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Abstract

Blind deconvolution aims to recover an original image from a blurred version in the

case where the blurring kernel is unknown. It has wide applications in diverse fields such

as astronomy, microscopy, and medical imaging. Blind deconvolution is a challenging ill-

posed problem that suffers from significant non-uniqueness. Solution methods therefore

require the integration of appropriate prior information. Early approaches rely on

hand-crafted priors for the original image and the kernel. Recently, deep learning

methods have shown excellent performance in addressing this challenge. However, most

existing learning methods for blind deconvolution require a paired dataset of original

and blurred images, which is often difficult to obtain. In this paper, we present a novel

unsupervised learning approach named ECALL (Expectation-CALibrated Learning)

that uses separate unpaired collections of original and blurred images. Key features

of the proposed loss function are cycle consistency involving the kernel and associated

reconstruction operator, and terms that use expectation values of data distributions to

obtain information about the kernel. Numerical results are used to support ECALL.

Key words: Inverse problems, unsupervised learning, unknown forward operator,

blind deconvolution.

MSC codes: 65F22; 68T07

1

ar
X

iv
:2

40
2.

00
67

0v
2 

 [
m

at
h.

N
A

] 
 3

 F
eb

 2
02

4



1 Introduction

Blind deconvolution addresses the problem of recovering the original unknown potentially

vector valued image x : Rd → Rc from its blurry and noisy observation

y = k⋆ ∗ x+ δ , (1.1)

where k⋆ : Rd → R is the unknown convolution kernel and δ is the unknown noise. Since

the kernel needs to be at least partially estimated along with the recovery of the original

image, the problem (1.1) is severely underdetermined and ill-posed. Thus, strong addi-

tional assumptions on the original image and the kernel are required for a proper solution.

While classical variational methods have been developed for this purpose [3, 22, 14, 23], in

this work we introduce a novel unsupervised learning approach to tackle this challenging

problem.

Among others, blind deconvolution is relevant in medical imaging, astronomy, microscopy,

signal processing, radar imaging, remote sensing, and computer vision (see [14] and ref-

erences therein). In astronomy, for example, blind deconvolution is used to improve the

resolution of images obtained by telescopes. In medical imaging, it is used to remove blur

caused by motion or the imaging process. In microscopy, the image of a specimen is often

blurred due to imperfections in the optics, aberrations, and scattering of light. Non-blur de-

convolution is simpler and better understood, but requires precise knowledge of the blurring

kernel. In the above applications, however, the kernel is often at least partially unknown.

1.1 Prior work

Blind deconvolution has been studied extensively for several decades. Due to its highly ill-

posed nature, blind deconvolution is usually approached with strong additional assumptions

on x and k⋆ (see [4, 7, 12, 13, 16, 17, 32, 26, 37, 38, 39, 22]). Typically, x is assumed to

have a sparse representation in some basis or dictionary, and k⋆ is assumed to be a smooth

function or to have a compact support. In general, variational regularization [30] provides a

general framework for integrating prior information in blind deconvolution. However, they

typically use hand-crafted priors that are not well represented in natural images. They also

require time-consuming iterative minimization and may suffer from local minima.

Deep learning based approaches have recently shown excellent results for blind deconvolu-

tion tasks [2, 8, 15, 24, 25, 27, 33, 31, 34, 40]. Most of these approaches are supervised

and require a paired dataset of original and blurred images. Existing methods fall into two

broad categories: Two-step approaches with kernel estimation in a first step, and end-to-

end approaches for estimating only the x. See [41] for a detailed review of such supervised
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learning approaches in blind deconvolution. Paired data however is in many cases difficult

to obtain.

In contrast, unsupervised methods overcome the challenging problem of collecting corre-

sponding pairs of original and blurred images. For example, in [28] a method inspired by

the principles of Deep Image Prior (DIP) and Double-DIP [6, 1, 35] is presented. In [18],

a method is proposed to approximate the maximum a posteriori estimate of the blurring

kernel using Monte Carlo sampling. Another approach [21] is based on Generative Ad-

versarial Networks (GAN) [5]. While GAN-based methods suffer from the instability of

GAN training, the DIP-based method suffers from long inference time and sensitivity to

hyperparameters.

1.2 Main contributions

In this paper, we present a novel simple unsupervised learning approach to blind decon-

volution that overcomes the above problems. Specifically, we consider blind deconvolution

with an unknown kernel k⋆ when separate unpaired collections of original and blurred im-

ages are given. It is proposed to estimate an unknown kernel k⋆ and the reconstruction

operator R⋆ : y → x via unsupervised learning by comparing expectations of the Fourier

transform of given seperate unpaired collections of original and blurred images along with a

cycle consistency term. Our method is particularly useful in various applications where the

acquisition of a paired dataset is challenging. As our main contribution, we motivate and

introduce a novel loss function that estimates the kernel and reconstruction operator. The

loss function includes a cycle constancy term, which requires R⋆ to be a near-inverse of the

convolution with k⋆, and an expectation calibration term to constrain k⋆. We refer to the

proposed method as ECALL (Expectation-CALibrated Learning). We present numerical

results that demonstrate the success of ECALL.

1.3 Outline

The rest of the paper is organized as follows: In Section 2 we present the problem for-

mulation and our proposed unsupervised learning method ECALL for blind deconvolution.

In particular, the design of the proposed loss function is presented in detail. Numerical

aspects and numerical results are presented in Section 3. The paper ends with conclusions

and an outlook on future work presented in Section 4.
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2 Proposed ECALL method

2.1 Problem formulation

We consider the blind deconvolution problem (1.1) in the case when x and δ are independent

random variables in L2(Rd) modelling original images and noise, respectively, k⋆ ∈ L1(Rd)

is a deterministic kernel and y are the given data representing noisy blurred images. We

assume the noise to have zero mean. We write F and F−1 for the Fourier transform on

Rd and its inverse, and write E[·] for the expectation. At some places we will use the

abbreviation x̂ := F(x). We assume that the convolution is well defined by F(k⋆ ∗ x) =

F(k⋆) · F(x) and given by point-wise multiplication in Fourier space.

Let px, py and pδ be the distributions of x, y and δ, respectively. Our goal is to find

the kernel k⋆ together with a reconstruction operator R⋆ : y → x mapping noisy blurred

images to original ones based on (1.1). More precisely, we consider the following problem.

Problem 2.1 (Unsupervised blind deconvolution). For given distributions px, py and pδ

subject to model (1.1) determine the kernel k⋆ and the reconstruction operator

R⋆ := argmin
R

E
[
∥R(k⋆ ∗ x+ δ)− x∥2

]
. (2.1)

Since, in practice, only a finite date set can be collected, we will actually address the

following empirical version.

Problem 2.2 (Empirical unsupervised blind deconvolution). For given unpaired collections

of original images (xi)i=1,...,N ∼ px, data (yi)i=1,...,N ∼ py and noises (δi)i=1,...,N ∼ pδ,

estimate the kernel k⋆ and the reconstruction operator R⋆ defined by (2.1).

Note that in Problem 2.2 we assume no dependence among (xi)
N
i=1, (yi)

N
i=1 and (δi)

N
i=1.

Remark 2.3. In the supervised learning setting [36] the ideal reconstruction operator R⋆

is given as the minimizer of the expected loss E[∥R(y)−x∥2]. It implementation, however,

requires paired data, which we don’t have. If k⋆ would be known, we could create paired

data using samples of x and the model k⋆ ∗x+δ. Our strategy will therefore include kernel

estimation, which will then allow the creation of virtual supervised training data based on

the kernel estimate.

To solve Problem 2.1, we set up an expected loss functional that determines k∗ based on

px and py (expectation calibration) and R∗ based on virtual supervised data using the

estimated kernel. To stabilize the whole process, we integrate several additional terms. In

particular, the joint estimation of k⋆ and R⋆ improves the estimation of each. Problem
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2.2 then uses the empirical version of the expected loss together with specific network

architectures for approximating (k⋆,R⋆).

2.2 Theory

Let us start with the theoretical Problem 2.1. Our ECALL method is motivated by the

following simple result, which constitutes a constructive uniqueness theorem for the problem

of determining (k⋆,R⋆).

Theorem 2.4 (Uniqueness results). Suppose E[x̂](ξ) ̸= 0 for almost every ξ ∈ supp(k̂⋆).

Then (k⋆,R⋆) is the unique solution of

k⋆ = argmin
k

∥E[ŷ]− E[F(k ∗ x)]∥1 (2.2)

R⋆ = argmin
R

E∥x−R(k⋆ ∗ x+ δ)∥22 . (2.3)

Proof. By the convolution theorem and equation (1.1) we have ŷ = k̂⋆ · x̂+ δ̂. By applying

expectation values, using that k⋆ is a deterministic quantity, and that the noise has zero

mean and is independent of the clean image, we obtain (2.2). Having determined the kernel

k⋆, identity (2.3) is then simply the definition of R⋆.

Based on Theorem 2.4, we set up a loss function that includes terms for estimating the

kernel k⋆ and terms for estimating the reconstruction operator R⋆. To increase accuracy

and stability, we introduce regularization. More specifically, we consider

L(k,R) = LA(k) + LB(k,R) + LC(k,R) (2.4)

where the three terms LA, LB, LC are described next.

(A) Expectation calibration: Based on (2.2) we introduce a term for determining

the kernel k⋆. Under the assumption that E[x̂](ξ) ̸= 0, minimizing the term ∥E[ŷ]−
E[F(k ∗ x + δ)]∥1 is theoretically sufficient for that purpose. However, when E[x̂]
is close to zero, then the estimation becomes unstable. We thus add a second term

involving expected values of Fourier magnitudes. Thus we take

LA(k) = λA,1

∥∥E[ŷ]− E[F(k ∗ x+ δ)]
∥∥
1
+ λA,2

∥∥E[|ŷ|]− E[|F(k ∗ x+ δ)|]
∥∥
1
. (2.5)

Loss (2.5) is the main term allowing to estimate the unknown convolution kernel.

While theoretically the first term would be sufficient the second term turns out to

significantly increase stability.
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(B) Cycle consistency: Based on (2.3) we construct a term to obtain the recon-

struction operator R⋆. If the exact kernel k = k⋆ would be known, the term

E[∥x−R(k ∗ x+ δ)∥2] would be sufficient for that purpose. However, as the kernel

is estimated simultaneously with the reconstruction operator we found that adding

E[∥y − k ∗ (Ry)∥2] significantly improves results and, in particular, also stabilizes

the kernel estimation. Thus we consider the term

LB(k,R) = λB,1E[∥y − k ∗ (Ry)∥2] + λB,2E[∥x−R(k ∗ x+ δ)∥2] . (2.6)

It implements the reconstruction property (2.3) together with data consistency.

Making LB small requires k ∗ (Ry) ≃ y and R(k ∗ x) ≃ x and thus resembles

the cycle loss commonly considered for unpaired image-to-image translation [42].

(C) Regularization: To avoid overfitting, we consider simple L2-regularization ∥k∥22.
To stabilize estimating the reconstruction operator, we add the difference between

the expectations of x and Ry resulting in

LC(k,R) = λC,1∥k∥22 + λC,2∥E[Ry]− E[x]∥22 . (2.7)

Together with the expectation calibration (2.5) and cycle consistency (2.6) the reg-

ularization term (2.7) forms the loss function (2.4).

2.3 Empirical estimation

Next we turn over to the practically more important Problem 2.2 of blind deconvolution

using empirical data (xi), (yδ
i ) and (δi). For that purpose we replace all expectation

values in (2.4) by empirical counterparts. The resulting functional is minimized over a

parameterized class of convolution kernels (kw)w∈W for the kernel and a convolutional

neural network (Rθ)θ∈Θ for the reconstruction operator. Thus we consider

LN (w, θ) = LN
A (w) + LN

B (w, θ) + LN
C (w, θ) (2.8)

where

LN
A (w) =

λA,1

N

∥∥∥ N∑
i=1

ŷδ
i −

N∑
i=1

F(kw ∗ xi + δσ(i))
∥∥∥
1

+
λA,2

N

∥∥∥ N∑
i=1

|ŷδ
i | −

N∑
i=1

|F(kw ∗ xi + δσ(i))|
∥∥∥
1

(2.9)

LN
B (w, θ) =

λB,1

N

N∑
i=1

∥∥∥yδ
i − kw ∗ (Rθy

δ
i )
∥∥∥2
2
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+
λB,2

N

N∑
i=1

∥∥∥xi −Rθ(kw ∗ xi + δσ(i))
∥∥∥2
2

(2.10)

LN
C (w, θ) = λC,1∥w∥22 +

λC,2

N

∥∥∥ N∑
i=1

xi −
N∑
i=1

Rθ(y
δ
i )
∥∥∥2
2
. (2.11)

Here (δσ(i)) denotes random sampling from the given collection of noises.

Details on the implementation and the network architecture are given below.

3 Numerical simulations

In this section, we present details of implementation and experimental results. We will

work with color images with size of 256× 256 having three color channels. The convolution

kernel k⋆ is approximated by a parameterised family of convolutions (kw)w∈W realised as

CNN with one convolution layer with kernel size 31 × 31. The entries of the kernel are

taken as parameters of the network. The reconstruction operator R⋆ is approximated by

the U-Net architecture (Rθ)θ∈Θ which has proven to be highly effective for a variety of

image processing tasks [29]. The U-Net structure used in our study is shown in Figure 3.1.

Figure 3.1: U-net architecture (Rθ)θ∈Θ for representing the reconstruction operator R⋆

used in all presented numerical results.
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3.1 Datasets and data generation

We perform experiments using 3 ∗ 103 images of the FFHQ dataset [10] where 103 samples

are taken as original images, other 103 images to generate data samples and another 103

images as taken as test set.

Blurry images are created by applying three Gaussian filters, referred to as Broad, Medium,

and Narrow. The window size of each Gaussian filter is truncated to have size 31. The

Gaussian kernels are centered at zero and have different standard deviation, which de-

termines the degree of blurring applied to the image. The Broad filter has the smallest

standard deviation of 0.5, which will result in a mild blurring effect. The Medium filter

has a standard deviation of 1, which will result in a moderate blurring effect. Finally, the

Narrow filter has the largest standard deviation of 2, which will result in a strong blurring

effect. For the noisy data, we add additive Gaussian white noise with standard deviation

equal to 1% of the maximal value of the original data. The Fourier transform in the loss

function is realized by the FFT applied with periodic padding [19].

3.2 Training

For minimizing (2.8) we use the AdamW optimizer [20] which is a stochastic optimization

method that modifies the conventional weight decay implementation in the Adam [11] by

decoupling weight decay from the gradient update process. The batch size for the neural

network kw is taken as 103. The large batch helps to evaluate and update the expectation

effectively. We train the neural network Rθ using a batch size of 2, which helps to reduce

the gradient variance and improve model generalization.

The specific training strategy based on (2.8) consists of three phases:

[Phase 1] We first train the kernel kw with the objective function (2.8) using coefficients

λA,1 = 1, λC,1 = 5 and λA,2 = λB,1 = λB,2 = λC,2 = 0 with the learning rate of

10−3 for kw. The iteration number is 103.

[Phase 2] Train the neural networks kw and Rθ with the objective function (2.8) which

the coefficients λA,1 = λA,2 = 10, λB,1 = λB,2 = 1, λC,1 = 5 and λC,2 = 10 with

the learning rate of 10−4 for kw and 10−3 for Rθ. The iteration number is 104.

[Phase 3] In the final fine-tuning phase we train the neural network Rθ with the objective

function (2.8) with λA,1 = λA,2 = λB,1 = λC,1 = 0, λB,2 = 1 and λC,2 = 10 with

the learning rate of 10−3 for Rθ. The iteration number is 104.

To prevent getting stuck in a local minimum, we modify LN
A as
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LN
A (w) =

λA,1

N

∥∥∥ N∑
i=1

χ⊙ ŷδ
i −

N∑
i=1

χ⊙F(kw ∗ xi + δσ(i))
∥∥∥
1

+
λA,2

N

∥∥∥ N∑
i=1

|χ⊙ ŷδ
i | −

N∑
i=1

|χ⊙F(kw ∗ xi + δσ(i))|
∥∥∥
1

(3.1)

where χ is a random mask that sets 20% of the pixels to zero and keeps the other pixels

unchanged, and ⊙ denotes the Hadamard product.

3.3 Results

The experiments for proposed unsupervised blind deconvolution are made with noiseless

data as well as noisy data. Kernel estimation is the most challenging part. Due to the

empirical data this task in noiseless and noisy case suffers from inexact data; see (2.9). For

comparison purpose we also present results with supervised learning where we minimise the

supervised loss

LN,super(w, θ) :=
1

N

N∑
i=1

∥kw(xi)− (k⋆ ∗ xi + δi)∥22

+
1

N

N∑
i=1

∥xi −Rθ(k
⋆ ∗ xi + δi)∥22 + 5∥kw∥22 ,

using the same architectures as in the unsupervised case, learning rates of 10−4 and 10−3

for kw and Rθ respectively, and iteration number 2 ∗ 104.

The estimated kernels in the supervised and unsupervised (ECALL) case are shown in

Table 1. Both methods are able to well recover the kernel especially the broad and medium

kernel. Table 2 shows typical example of corresponding blind deconvolution of the images.
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Noiseless Noisy

Broad Medium Narrow Broad Medium Narrow

Ground
Truth

Supervised

ECALL

Table 1: Ground truth kernels (top) and reconstructed kernels using the supervised (middle)
and proposed unsupervised (bottom) learning.
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Noiseless Noisy

Broad Medium Narrow Broad Medium Narrow

Original

Observed

Supervised

ECALL

Original

Observed

Supervised

ECALL

Original

Observed

Supervised

ECALL

Table 2: Blind deconvolution results using the supervised and proposed unsupervised learn-
ing.
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For quantitative evaluation of the kernel estimation, we use the relative L2-norm error

L2err := ∥kw − k⋆∥2/∥k⋆∥2 and the maximum of normalized convolution [9] MCN :=

max[kw ∗ k⋆/(∥kw∥2∥k⋆∥2)]. The quantitative analysis of the kernel estimation is shown

in Table 3. To evaluate the quality of the deconvolved images we use structural similarity

index measure (SSIM) and peak signal-to-noise ratio (PSNR). Results are shown in Tables

3 and 4. Overall, we can see that ECALL performs comparably to supervised learning.

Noiseless Noisy

Broad Medium Narrow Broad Medium Narrow

Measurements L2err ↓ L2err ↓ L2err ↓ L2err ↓ L2err ↓ L2err ↓
MNC↑ MNC↑ MNC↑ MNC↑ MNC↑ MNC↑

Supervised 0.0765 0.0129 0.0029 0.0765 0.0124 0.0050
0.9584 0.9950 0.9937 0.9589 0.9926 0.9892

ECALL 0.0434 0.0224 0.0119 0.0571 0.0598 0.0879
0.9991 0.9997 0.9999 0.9984 0.9982 0.9962

Table 3: Quantitative evaluation of kernel estimation using L2err (relative L2-error) and
MCN (maximum of normalized convolution). The arrows ↑ and ↓ indicate whether higher
or lower values indicate better performance.

Noiseless Noisy

Broad Medium Narrow Broad Medium Narrow

Measurements SSIM↑ SSIM↑ SSIM↑ SSIM↑ SSIM↑ SSIM↑
PSNR↑ PSNR↑ PSNR↑ PSNR↑ PSNR↑ PSNR↑

Supervised 0.9437 0.8636 0.7080 0.9065 0.8129 0.6684
33.43dB 29.42dB 25.11dB 31.70dB 27.98dB 24.31dB

ECALL 0.9435 0.8549 0.6956 0.9061 0.8133 0.6720
33.49dB 29.17dB 24.88dB 31.67dB 28.03dB 24.31dB

Table 4: Quantitative evaluation of reconstruction results using SSIM and PSNR. The
arrows ↑ and ↓ indicate whether higher or lower values indicate better performance.

4 Conclusion

Blind deconvolution consists in recovering an original image x from its noisy blurred ob-

servation y = k⋆ ∗ x+ δ. Blind deconvolution is a highly ill-posed problem, since both the

original image x and the kernel k⋆ need to be estimated. To address the ill-posed nature of

the problem, blind deconvolution is typically approached with additional prior information

on x and k⋆. Recently, deep learning-based approaches have shown great promise in blind
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deconvolution, but most of these approaches require paired datasets of original and blurred

images, which are often difficult to obtain. To address this, in this work we propose an un-

supervised learning approach (ECALL) to blind deconvolution that uses seperate unpaired

collections of original and blurred images. Experimental results demonstrate the feasibility

and performance of the proposed algorithm.

In short, the main novelty of ECALL is to construct special statistics using the distributions

of x and y, respectively, which allows us to determine the kernel from which we can then

create virtual supervised data pairs. In particular, we use the expectation of the Fourier

transform and its absolute value for kernel estimation. There are a number of interesting

follow-ups to our work, including generalisation to other inverse problems with unknown

forward operator, development of better statistics, analysis of the influence of empirical

data and architecture on the estimates, and comparison with GAN-based methods for

blind image deconvolution.
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