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Abstract

Significance: Compressed sensing (CS) uses special measurement designs

combined with powerful mathematical algorithms to reduce the amount of

data to be collected while maintaining image quality. This is relevant to almost

any imaging modality, and in this paper we focus on CS in photoacoustic

projection imaging (PAPI) with integrating line detectors (ILDs).

Aim: Our previous research involved rather general CS measurements, where

each ILD can contribute to any measurement. In the real world, however, the

design of CS measurements is subject to practical constraints. In this research,

we aim at a CS-PAPI system where each measurement involves only a subset

of ILDs, and which can be implemented in a cost-effective manner.

Approach: We extend the existing PAPI with a self-developed CS unit. The

system provides structured CS matrices for which the existing recovery theory

cannot be applied directly. A random search strategy is applied to select the

CS measurement matrix within this class for which we obtain exact sparse

recovery.
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Results: We implement a CS PAPI system for a compression factor of 4 : 3,

where specific measurements are made on separate groups of 16 ILDs. We

algorithmically design optimal CS measurements that have proven sparse CS

capabilities. Numerical experiments are used to support our results.

Conclusions: CS with proven sparse recovery capabilities can be integrated

into PAPI, and numerical results support this setup. Future work will focus

on applying it to experimental data and utilizing data-driven approaches to

enhance the compression factor and generalize the signal class.

Keywords: Photoacoustic projection imaging, compressed sensing, struc-

tured measurement matrices, optimal design

1 Introduction

Photoacoustic tomography (PAT) is an emerging non-invasive imaging technique

that combines the high contrast of optical imaging with the high spatial resolution

of ultrasound imaging [40, 38, 39]. It is based on the generation of acoustic waves

by illuminating a sample with picosecond or nanosecond optical pulses. The acous-

tic waves are measured outside the object and mathematical algorithms are used

to reconstruct an image of the inside. While there are many important practical

and theoretical aspects along the lines of signal generation, signal detection, system

design, image generation and enhancement, in this paper we focus on the measure-

ment and inversion of acoustic waves [34, 36]. Specifically, we focus on PA projection

imaging (PAPI) based on integrating line detectors (ILDs) [12, 33]. Our goal is to

use ideas from compressed sensing (CS) to reduce the number of spatial measure-

ments compared to standard measurements where each ILD is used to record its

own time-dependent signal. Specifically, we present our design and development of

CS in PAT under physical constraints that naturally arise in the already existing

self-developed PAPI system [6].

1.1 Photoacoustic projection imaging (PAPI)

A PA projection tomograph records the induced acoustic signals with an array of

parallel ILDs, with each sensor integrating (averaging) the pressure along the lines

of the detectors. The data thus consists of samples of the linear projection of the

3D acoustic pressure wave in the direction of the ILDs. Reconstruction in 2D gives

a projection of the initial pressure distribution. If a 3D reconstruction is required,
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the object can be rotated around an axis perpendicular to the fibers, and a 3D

reconstruction is computed from the collection of 2D projections by inversion of the

2D Radon transform, which is similar to parallel beam X-ray CT [30, 10]. As in

X-ray imaging, where in certain situations single projections are sufficient, the same

can be said for photoacoustic imaging. We will therefore restrict ourselves to 2D

PAPI.

Figure 1: Photographic image of the PA projection tomography with 64 fiber optic
Mach-Zehnder interferometers (FOMZIs) as ILDs forming the basics of the presented
research.

Figure 1 shows a photograph of our self-developed all-optical PAPI system used

in this study. The setup is based on fiber optic Mach-Zehnder interferometers

(FOMZIs) with graded index polymer optical fibers (GIPOFs). These have a higher

bandwidth than glass optical fibers, are more stable for measurements. In the cur-

rent system, 64 ILDSa are arranged on a circle forming a cylinder. Readout for each

sensor requires an analog-to-digital (AD) converter, and 4 sensors are multiplexed to

one AD converter. Thus, to measure all 64 signals, the measurement process must

be repeated four times. Our hypothesis is that proper combinations of ILD signals

will be advantageous over recording individual signals when used in conjunction

with a nonlinear CS recovery algorithm.

1.2 Compressed sensing (CS) in PAPI

Following the CS paradigm, instead of recording pressure signals P = [pT1 , . . . , p
T
n ]

T

where pj is the pressure signal (written as column vector) of the j-th ILD, we record
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CS data

yi = (AP )i =
n∑

j=1

aijpj for i ∈ {1, 2, . . . ,m} , (1)

with A = (ai,j)i,j ∈ Rm×n denoting the CS measurement matrix. Usually in CS,

the measurement matrix chosen randomly, since this gives exact recovery of sparse

vectors with a high probability for large n,m. However, in practice, and specifically

in our application, the matrix A cannot be chosen completely at random. First, the

measurements cannot combine all pressure values if they are not connected to the

same controller. Second, the numbers ai,j are often restricted to specific values, in

our case for example to 0 and 1. Finally, the dimensionality n in our case is small,

which limits the applicability of existing asymptotic CS theory that applies to the

limit n,m→∞.

The goal of this work is to design, analyze, and implement a CS strategy that

can actually be realized with our PAPI system. Within the considered family of

measurements, we investigate the optimal design of matrices. Due to the low di-

mensionality of CS matrices, even a small compression factor n/m below 2 seems to

be a substantial challenge.

1.3 Outline

In this paper, we present our finding and results in building a CS-PAPI system.

This development is based on several steps. First, we provide a rigorous description

of the PAPI problem. In this context, we also provide an overview of the most

important background knowledge required. Second, we introduce a novel class of

CS measurements that are practically feasible and can be realized with the existing

self-developed PAPI setup. Third, we present a concept of optimal measurement

design that allows researchers and practitioners to strategically select measurements

to maximize imaging accuracy for CS in PAPI and other imaging modalities. While

these results are developed in the context of sparsity we presents an outlook for the

use of more general signal classes potentially enabling data driven machine learning

methods. Finally, we go from theory to practice and show how these results can be

translated into the experimental realization of CS-PAPI.
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2 Background

In this section we present the background of our work. This includes PAPI modeling

(subsection 2.1), sparse CS theory (subsection 2.2) and the description of the self-

developed PAPI system (subsection 2.3).

Figure 2: (a) An object is illuminated with a short optical pulse; (b) the absorbed
light distribution causes an acoustic pressure; (c) the acoustic pressure is measured
with ILD arranged on a circle.

2.1 PA projection imaging (PAPI)

PA tomography is based on generating an acoustic wave inside some investigated

object using short optical pulses. When measuring the pressure with ILDs, the

imaging problem reduces to a 2D version of the standard problem [30, 10] and in

this work we consider the 2D version only. Further, we restrict ourselves to constant

sound speed and a circular measurement geometry as illustrated in Figure 2.

Let us denote by u : R2 → R the 2D PA source distribution which is our image of

interest and supposed to be enclosed by a circle CR of radius R. The 2D projected

pressure satisfies the 2D wave equation

∂2
t p(r, t)− v2s∆rp(r, t) = δ′(t)u(r) for (r, t) ∈ R2 × R+ , (2)

where δ′(t) is the first time derivative of the Dirac delta distribution, r ∈ R2 is

the spatial location, t ∈ R the time variable, ∆r the spatial Laplacian and vs the

constant speed of sound. The wave equation (2) is augmented with p(r, t) = 0 for

t < 0 such that the acoustic pressure is uniquely defined as solution of (2). We

rescale time in such a way that vs = 1.

PAPI in circular geometry consist in recovering the function u from measurements

of Wu(s, t) = p(s, t) made on CR× (0,∞). In the case of full data, exact and stable
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PA image reconstruction is possible and several efficient methods for recovering u

are available. We will use the FBP formula derived in [18]

u(r) = − 1

πR

∫
CR

∫ ∞

|r−s|

(∂ttWu)(s, t)√
t2 − |r− s|2

dtdC(s) . (3)

Note the inversion operator in (3) is also the adjoint of the forward operator W.

This in particular implies that inverting W is stable.

In practical applications, the acoustic pressure can only be measured with a finite

number of acoustic detectors. The standard sampling scheme in a circular geometry

assumes uniformly sampled values

p (sj, tℓ) for (j, ℓ) ∈ {1, . . . , n} × {1, . . . , q} , (4)

with sj ≜ R(cos (Ω(j − 1)/n) , sin (Ω(j − 1)/n)), tℓ ≜ 2R(ℓ−1)/(q−1), and Ω ≤ 2π

denoting the angular covering on the detection circle. The number n of detector po-

sitions in (4) is directly related to the resolution of the final reconstruction. Namely,

n ≥ 2Rλ equally spaced transducers covering the full circle are required to stably

recover any PA source u that has maximal essential wavelength λ; see [22]. Image

reconstruction in this case can be performed by discretizing the inversion formula

(3). The sampling condition requires a very high sampling rate, especially when the

PA source contains narrow features, such as blood vessels or sharp interfaces. Com-

monly, λ will be determined by the spatial sampling via the Nyquist condition, such

that 2Rλ = πNr, where Nr×Nr is the number of samples for discretizing the object

of interest on the square [−R,R]× [−R,R]. In this case, we get n = round(πNr/2)

for correct sampling according to Shannon Sampling theory.

Note that temporal samples can easily be collected at a high sampling rate compared

to the spatial sampling, where each sample requires a separate sensor. It is therefore

beneficial to keep n as small as possible by using tools that overcome the limitations

of classical Shannon Sampling theory. Consequently, full sampling is costly and

time consuming and strategies for reducing the number of detector locations are

desirable. In this study we use n = 64 samples which does not satisfy the Nyqvist

criteria for the targeted discretization. However the image quality in this case is still

reasonable. To further reduce the number of measurements while preserving image

quality we use CS techniques.
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2.2 Compressed sensing (CS)

The traditional approach to signal and image processing is to first collect a large

number of point-like samples, which are then compressed and transmitted with

minimal information loss. The basic idea of CS is to combine signal acquisition and

compression by using specific indirect measurements together with mathematical

algorithms that exploit inherent structure of the image. In this way, a high quality

image can be recovered from a smaller number of measurements than required for

point sampling at the same resolution. In particular, the seminal works [16, 14]

invented a theory of CS based on the sparsity of the signal to be recovered and

the randomness of the measurements. Subsequent research has identified properties

of the measurement matrix, such as the restricted isometry property (RIP), as key

elements for stable and robust recovery.

The first basic ingredient of CS is sparsity, that is defined as follows. Let s ∈ N and

x ∈ Rn. The vector x is called s-sparse, if ∥x∥0 := ♯({i ∈ {1, . . . , n} | x[i] ̸= 0}) ≤ s

where ♯(S) stands for the number of elements in a set S. Signals of practical interest

are often not sparse in the strict sense, but can be well approximated by sparse

vectors.One calls σs(x) := inf{∥x − xs∥1 | xs ∈ Rn is s-sparse} the best s-term

approximation error of x ∈ Rn, and calls x compressible, if σs(x) decays sufficiently

fast with increasing s.

2.2.1 The restricted isometry constant (RIP)

Let s ∈ N and δ ∈ (0, 1). Stable and robust recovery of sparse vectors requires the

measurement matrix to well separate sparse vectors. The RIP guarantees such a

separation. We recall that the measurement matrix A ∈ Rm×n is said to satisfy the

RIP of order s with constant δ if

(1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22 for all s-sparse x ∈ Rn , (5)

and write δs for the smallest constant satisfying (5). Many sparse recovery results

have been derived using the RIP. For example, the result derived in [13] states that

if A ∈ Rm×n satisfies the 2s-RIP with constant δ2s < 1/2 then for ∥y −Ax∥2 ≤ δ

any x⋆ ∈ argmin{∥z∥1 | ∥Az − y∥2} satisfies ∥x − x⋆∥2 ≤ c1σs(x)/
√
s + c2δ for

constants c1, c2 depending only on δ2s. This implies stable and robust recovery for

measurement matrices satisfying the RIP. The error estimate consists of two terms:

The term c2ϵ is due to the data noise and c1σs(x)/
√
s accounts for the fact that the

unknown may not be strictly s-sparse.
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No deterministic construction is known providing large measurement matrices sat-

isfying the RIP with near-optimal s. However, several types of random matrices

are known to satisfy the RIP with high probability. An important example of a

random matrix that satisfies the RIP is the Bernoulli matrix, which is a random

matrix B ∈ {−1, 1}m×n having independent entries that take the values −1 and 1

with equal probability. A Bernoulli matrix satisfies δ2s < δ with probability tending

to 1 as m → ∞, provided that m ≥ Cδs(log(n/s) + 1) for some constant Cδ > 0

as n→∞. However, such a theory is hardly applicable in our situation due to the

small dimension of our measurement matrices.

2.2.2 Binary CS matrices

Another useful type of CS matrices are binary matrices having entries 0 or 1. Such

measurement matrices can be interpreted as the adjacency matrix of a bipartite

graph (L,R,E) where L := 1, . . . , n is the set of left vertices, R := {1, . . . ,m} the
set of right vertices, and E ⊆ L × R is the set of edges. Any element (j, i) ∈ E

can be interpreted as an edge joining vertices j and i. The left vertices L represent

the sensors, and the right vertices R model each measurement. The vertex j ∈ L

is connected to the vertex i ∈ R if sensor j contributes to measurement i. For our

application, we have this type of binary measurement matrices.

Specific binary measurements are lossless expanders for which a stable and robust

recovery theory exists [8, 19]. However, these results are again of asymptotic nature

and are not applicable for PAPI with small CS matrices.

2.3 All-optical PA projection tomograph

In order to realize photoacoustic projection tomography one needs one or several

ILDs that integrate the pressure along one dimension. Initial setups used a single line

detector that is moved around the object either using a free-beam Mach–Zehnder

interferometer [32] or a free-beam as well as fiber-based Fabry-Perot interferometer,

[11]. To accelerate the data collection process arrays of line detectors have been

developed either consisting of a piezoelectric array [31] or an array of FOMZIs in-

troduced in [7, 6]. Optical and piezoelectric ILDs have been compared in [28]. A

method where a PA projection image is collected at one shot is the full-field tech-

nique [29]. In this paper we use the FOMZI array reviewed below.

The PAPI setup consists of 18 individually designed (CAD) parts, for a total of 750
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Figure 3: Schematics of the photoacoustic projection imaging (PAPI) system setup
using 64 detector positions.

mechanical components. The fiber cage of the system is built with 64 GIPOFs, and

each GIPOF has two end faces/ferrules, and five glue points, making a total of 128

end faces and 320 glue points. The fiber laser used is an NKT Koheras AdjustiK E15

with a maximum power of 200mW and a line width of 0.1kHz. A 1:2 fiber splitter

directly after the fiber laser splits the optical path into a reference arm with 20%

laser power and a measurement arm with 80% laser power. The 80/20 splitting is

used because the measurement arm is split into 64 beams using a 1:64 fiber splitter

whereas the reference arm is only split into 16 beams. Thus, each of the 80 fibers

receives 1.25% of the overall laser power. The measurement arm consists of 64

GIPOFs arranged in a circular configuration and multiplexed with sixteen 4×1 fast

fiber optic switches from Sercalo. The 16 fiber optic switches are controlled by the

measurement software.

For working point stabilization of the FOMZIs, 16-fiber phase switches are inte-

grated on 4 controller cards. A robust analog (bang-bang) controller with digital

potentiometers and easy USB control was developed at RECENDT [7]. The refer-

ence and measurement arms are connected by sixteen 2:2 50/50 fiber couplers and

the 16 self-developed balanced photodetectors detect the optical signal and provide

two electrical signals. A low-frequency (LF) signal is employed for working point

stabilization, while a high-frequency (HF) signal represents the actual data. The

16 PA signals are sampled by a National Instrument (NI) device with 2 cards, each

with 8 channels resulting in 16 channels in total. Each card has a maximum sam-

pling rate of 60MS s−1, 12 bit depth and 128MB on-board memory. The whole

system is controlled by a PC with our own control and measurement software (NI
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LabWindows).

3 System design, implementation and analysis

In this section we present details on the design, implementation and analysis of

our self-developed CS-PAPI device. It is build upon an extension of the all-optical

PAPI described in Section 2.3 using specific CS measurements that we optimize

by introducing the sparse injectivity number (SIN) as a quality measure for CS

measurement matrices.

3.1 Compressive PAPI

We conduct CS measurements of the pressure P = Wu in the detector domain, en-

suring that pressures from different times are not mixed. Thus, instead of collecting

m individually sampled signals as in (4), we take CS measurements yi,τ = (AP )i,τ ≜∑n
k=1 ai,jpj,ℓ for (i, ℓ) ∈ {1, . . . ,m} × {1, . . . , q} with m < n. Recall that n is the

number of sensors, m the number of measurements and q the number of temporal

samples. If we write Wx = [(W1x)
T , . . . , (Wnx)

T ]T as a block column vector where

the j-th row is the signal of the j-th ILD, the CS-PAPI data can be written as

Y =


y1
...

ym

 = A


W1u
...

Wnu

 = AWu , (6)

where the yi is i-th CS measurement signal.

The aim of CS-PAPI image reconstruction is to recover the unknown u from data

in (6). If the matrix A would have Rank n, then (6) would have the solution

u = W♯[(ATA)−1ATY ], whereW♯ is a numerical realization of the inversion formula

of the wave equation and (ATA)−1AT is the least square inverse of A. In the case

of compressive measurements, however, we have m < n and the matrix ATA is

singular. Thus solving Y = AWu becomes underdetermined and reconstruction

algorithms using specific prior information are required. Following the prime CS

strategy we use sparsity for that purpose.

Several choices for the CS measurement matrix A have been suggested for PAT

[37, 23, 9]. Specifically, for PAPI with ILDs binary CS matrices are often most easily

realized in practice. In this case sparsifying transformations in the detector domain
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may negatively affect stable recovery results. Note that the CS measurement matrix

A in (6) does not act in the temporal variable. Thus for any operation Φ acting

in temporal variable only, we have the commutation relation A ◦Φ = Φ ◦A. This

has been the motivation for the two-step image reconstruction approach proposed

in [37], based on sparsifying temporal transforms, which we essentially follow here.

However, in contrast to that paper, we use a structured CS measurement matrix

where only certain sensor combinations are allowed to be guided by the experimental

design.

3.2 Proposed structured CS measurements

Recall that the PAPI system (see Figure 1) consists of 64 ILDs in total wich naturally

come in 16 blocks of 4 sensors each, where each of these blocks is characterized by

sensors being connected to the same switch. We form CS measurements by selecting

at most one sensor of each block and summing the signals over four neighboring

blocks. In that way we make four CS measurements in parallel where the first

measurement uses detectors in group [1] = {1, . . . , 16}, the second in group [2] =

{16, . . . , 32}, the third in group [3] = {33, . . . , 48} and the fourth in group [4] =

{49, . . . , 64}. In every measurement there is at most one ILD active within one

block and every other sensor is inactive. Making m0 such measurements, results for

each group in a binary m0 × 16 matrix

AG =
[
AG,1|AG,2|AG,3|AG,4

]
∈ {0, 1}1×16 for G = [1], [2], [3], [4] , (7)

where each block AG,b has at most one non-vanishing entry. Entry 1 means the

corresponding sensor is active and 0 means that the sensor is inactive. An example

for such a matrix with m0 = 2 measurements is

AG =

[
1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0

]
.

According to the general construction, each row is characterized to have at most one

non-vanishing entry in each of the four blocks and the number of rows corresponds

to the number of measurements for any group G = [1], [2], [3], [4].

The overall CS matrix acting on the 64 sensors arranged in four groups takes the
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block diagonal form

A =


A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A4

 ∈ {0, 1}4m0×64 , (8)

where AG ∈ {0, 1}m0×16 has the structure as in (7). For these types of CS measure-

ments combined with the sparsity paradigm, we address both the unique recovery

question and the optimal design question. All matrices of the form (7) and (8) are

experimentally implementable with the CS-PAPI system.

Remark 3.1 (Selection of block size and group size). The parameters guiding the

types of CS measurements are the block size (sensors having the same switch) and

the number of blocks per group. The product of these numbers gives the group size.

The specific choices are determined by the current PAPI setting (block size four

and four groups per block); however, they can be adjusted according to different

experimental designs. For example, by fixing the group size to 16, another choice

is a block size of two and eight groups per block. Such measurements are found to

improve CS capabilities. However, on the downside, this doubles the number of fiber

phase switches. Our framework is completely flexible in terms of group number and

block size. The concrete choice should be determined by practical considerations.

3.3 Experimental realization

In order to technically implement CS on PAPI, a plug-and-play concept was devel-

oped by designing and implementing a CS module named SUM4 (for summing over

4) that can be integrated into the PAPI system. Recall that before AD conversion,

PAPI has 16 acoustic signals, where each signal corresponds to the ILD selected

in the 16 blocks by the switch. As a first step, we extend PAPI by enabling the

arbitrary selection of ILDs within each group. Additionally, we construct SUM4,

where signals from four neighboring blocks are summed, resulting in four electrical

signals that are sampled by the NI card. Before summation each signal can be po-

tentially be switched off, resulting in CS measurements of the form (7), (8). Figure 4

illustrates the schematic concept of SUM4, consisting of on/off switches, summation

over blocks of four, and transmission to the ADC. Additionally, Figure 4 shows a

photo of parts of the CS-PAPI system.

SUM4 can be seen as a device for analog signal conditioning and implements the CS
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Figure 4: Top: Illustration of the CS detection principle and its technical realization
by SUM4. Bottom: Photo of the CS-PAPI system. Note that the CS module is
located in the lower right part of Figure 3, before the A/D converter. Additionally,
the 4:1 switches are modified to allow for variable ILD selection.

aspects in the analog electrical domain. It allows the arbitrary superposition of up

to four analog signals by switchable addition of the input signals. Additionally, the

design permits the compensation of system-related losses in signal amplitudes, such

as those caused by impedance matching. The low-noise design of the analog signal

paths results in a signal-to-noise ratio of 80 dBV, corresponding to a resolution of at

least 13 bits. The selection of electrical signals to be superimposed is done via the

USB port. This involves implementing a virtual COM port with a custom control

protocol. This intuitive control protocol facilitates easy integration of the device into

a larger network of instruments via USB. To ensure optimal integration with PAPI,

the quad summers combine four separate summing groups in one device, allowing

16 input signals to be routed to four independent outputs.

3.4 Optimal design

The CS-PAPI system with SUM4 allows us to perform any CS measurements of the

form (7), (8). The aim in this section is to present a strategy for selecting optimal

measurements within this class based on exact reconstruction. For that purpose, we

first note that the measurements between the subgroups are independent and thus

we aim for optimal design of each m0 × 16 sub-matrix of the form (7). Second, we

focus on optimal design in the context of sparse recovery. Thus we aim for binary

matrices M ∈ Rm0×16 of the form (7) with m0 < 16 which allow us to recover sparse
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signals x ∈ R16×1 from data Mx. Because the signal size is small, selecting these

matrices at random (as in standard CS) resulted in matrices not enabling sparse

recovery. We therefore designed a quality measure and a strategy to construct

matrices enabling sparse recovery.

A minimal requirement for the identifiability of sparse elements x ∈ R16 is the

injectivity of M over the set of s-sparse elements. However injectivity alone is not

sufficient in the sense that Mx1 and Mx2 can get close to each other for sparse

signals x1,x2 very different from each other. Thus we actually need to bound the

difference ∥Mx1 −Mx2∥2 in order to sufficiently separate x1 and x2. While this is

essentially also included in the RIP constant, in this paper we introduce a different

concept which we think fits better to our aims.

Definition 3.2 (Sparse injectivity number). For a matrix M ∈ Rm0×n0 and any s

we define the s-sparse injectivity number (s-SIN) of M as

Θs(M) := inf
{∥Mx1 −Mx2∥2
∥x1 − x2∥2

∣∣∣ x1 ̸= x2 ∈ Rn0 are s-sparse
}
. (9)

Alternatively, the s-SIN can be defined as the largest constant Θ ≥ 0 such that

∥Mx1 −Mx2∥2 ≥ Θ∥x1 − x2∥2 for all s-sparse signals x1,x2 ∈ Rn0.

The s-SIN is strictly positive if and only if the matrix M is injective on the set of

all s-sparse elements. Unlike the usual RIP, it only asks for the one-sided estimate

∥Mx1 −Mx2∥2 ≥ Θ∥x1 − x2∥2. Furthermore, for s ≤ n0/2, it is easy to verify that

σs is the smallest singular value among all m0 × 2s sub-matrices of M0.

A good CS matrix is a CS matrix with Θs(M) large relative to ∥M∥. Values of

Θs(M) greater than 0.1 have been empirically observed to result in stable and ro-

bust signal reconstruction. Randomly selecting M from our class of matrices turned

out to very often yield (almost) vanishing s-SIN. On the other hand, computing the

s-SIN for all admissible matrices to make an optimal selection is computationally

infeasible. Therefore, to determine a suitable CS matrix, we use a simple algorithm

where we repeatedly randomly select M from our CS matrix class and update the

matrix whenever the s-SIN is increased. This procedure is summarized in Algo-

rithm 1, where for PAPI we have n0 = 16.

In Algorithm 1, the function random.sample selects a feasible list of sensors and the

function makeCSMatrix forms the corresponding CS matrix. Furthermore, getSIN

computes the s-SIN. We have found empirically that procedure results in CS ma-

trices with a SIN over 0.1 in a reasonable time. Specifically, we take m0 = 12 and

s = 2 for the results shown below.

14



Algorithm 1 Optimized detector selection for CS matrix with large s-SIM
1: SINopt← 0
2: LISTopt← zeros(1, 4)
3: Mopt← zeros(m0, n0)
4: for i in [1, Niter] do
5: LIST← random.sample(m0, n0) ▷ Draw m0 lists of active sensors
6: M← makeCSMatrix(LIST) ▷ Build the CS matrix
7: SIN← getSIN(M, s) ▷ Compute the s-SIN of M
8: if SIN > SINopt then
9: LISTopt← LIST

10: Mopt←M
11: SINopt← SIN

12: end if
13: end for

return SINopt, LISTopt, Mopt ▷ Return optimal CS list, matrix and SIN

Algorithm 1 can be extended to use block sizes other than four and numbers of blocks

other than four. The only limiting factor is the increasing numerical complexity with

increasing dimensions.

3.5 Two-step CS image reconstruction

Due to the separable nature of the image reconstruction problem (6) there are nat-

urally two types of reconstruction methods, namely one-step image reconstruction

and two-step image reconstruction. In the two-step methods, the complete data

Wu are first recovered from CS data A[Wu] via iterative methods, and in a second

step u is recovered from Wu via wave inversion such as the FBP inversion formula.

In the one-step approach, the initial pressure is directly recovered from CS data

using iterative methods applied with the full forward operator AW. Both classes

of methods come with certain strengths and limitations. The two-step approach is

fast as iterative signal reconstruction, is separated from the computationally costly

evaluation of W and its adjoint. Moreover, CS properties of the matrix A can be

exploited together with the sparsity of Wu, potentially after suitable basis trans-

form. On the downside, image structure of u cannot be directly integrated in the

image reconstruction. The one-step approach, on the other hand, allows for easy

integration of prior information about the image to be generated. However, CS re-

construction theory based on sparsity and specific properties of he forward matrix

can hardly be integrated. Hybrid methods such as those proposed in [17] might over-

come such issues. Another drawback of one-step approaches is that they necessitate

the repeated use of the time-consuming evaluation of W and its adjoint.
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Due to its clear interpretability and computational efficiency in this study we work

with the two-step approach. Specifically, we utilize temporal transforms in combi-

nation with 1D total variation (TV) minimization. For that purpose we apply a

transform Φ : Rq → Rq acting in the time domain such that the transformed pres-

sure P ΦT has sparse gradients. Thus an approximation H = [hT
1 , . . . , h

T
n ]

T to P ΦT

can be recovered by TV minimization

∥AH − Y ΦT∥2 + ∥∂1H∥1 =
q∑

ℓ=1

∥Ahℓ − (Y ΦT )ℓ∥2 + ∥∂1hℓ∥1 → min
H

, (10)

where ∂1 is the derivative in the sensor direction. Problem (10) can be solved by

a series of 1D TV minimization problems for the 1D signals hℓ and is numerically

efficient. Further, by writing the FBP formula (3) as

u(r) = − 1

πR

∫
∂BR

∫ ∞

|r−z|

(∂tt[Φ
−1 ◦Φ ◦Wu])(s, t)√
t2 − |r− s|2

dtdS(s) (11)

we can recover the unknown u from the filtered signals Φ ◦Wu in the first step.

Equation (10) and (11) constitute the two-step method we use for image reconstruc-

tion in this paper

Remark 3.3. Let us mention some further work on image reconstruction in CSPAT.

Using intertwining relations between spatial and temporal operations for the wave

equation, we extended the sparsifying transform approach to the image domain [24,

41], enabling one-step inversion. This and the two-step method can also be applied

to CSPAT with standard point-like measurements. Other early work on CSPAT has

been done in [35, 21, 1, 5, 27], where various compressive sampling strategies have

been used with sparse recovery techniques. Recently, machine learning methods have

been used in the context of CSPAT [25, 4, 20, 26, 2, 15, 3].

4 Numerical experiments

Due to the restricted CS matrices, it is challenging to achieve even a small compres-

sion factor n/m. Note that for our structured CS matrices we require sparsity within

the 4 groups of 16 sensors each. For the following numerical investigation, we use a

sparsity level of s = 2. Numerically, it turns out that we need 12 measurements to

obtain a non-singular SIN with the algorithm outlined above.
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Figure 5: Comparison of a measurement matrix for optimized 2-SIN (top left) and
a random matrix according to the CS setup (top right), which has been corrected
to have non-vanishing SIN. The bottom image shows the computed s-SIN for the
sparsity level 2s = 1, 2, 3, 4, 5.

4.1 Measurement design results

We use the parameters of our PAPI system, where measurements on a group of

detectors have the form (7), whose structure is determined by the size of the blocks

(which is 4 for our PAPI) and the number of blocks within a group (which is also 4 for

our PAPI). The goal of CS is to keep the number m0 of measurements small, while

allowing the unique recovery of certain elements. Following the sparsity paradigm,

our approach is to use algorithm 1 to find a matrix with non-singular s-SIN. The

larger s, the more general the signal class, but the less likely it is to get a non-

vanishing s-SIN. So we take 2s = 4 to have at least some generality in the signal

class.

Running Algorithm 1 we found that a non-singular SIN could be found for m0 = 12

measurements. In particular, in almost every test run with 100 iterations, we could

find a matrix with a SIN of about 0.14, which we then selected. Even for m = 11 we

could find such matrices after a longer search. However, we could not increase the

compression factor further in the sense that for m = 10, even after 100000 iterations,

no SIN larger than machine precision could be found. Roughly speaking, our work

demonstrates a compression factor of at least 4/3 for block size 4 and group size 16.
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Remark 4.1 (Variable block size and group size). In order to put our work into a

broader perspective, it is worth investigating whether different block sizes and num-

bers of blocks result in a larger compression factor. Testing our algorithm with the

same group size but a block size of two, we found that indeed, using m = 10 mea-

surements results in a nonsingular s-SIN of approximately 0.21, demonstrating an

increased compression factor of 8/5. A similar effect has been observed when keeping

the block size constant while increasing the group size.

Having a non-singular 2-SIR allows for theoretical exact recovery of 2-sparse signals

from exact data. In reality, robustness regarding noise and stability concerning

the sparsity level using specific reconstruction algorithms are central. While this is

not part of our theory, we expect similar results to the (unfortunately asymptotic)

theory of CS. Our numerical results below support this.

Figure 6: Reconstruction results from exact data data. Top row (from left to right):
Data from 64 ILD, reconstruction using an optimized CS matrix and reconstruction
using a random matrix. Middle row: corresponding time-transformed data from the
pressure. Bottom: Corresponding FBB reconstructions. In the first two rows, the
horizontal direction represents the spatial dimension, while the vertical direction
represents time.
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Figure 7: Reconstruction results from noisy data. Top row (from left to right):
Data from 64 ILD, reconstruction using an optimized CS matrix and reconstruction
using a random matrix. Middle row: corresponding time-transformed data from the
pressure. Bottom: Corresponding FBB reconstructions. In the first two rows, the
horizontal direction represents the spatial dimension, while the vertical direction
represents time.

4.2 Image reconstruction results

For image reconstruction, we use the two-step sparse recovery method described

above. The key there is to apply a temporal transform to obtain sparsity. Here we

use a phantom such that the spherical means are piecewise constant. Thus, in the

first step, we use the Abel transform as the time transform and recover the spherical

means using TV minimization (10).

Reconstruction results from exact and noisy data are shown in Figure 6. We use

two different measurement matrices, the first one is found by our algorithm and the

second one is a randomly selected matrix from the CSPAT family that we corrected

by educated guess to get non-vanishing 2-SIN. The CS measurement data and the

added noise are shown in Figure 8. For specific parameter settings, we refer to the

Matlab code that will be made publicly available. We consider the FBP recon-
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Figure 8: Exact and noisy data for the optimized and the random matrix. The
horizontal direction represents the spatial dimension, while the vertical direction
represents time.

struction as our ground truth because our aim is to approximate the image quality

achieved with the full sensor array (64 sensors). Our ground truth phantom consists

of circles, but they are not homogeneous. The profile has been chosen such that the

spherical means of the circular regions are piecewise constant, making it well-suited

for total variation (TV) minimization. In this way, we avoid a transformation that

modifies the signal in that regard, as suggested in [37].

We find that the reconstruction procedure is indeed very stable and robust. In

particular, the noise had a small negative impact on the results. The reconstruction

artifacts are due to the failure of the strict 2-sparsity assumption. To support such

a claim, we also show results (Figure 9) for a simple phantom where 2-sparsity on

the 16-groups almost holds. In this case, the CS reconstruction hardly differs from

the ground truth. For precise relative error values see Table 1. All reconstruction

results demonstrate stability and robustness.
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Figure 9: Reconstruction results of sparse object. Top row (from left to right):
Data from 64 ILD, reconstruction using an optimized CS matrix and reconstruction
using a random matrix. Middle row: corresponding time-transformed data from the
pressure. Bottom: Corresponding FBB reconstructions. In the first two rows, the
horizontal direction represents the spatial dimension, while the vertical direction
represents time.

Table 1: Relative. ℓ2 error in the data (row 1), the CS reconstruction (row 2) and
the final FBP reconstruction error using the optimized and random matrix (row 3).

optimized A random A

data CS FBP data CS FBP

non-sparse phantom (noisy) 0.0901 0.3159 0.6686 0.0766 0.3414 0.6810
non-sparse phantom (exact) x 0.2594 0.6049 x 0.2849 0.6571
sparse phantom (exact) x 0.0003 0.0010 x 0.0107 0.0509

5 Conclusion and outlook

In this paper we presented the experimental realization of a CS-PAPI system ex-

tending the existing tomograph. We demonstrated that the specific setup allows

perfect recovery of sparse signals. However for that purpose we could not select an
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admissible matrix uniformly at random, but a systematic strategy exploiting the

SIM.

One future task is to go beyond the sparsity model. Thus our aim is to find CS

matrices A ∈ Rm×16 not targeting sparsity but actual real data. This can be done

two-fold. First one can train a matrix such that 16 × 1 pieces in data domain are

optimally separated. Second optimization can be improved by optimizing over the

image space. This allows us to consider that, due to the forward map W, the 16×1

patches are actually correlated since they originate from the same initial source.

Deep learning and neural networks are natural candidates unveiling such hidden

correlation.
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