.27]

ū(x, τ) := u(x, τ) −

∫ 1

0

u(x, τ) dx (4)

is a good technique to reduce clutter. Another advantage of this classical clutter reduction

method is that equation (4) can be implemented with O(N2) operations. This fact is important

since we have a real-time application in mind. The left image in Figure 4 shows the filtered

radargram ū(x, τ) after removing clutter and noise.

4 Automatic extraction of the snow layer by combining tube meth-

ods with parametric active contours.

In this Section we present an active contour model that we apply to automatically locate the

boundaries of the snow layer. Parametric active contour models are extensively used to locate

object boundaries in images [2, 12]. Many real life application of computer vision including

segmentation [1], motion tracking [15] and shape modeling [18] are based on active contour

models.



Figure 4: Left: Radargram after removing clutter and noise. Right: Result of minimizing the

BV functional (5) for each column of the radargram.

The radargram ū(x, τ) mainly decomposes into three separate regions that are characterized

by the absolute value of the average amplitude. The average amplitude depends on a scale

parameter λ and is defined by

Φλ(x, ·) := fλ ,

where fλ : [0, 1] → R is the minimizer of the one dimensional BV functional

∫ 1

0

(

f(τ) − |ū(x, τ)|
)2

dτ + λ

∫ 1

0

|f ′(τ)| dτ . (5)

Here the prime ′ denotes the derivative with respect to time. Note that (5) can be minimized

immediately after taking a single a-scan and therefore allows a dynamic implementation during

the helicopter flight. For the numerical implementation we used λ = 5/2 · ‖ū(x, ·)‖L2(R). The

large magnitude of the scale parameter λ assures that the minimizer fλ of (5) is a monotone

increasing function that only jumps at the boundaries of the snow layer.

The functional (5) can be minimized with tube methods [16, 8] with O(N) operations. This

leads to an O(N2) algorithm for the calculation of the amplitude image Φλ. The right image

in Figure 4 shows the result of the tube method applied column by column to the radargram

on its left.

The boundaries of the snow layer correspond to the edges within the image Φλ to which we

apply the parametric active contour. A parametric active contour is an evolving family
(

cν

)

ν>0

of planar curves cν : [0, 1] → [0, 1]2 such that cν tends to a local minimizer of the energy

functional

Epot(c) +
α

2

∫ 1

0

(

∂c

∂s

)2

ds +
β

2

∫ 1

0

(

∂2c

∂2s

)2

ds , (6)

for ν → ∞ [19]. Here the parameters α and β control the smoothness of the active contour

whereas the potential Epot(c) depends on the amplitude Φλ and attracts the active contour to

the wanted boundaries.



In our application the boundaries can be expressed as graphs of functions τ = h(x). This

motivates us to introduce the energy functional

E(h) =

∫ 1

0

(

−γh(x) + Φλ(x, h(x))
)

dx +
α

2

∫ 1

0

h′(x)2 dx (7)

defined for real valued functions h instead of using the functional (6) defined for curves c.

Here γ is an additional parameter. The left picture in Figure 5 illustrates the construction of

the potential τ 7→ −γ · τ + Φλ(x, τ) for fixed x.

Φλ(x, τ)

−γ · τ

−γ · τ + Φλ(x, τ)

Figure 5: Active contour algorithm for detection of the snow boundaries. The left image illus-

trates the term −γ · τ +Φλ(x, τ) in (7) that attracts the active contour to the wanted boundaries.

The right image shows the boundaries of the snow layer found by our algorithm.

The optimality condition for locally minimizing (7) attains the form

∇E(h) = −γ + (∂Φλ/∂τ)(x, h(x)) − αh′′(x) = 0 ,

which is solved iteratively by the steepest descent method. Thus we define

hi+1(x) = hi(x) + ds ·
(

γ − (∂Φλ/∂τ)(x, h(x)) + αh′′

i (x)
)

, i ∈ N (8)

with some initial guess h0. In the numerical implementation iteration (8) is applied ap-

proximately N times and the derivative ∂Φλ/∂τ of Φλ with respect to the second variable is

implemented with central differences. Hence the overall cost of the active contour algorithm

is O(N2).

Figure 5 shows the boundaries h1(x), h2(x) of the snow layer that are found by our algorithm.

Finally we define uS = ū · χS, where χS is the characteristic function of

S := {(x, τ) : h1(x) ≤ τ ≤ h2(x)} .

5 Matched filter for the enhancing of diffraction hyperbolas.

In this Section we apply a matched filter algorithm to enhance the location of diffraction

hyperbolas. A matched filter algorithm compares an original image with a template and



indicates where two features are most likely to correspond. In our application we apply the

matched filter to the extracted radargram uS, which only includes reflections coming from

within the snow. The template is a radargram m of a single scatterer (diffraction hyperbola).

Figure 6: Results of the matched filter. The left image shows the result of the matched filter

applied to the data seen in Figure 4 and the right image shows its envelope. The arrow points

to a bright spot that corresponds to a diffraction hyperbola indicating an avalanche victim.

The heart of any concrete implementation of a matched algorithm is the definition of measure

of similarity of two images. A typical measure is the squared Euclidian distance
∫ 1

0

∫ 1

0

(

uS(x, τ) − m(x − x0, τ − τ0)
)2

dx dτ (9)

between the image us and the template m positioned at (x0, τ0). If U denotes the support of

the template and
∫

U
u(x + x0, τ + τ0)dxdτ is approximately constant then the magnitude of

the distance measure (9) is determined by the convolution term [14]

(uS ⋆ m)(x0, τ0) :=

∫ 1

0

∫ 1

0

uS(x, τ)m(x − x0, τ − τ0) dx dτ . (10)

According to the Fourier convolution theorem (10) can be evaluated with the FFT algorithm

in O(N2 log N) operations.

Figure 6 shows the result after applying the matched filter and its envelope, which is also

calculated on the basis of the FFT algorithm. The bright spot correspond to a diffraction

hyperbola indicating an avalanche victim. It’s worth to compare the results of Figure 6 with

the radargrams plotted in Figures 2 and 4, where the diffraction hyperbola is hardly visible.

Figure 7 shows a further example where our algorithm is applied to a real life data set and

where it again detects a diffraction hyperbola.

6 Discussion and outlook.

In this paper we presented a two level algorithm based on parametric active contours and

matched filters to enhance diffraction hyperbolas in radargrams. We illustrated its potential

for locating avalanche victims by applying it to real life data.



Figure 7: Further results of our algorithm applied to real life data. Top left: Radargram after

removing clutter and noise. Top right: Boundaries of the snow layer. Bottom left: Modified

radargram that only contains reflections coming from within the snow. Bottom right: Envelope

after applying the matched filter. The white arrows point to a hyperbola enhanced by our

algorithm.

For extracting the reflections coming from within the snow we proposed an active contour

model that uses a real valued function instead of an arbitrary planar curve. The current

version includes only the average amplitude Φλ to distinguish between different layers. If the

reflections coming from within the snow are very weak our algorithm can fail. Therefore we

intend to incorporate the texture of the radargram into the active contour algorithm. This

should guaranty us to reliable find the boundaries of the snow layer.

For the actual imaging process we used a matched filter algorithm with a single template

diffraction hyperbola. Based on our simulations and free-air experiments, we will decide if

a single template hyperbola and more sophisticated (e.g. statistical) measures are able to

discriminate between human victims and debris such as trees or rocks.
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