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Abstract

Thermoacoustic computed tomography (TCT) is a novel imaging technique for non-
destructive evaluation and medical imaging. It uses electromagnetic energy as input and
the induced thermoacoustic pressure field as measurement output. The determination of
the unknown energy deposition function is based on the integral geometric problem of
reconstructing a function from its integrals over certain spheres. We apply the method
of approximate inverse to derive filtered backprojection type reconstruction algorithms
in spherical scanning geometry. Numerical results are presented and show the validity of
the resulting algorithms.

1 Introduction

Current research demonstrates that thermoacoustic computed tomography (TCT) is a promis-
ing hybrid imaging technique for nondestructive evaluation and medical imaging. It combines
the advantages of purely optical imaging (high contrast) and ultrasound imaging (high resolu-
tion). It uses either pulsed radio frequency or pulsed laser as energy input and measures the
induced thermoacoustic pressure field [11, 12, 28, 7].

Assume a semitransparent sample is illuminated by a pulsed electromagnetic energy. The
specific properties of the absorbing medium result in a nonuniform energy deposition within
the sample, followed by a nonuniform thermoelastic expansion. This produces an acoustic
pressure wave [6, 14]. At some specified frequencies of the electromagnetic radiation different
tissues offer a highly varying absorptivity, which establishes the potentiality of high contrast
imaging [9]. The goal of TCT is to recover the significant energy deposition by measuring the
induced thermoacoustic pressure wave using acoustic detectors located outside the illuminated
sample.

If the duration of the electromagnetic pulse is short and the acoustic properties of the
illuminated sample are relatively homogeneous, the generated thermoacoustic time-dependent
pressure at a point & € R? is essentially given by the integral of the energy deposition function
over spheres centered at x.

In mathematical terms TCT consists in the problem of recovering the energy deposition
function from its mean values over spheres with centers lying on a hypersurface S (location of
the detectors). Typically the center set S is either a plane, a sphere or a cylinder [27, 28, 29, 10,
11]. In this paper we consider the case where the center set is a sphere and apply the method
of approximate inverse to derive filtered backprojection type reconstruction algorithms.

The outline of this work is as follows: in section 2 we recall the physical principles of linear
thermoacoustics. Thermoacoustic tomography in spherical scanning geometry is addressed in
section 3. The method of approximate inverse is outlined in section 4 and applied to TCT in
section 5. We derive novel reconstruction algorithms similar to those used in ordinary x-ray
computed tomography. Finally, results of our numerical studies are presented in section 6.



2 Linear Thermoacoustics

In this section we illustrate the basic physical principles of linear thermoacoustics. The govern-
ing equations of linear thermoacoustics are the linearized balance equations of fluid dynamics
[13, 4] for a homogeneous, isotropic, inviscid fluid and an additional equation relating the
change of thermal energy to the change of electromagnetic radiation.
The linearized continuity equation
do
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is derived from the principle of conservation of mass if the particle velocity v(z,t) is small and
the mass density oior(x,t) = 00 + o(x,t) is weakly varying, i.e., |o(x,t)| < go.
The linearized Fuler equation
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is derived from the principle of conservation of momentum for a non-viscous, non-turbulent
flow in the absence of external forces with slowly varying pressure pyot(,t) = po + p(x, 1), i.e.,
Ip(z,)| < po, within the fluid [2]. By combining equations (1) and (2) we can eliminate the
particle velocity and find
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To relate the mass density and the pressure to the absorbed electromagnetic energy we
assume the existence of the so called entropy density function sioi(z,t) = so + s(z,) with

|s(z,1)| < so such that the following two properties hold:

1. The internal energy can be written as a function eyoy = €(Stot, Otot) Of mass density and
entropy.

2. The pressure is given by the change of internal energy with respect to the volume

A 1 0e
Ptot = p(Stom Qtot) = E 8_Q(Stotu Qtot) . (4)

Usually the temperature is defined as the rate of change of internal energy with respect to

entropy
. oé
Tiot := T'(Stot, Otot) = %(Stota Otot) 5

and we assume that |Tior — To| < To whereby Tp := T(so, 00)-
The linearized entropy equation

ds
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is derived from the principle of conservation of energy under the assumption that the heat fluz
is negligible. Here r(x,t) denotes the absorbed energy per unit volume and unit time. The

absorbed energy

0010

r(z, f) = fcm(fp)](f)d}(x) )

is proportional to the electromagnetic radiation intensity Loy (2)j(t) and the absorbtion density
(z) inside the fluid. The temporal shape of the electromagnetic pulse j(t) € C*(R) is assumed
to have small support [0, 7] (7 < 1), to be non-negative, and to satisfy

/Rj(f)df: P

Such a function approximates the d-distribution.
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Figure 1: Thermoelastic effect. The absorbed electromagnetic energy within the illuminated
part of the fluid causes thermal expansion and a subsequent pressure field. The dependance
between the thermoelastic expansion and the pressure on the received electromagnetic energy
is given by the expansion equation (6).

From equation (4) it follows that
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Here 0p/0s and 0p/0p denote the first partial derivatives of p. The specific heat capacity c,,

the thermal expansion coefficient at constant pressure [, and the adiabatic speed of sound v
are given by the following relations (see e.g.[6])

op 5 op  Tov2oof
— = and — =
do ds Cp

Inserting these identities into equation (5) and expressing ds/0% in accordance with the lin-
earized entropy equation it follows that
0 10
o P s, (6)
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Equation (6) is called expansion equation since it describes the relation between the rate of
change of volume to the change of pressure and the deposited energy per unit time. Together
with (6) and a scaling of time t = tvs equation (3) implies

(57 -)p=r@%. (”
where
@) = 2 )i

is the normalized energy deposition function.
The solution of (7) is unique if appropriate initial conditions are specified. We use
. Op
p(z,0) =0, together with E(I’ 0)=0, (8)
to represent the fact that there is no acoustic pressure before the beginning of the experiment
(at time ¢ = 0). The unique solution of (7) and (8) is given by
dj
== tM 9
pi= T (EMF), (9)

where #; is the (Laplace-) convolution

(91 %1 g2)(a.1) = / 01(,t — 8)ga(x, 5) ds



with respect to ¢t and M f is the spherical mean operator
1
(Mf)(z,t) == — f(z + tw)dQ(w) (10)
47 S2

for t > 0 and z € R? (see e.g. [8, p. 136]). Here S? denotes the two-dimensional unit sphere
in R? with surface measure df).

In mathematical terms thermoacoustic tomography is concerned with the inverse problem
of recovering an unknown energy deposition function f from temporal measurement data of
the thermoacoustic pressure field p taken on a surface S outside the illuminated fluid.

3 Thermoacoustic tomography in spherical scanning ge-
ometry
In this section we explicitly deal with the case where the energy deposition function f is sup-

ported in a closed ball B, := B,(0) with center 0 and radius p and in which the thermoacoustic
pressure field is measured on S, := 0B,.
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Figure 2: Thermoacoustic scanning system. The examined object is illuminated by a short
electromagnetic pulse. The thermoelastic effect (c.f. figure 1) causes an evolving pressure wave
that is measured with several acoustic detectors enclosing the imaged object.

The following notations will hold throughout the paper:
X =L*B,) ={f € L*(R®): f(x) =0 for a.e. z € R*\ B,}

denotes the Hilbert space of all square integrable functions supported in B, with associated
inner product (-,-) and norm | - ||. For all T > 0 let

Yr = L*(S, x [0,7)),
denote the Hilbert space of all square integrable functions f : .S, x [0,00) — R supported in

S, x [0,T]. We denote by

T
(91, 92)7 = /S / 01(0.1)g2 (0 £) dt 4, (o)

its inner product and by || - || the associated norm. Here d€2, denotes the surface measure on
S,. Let Dy be the operator that maps ¢ € C'(S, x [0,00)) onto its derivative with respect to
the second variable:

Dt(/)(yat):(pt(yat)v yeSpv te [0,00)



Finally we introduce the operators

N:CYB,)CX — Y, (Nf)(o,t) := tMf(o,t) ,
P:CJ(B))CX — Yopyr, Pf=Dijx Nf.

From (9) we see that the operator P maps an unknown energy deposition function f onto the
thermoacoustic pressure field restricted to the recording surface S,. Particularily, if f is a C*
function and the pulse duration 7 tends to 0 then P f tends to DN f.

Lemma 3.1. Let f € CJ(B,). Then |Nf|3, < p?|| fII* and

P F3p4r < (20 +7)70% | DefllZ NI F1I - (11)
Here || Dj||oo := sup{|D¢j(t)] : 0 <t < 7} denotes the supremum norm of Dyj.
Proof. Let o € S,. Since supp(f) C B, it follows from the Cauchy inequality that

2p 2
INFO s = | (i f(a+tw)dﬂ(w)) dat
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- Flo+tw)?dw) 2dt = —| f]%.
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This shows that
INfI5, = [ INF(o,)1Z7200.0 2% (0) < P°|I £117. (12)
S
P

Next we verify (11). Assume y € S, and t € [0,2p + 7]. A further application of the Cauchy
inequality yields

[Dyj + Nf(o,t)]* = [/Oth(Uat—S)(Dtj)(S)dsr

IN

le(U,')liz[o,zp]/o (Dej)(s)* ds < 7| Dejll 2 INF (0, )220, -

From the last inequality and (12) we conclude that

2p+T7
IPfIZ,., = /S / 1Dyj # N (0, 0)[2 dt dy)
. J0
< (@p+)r|Didl% /S IN ()20
< @p+ DI
Hence we have shown (11). O

As a consequence of lemma 3.1 the operators N and P extend in a unique way to bounded
linear operators N : X — Y5, and P : X — Y5,,,, respectively. In particular they have
bounded adjoints.

Lemma 3.2. Let g € C(S, x [0,2p]) and p € C2(S, x [0,2p+ 7]). Then,

Now = o [ 26, ses,, 1
(P*p)(x) = —i g (Dtj*fi(f’lr_an)dﬂp(a), zeB,. (14)
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Figure 3: The intersection of the support of the function D;j(t — s) with supp(F’) is contained
in BQ Q Bl.

Here j is defined by j(s) := j(—s) and

s+T
(Dij *p)(z,8) := / Dyj(s —t)p(x,t)dt .
Proof. Let f € C%(B,) and g € C%(S, x [0,2p]). We verify equation (13) by showing that
(Nf,9)2, = (f,N*g). From Fubini’s theorem we obtain
2p
Nfak = [ [ Mre00 a0, 0
P

1%
= I ; /52 /Sp flo+tw)g(o,t) dQ(o) dQ,(w) tdt
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where the last equality follows by the substituting z = o + tw. Hence we proved (13).
Next we verify equation (14). Let f € C2(B,) and p € C2(S, x [0,2p + 7]). Moreover, let
y € S, and define

B, = U 0.6 x{t,
0<t<2p+7

By = U {s} x[s,2p+7].
0<s<2p

Clearly Ba C By. Since (Nf)(o, -) is supported in [0, 2p] the function F(s,t) := (Nf)(o, s)p(y, t)
vanishes on the complement of Bs (see figure 3). Hence Fubini’s theorem gives

2p+T1 2p+T1 t
/ (Dt] *¢ Nf)(U,')p(O', t) dt = / / Dtj(t - S)Nf(U, S)p(ov t) dS dt
0 0 0

/B (Duj)(t — $)N(0, 8)p(ot) d(s, 1)
- /B (Duj)(t — $)N(0, 8)p(o t) d(s,1)

2p

2p+T7
Nf(o.s) [ (D)t - oplo.tydeds.
0 s



Since (D;j)(t) = —(Dyj)(—t) the last equality together with (13) implies that

2p+T1
(P p)opir = /S / (Dej 0 N 1) (0, Dp(o, ) di S, (o)

2p s+T B
- / Nf(o,s) / (D¢j)(s —t)p(o,t) dt ds dQ2,(o)
S, J0 s

P

2p
—/S [N F (.50 ) (0.5) ds o) = (1. P5)

P

where P*g is defined by (14). O

Remark 3.3. The duration T of the electromagnetic pulse is typically in the range of micro
seconds. Hence the temporal part of the electromagnetic pulse can be approximated by the delta
distribution. Therefore we can regard DN f as measurement data. From lemma 3.2 it follows
that we can approximate its adjoint suitable by —IN*Dyp.

In a recent paper Finch et al [5] proved the injectivity of the operator N on the space
of smooth (i.e. C°°) functions that are supported in B,. Moreover in [5] several inversion
formulas have been stated and proven.

Theorem 3.4. [5, Theorem 3] Let f € C:°(B,). Then
2
f = ——N*DttDth . (15)
p

For our purposes in Sections 5 and 6 have to extend this formula to non-smooth functions.
Corollary 3.5. Let f € C1(B,) and assume DN € CL(S, x [0,2p]). Then (15) holds true.

Proof. Let ¢ € C(B,). From theorem 3.4 it follows that (15) holds true for ¢ and hence
—p/2(f,0) = (f,N*D;tD;Ny). Since f and hence N*f is a C' function the right hand side
of this equation is given by —(tD;Nf, D;Ny))s,. Together with the assumption D, Nf €
CL(S, x [0,2p]) this implies that

~L{f.9) = (N"DitDINJ, ).

Since the last equality is valid for all ¢ € C2°(B),) we can conclude that —p/2f = N*D;tD;Nf.
O

4 Approximate Inverse for linear operator equations

The method of approximate inverse is a regularization scheme which has been developed for
a stable solution of operation equations of the first kind

Af=g (16)

in Hilbert spaces. Since its establishment by Louis, Maaf} [18], Louis [15, 16] the method has
led to novel and efficient solvers in such different applications as 2D- and 3D- computerized
tomography [19, 17], vector field tomography [23, 24, 22|, inverse scattering [1], sonar [26] and
x-ray diffractometry [25].

Let A in (16) be a linear, bounded operator between function spaces X := L?(Qy, p11) and
Y := L?(Qq, u2) where Q; C R™ i = 1,2, are bounded domains. Further assume e € X to be
a continuous function satisfying

e(x)de =1, (17)



and define for v > 0
er(wy) =7 e(( = 9)/7). (18)

If e, satisfies

; f(@)ey(z,y)de — fly), ae., (19)

in X when v — 0, we call e a mollifier. The idea of approximate inverse consists of computing
the smoothed version

F(y) = {fre5(5y))x (20)

rather than f itself. To get a representation of f, which does not depend on the exact solution
f we consider the dual equation

A'vy(y) = ey (1 y) (21)
and assume for the moment that e, (-, y) is in the range of A*, the L?-adjoint of A, for y € €.
Having the solution v, (y) of (21) at hand we obtain with (20)

() = (f; A"y (y) x = (Af,0,(y)y -

Thus, we can calculate f, by simply evaluating inner products of the measurement data A f
with the reconstruction kernels vy (y).

The first feature of the method can be seen from (21): The computation of the reconstruc-
tion kernels does not depend on the noise perturbed measurement data g. As a matter of fact
in most cases, such as in computerized tomography and TCT (see section 5), we have an ana-
lytic expression for v, (y) available. A further advantage of the procedure is the possibility to
use invariance properties of the underlying operator A to enhance the effectivity considerably.
In [21, 22] the authors developed a convergence and stability analysis for the method of ap-
proximate inverse in general Hilbert spaces which also applies to the inverse TCT problem.

5 Computation of reconstruction kernels

In this section we apply the method of generalized inverse to TCT in a spherical geometry.
Instead of trying to solve P f = p we search for smoothed approximations (fy,,)y>0 of the
form

f’y.,V(y) = (f, e'y,v('a Y)) s Yy € R? )

where we consider radially symmetric mollifiers (e~ (-, %)) >0 of the form

1 ly — =||”
e'Y,l/('rvy) - Iy'}/3 RV ( ,72 ) €,y € RB . (22)

Here, v > 0 is a real number, I, := 73/2T'(v + 1)/T'(v + 5/2) is a scaling factor and R, is a
function on [0, c0) defined by

[ (1=, f0<s<1,
Ry (s) '_{ 0, ifs>1. (23)

Since supp(R,) = [0,1] it follows that e, . (-,y) has support B,(y) and by the chain rule
we see that e, (-,y) € C¥(R?) for all integer numbers k < v. Let us now show that

/ eyp(z,y)de =1, y € R3. (24)
B’Y(U)

By using spherical coordinates z = y + nyo with € [0,1] and o € S? we can see that

/’ewmy :—// M>nM——/1—>”m
B, (y) S2
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Figure 4: The mollifier e, ,(-,y) for vy =1 and v = 2.

Substituting n = cos a yields

4 [T/? 4n T(v + 1)I(3/2)
eyu(x,y)dz = — sin? () cos(a) do = — 12
/Bwy) ! L, Jo I, 2T(v+5/2)

For the last equality we have used [3, formula 16, p. 993]. Hence (24) follows from the
definition of I, and the identity I'(3/2) = \/m/2. Thus, e, , is a mollifier, i.e., satisfying (17),
(18), (19).

From corollary 3.5 we deduce that if e, ,(-,y) and tD;Ne., , (-, y) are C' functions then

2
'Uy,u(y) = ;tDtNe'y,V('uy) (25)

is a solution of the equation —N*D;v, ,(y) = e,,(-,y). From Lemma 3.3 it follows that if
T < 1 we can approximate P*v, ,(y) by —N*Dyv, ,(y) and therefore we can regard v, . (y)
as a reconstruction kernel for the operator P associated to the mollifier e . (-, y).

In order to compute (25) we have to calculate D;N f where f is a translation of a rotation-
ally symmetric function. This is subject of lemma 5.1 and theorem 5.2.

Lemma 5.1. Let ¢ : [0,00) — R be continuous and ® be a primitive of ¢. Assume y € R3
and define f, € CO(R3) by f,(x) :== ¢(||x — y||?). Then

o((le—yl+0>)-((lz=yl-)*) .
— tx— ’ fo # Y,
(Mf,)(x,t) { ). atz—y] el (26)

for positive t, x € R® and M f,(z,0) = ¢(||lz — y||*) = fo(x).

Proof. The identity M f,(z,0) = ¢(||z — y||*) immediately follows from the definitions of f,
and M (see (10)).

Now let ¢ > 0 and x € R®. If x = y then f,(z + tw) is constant on w € S? and hence
M/, (z,t) = o(t?). If 2 # y then

1
Mfat) = g [ ellet b -yl a0
1 2, 42 r—y
= — ol |l =yl +t*+2t|zr—vy <7,w>)d§2w.
& [o(le=ul ool { =2 ()

To evaluate the last integral we can apply the Funck-Hecke theorem for n = 3, see e.g. [20, p.
20], and we obtain

1 1
Mfpleit) = 5 [ pllle =l + 2 + 2o = yls) ds.



Since @ is a primitive of ¢ we find by the substitution rule

1
O(||lz — ylI* +¢* + 2|z — ylls)|

et = o]
_ 2z =yl +9?%) — @ ((lz —yll - 1)?)
atflz =y '
Hence we have proved (26). O

Theorem 5.2. Let ¢, ®, and f, be as in lemma 5.1 and assume that ¢ is a C* function such
that there is some 0 < v < 1 with supp(¢) C [0,7?]. Further assume that y € B,_.. Then
fo € CL(By), DiNf, € C2(S, % [0,2p]) and

(DiNfo)(o,t) = pe(llo—yl.t),  oeS,, te€l0,2p], (27)

where
(s —t)p ((s —)*)
2s ’

Proof. Since || - || € C*°(R") it follows by the chain rule that f, = po| - ||*> € C*(R?). To
show that supp(f,) CC B, let n := (|y|| + v+ p)/2 and z € R* \ B,. From |Jy|| < p —~
we see that 0 < n < p and thus B, CC B,. From the triangle inequality it follows that
o = yll > llz] = Iyl > 7 — lgll = (o7 — Ilyl})/2 > 0 and hence £, () = 0. This shows that
fo € CL(By).

Next we verify equation (27). Let t > 0 and 0 € S,. Since (Nf,)(0,t) = (tMf,)(o,t) and
llo =yl >~ > 0 it follows from lemma 5.1 that

(DiNF)(o0) = 2 (‘1’ (e 5107 @ (o 31 =0 )) |

Pp(s,t) := s>0, tel0,2p]. (28)

(29)

Since |lo — y|| +t >~ the first term on the right hand side vanishes. Moreover, since ¢ is the
derivative of @, equation (29) implies (27). For ¢t = 0 equation (27) holds true since both sides
vanish.

Finally the assertion D;Nf, € CL(S, x [0,2p]) is a direct consequence of equations (27),
(28). O

We are now able to compute an explicit representation of v, . (y).

Corollary 5.3. Let vy, (y) be defined by (25) with e~ (-, y) as in (22), (23) and let v > 1.
Further assume y € B,_ and 0 <~ < 1. Then we have the representation

kyw(llo =yl )

’U’YaV(y)(Uv t) = 47T||U IR y” 9 S SP? t € [07 2/)] ) (30)
where
Amt(s —t)p 2.2
k’Y,v(Svt) = TRV ((5 —t)° /vy ) . (31)

Particularily, if ||o —y|| € [t —,t + 7], then vy, (y)(o,t) = 0.

Proof. The assumption v > 1 guarantees that ¢(r?) = R,(r*/v?)/(I,~*) and hence f, =
ey (-, y) satisfy the conditions claimed in theorem 5.2. Hence from equation (25) it follows
that

2t (o =yl =R (e —yll = 1)*/7*)
p v, 2|lo —yll
1 drt(llo —yll - 1)

= R, ((|lc—y —1)? 72 .
T I A G A AR

vy (y) (1)

10



Hence we have proven (30), (31). From the fact that supp(R,) = [0,1] it follows that
’U,Y)V(y)(O',t)ZOfOl" HO'_yH g[t_/yat"i_/ﬂ u

Now let v > 0, v > 1, assume y € B,_ and define p := P f. Taking into account that
P*v,(y) = —ND,v,(y) if j is replaced by the delta distribution we may consider (30) as an
appropriate choice for the reconstruction kernel associated to the mollifier e, ,. Note that in
this case we set 7 = 0. The method of approximate inverse applied to P f = p then reads as

e, v ke ult) o
f’Y,V(y) - <Pf7 el / / 7 4 H _y” dtdQP()
1 *
- /SWU 0.0k (o = 3100 49,(0) = (N6, ),
with e
Gy (o, 8) = /7 (o, t)ky (s, 1) dt (32)

which represents an inversion scheme of filtered backprojection type.

Remark 5.4. The assumption y € B,_, is not a significant restrict with respect to applica-
tions, since 0 <y < 1 and the support of f has in fact a positive distance from 0B, = S, in
practical experiments.

6 Numerical Experiments

In this section we show numerical experiments of recovering a function f from measurement
data p=Pf. Let v > 0 be a fixed positive number.

In section 5 we have outlined that we can find approximations f. ,(y) := (p, vy,.(y))2, by
firstly evaluating the filtered signal q.,,, defined by (32) and then evaluating the backprojection

Fro() = (N*g0) () = - /S G0 lv —oll) 4 ()

Ar ly — ol

in every reconstruction point y € B,. Hence the algorithm consists of two steps: First we
perform a filtering step and then we integrate over all spheres with center on S, intersecting
y. This last step is also called backprojection. This procedure is analogous to the filtered
backprojection algorithm in classical x-ray CT.

For our numerical tests we assume p = 1, that is S, = S2. We further assume that the
data are merely known for a finite number of NgNV,, detector points

cos(0) cos(¢y)
Okl = cos(@k)sin(qﬁl) €S2=Sp, k=1,...,Ng, lZl,...,N¢,
sin(@k)

with 0 := —7/2+m(k—1)/(Ng — 1) and ¢; := 27(l — 1) /Ny, and the pressure signals at each
detector point is sampled at N; time steps

tm:2(m—1)/Nt, mzl,...,Nt.

The aim is to evaluate f,, at N := Ny3 points y;, e = 1,..., N, lying on an equidistant grid.
This requires the computation of ¢, ., (0%, |0k — ¥:||) in every reconstruction point y;. To
reduce the computational effort we evaluate q%,,(o;w, -) for t,, with m = 1,..., N} only and
use linear interpolation to approximately find the value at ||y ; — v;||. As quadrature rule on
52 for a function F on the sphere we use the trapezoidal rule in 6 and ¢ direction applied

11



to the coordinate representation cos(0)F' (6, ¢). Hence our algorithm for the determination of
£[i] :== f,,(y;) out of the discrete data p[k, 1, m| := p(ok,,tm) reads as follows:

Algorithm 1 Reconstruction of £[i] from measuring data p[k,l, m].

1: const < 4m/(v3L,)

2: £f[1,....,N]+ 0 > initialization
3:

4: for m,m’ =1,...,N; do > calculating kernel
5: k[m, m'] <= const -ty (tn — twm) Ry ((tm — tms)?/7?)

6: end for

7

8: for kZl,...,Ng,lZl,...,N¢dO

9: dQ COS(@k)2W2/(N¢N9)

10:

11: form=1,...,N; do > filtering step
12: q[m] < 2/N; -3, k[m,m/|p[k,1,m']

13: end for

14:

15: for i=1,...,N do

16: Find m € {1,..., N, — 1} with ¢, <||ok,; — Tl < tmt1

17: U~<_Nt(||0k,l_$i”_tm)/2

18: Q+ (1 —u)-qm]+u-qm+1] > interpolation
19: £[i] « £[i] + Q/(A7||x; — o) - AR > discrete backprojection
20: end for
21:
22: end for

The total number N, of operations needed to perform this algorithm can easily be estimated.
Let us assume that O(Ny) = O(Ny) = O(N,) = O(N,). Then

Nop = O(N2) + O(N9N¢)(O(Nf) + O(Ng)) = O(N®/3)

We demonstrate the performance and stability of our algorithm by means of the following two
examples:

1. Let us consider an energy deposition function f € C}(B,) of the form

M
F@) = Fally - vall)
a=1

consisting of M radially symmetric absorbers fo(y) := Fuo(||[y — yal|) with center y, and
radial profile F,,. From theorem 5.2 it follows that p = 3"  p. is given by

o —yal — 1

Fo(lllo = yall — )
2|lo = yall

palo,t) =

for ¢ € S? and t > 0.

To produce the results of Figure 5 we have used an object consisting of 5 radially symmet-
ric objects of different sizes. The algorithm was performed with N, = N; = Ny = 120
and Ny = 60. Figure 5 shows both the reconstruction out of the exact data and out of
the data with a random perturbation of 20% additive Gaussian noise. The regularization
parameter « was chosen to be 0.05 and the exponent in the mollifier v = 2.
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Figure 5: Top LEFT: Cross section of the synthetic data from which the thermoacoustic
pressure is calculated analytically. TOP RIGHT: Vertical centerline of the original and the
reconstruction from exact data. BoTTOM LEFT: Reconstruction from exact data. BoTTOM
RIGHT: Reconstruction from noisy data perturbed with 20% Gaussian white noise.

2. Consider an arbitrary energy deposition function f € C}(B,). To simulate the measure-
ment data we have to find p(o,t) for o € S? and t € [0, 2] numerically. Therefore we use
the Fourier series expansions

1 .
_ = —im(k,y)/2
y) =g > fre TN, (33)
kez3
and )
_ - —im(k,y)/2
=3 > prlt)e w2, (34)
kez3
for y € [-2,2]® and ¢t > 0. It is easy to see, that if we define
pr(t) = cos(r||k||t/2) fi, (35)

then p agrees with the unique solution of (7), (8) on S? x [0,2] (for 7 — 0). On the
basis of (33), (34), (35) we compute approximations to p = D;Nf with help of the
FFT-Algorithm.

In that way we simulated the thermoacoustic measurement data for a three dimensional
head phantom. Figure 6 shows the head phantom and its reconstruction using algo-
rithm 1. It was performed with N, = Ny = Ny = 100, Ny = 80, v = 0.05 and v = 2.
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7 Conclusion

In the paper we have applied the method of approximate inverse to thermoacoustic tomog-
raphy in a spherical scanning geometry. We were able to find analytical expressions of the
reconstruction kernels for the considered radially symmetric mollifiers. The complexity of the
resulting reconstruction algorithm is the same as for the filtered backprojection algorithm used
to invert the classical Radon transform. Reconstructions from simulated measurement data
have been given and show its validity. Future work will contain an detailed error analysis of
discretization and interpolation.
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Figure 6: Topr: Synthetic data from which the thermoacoustic pressure is calculated numeri-
cally. BorToMm: Reconstruction from simulated data with v = 0.05 and v = 2.
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