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Abstract

The solution of inverse problems is central to a wide range of applications including

medicine, biology, and engineering. These problems require finding a desired solution

in the presence of noisy observations. A key feature of inverse problems is their ill-

posedness, which leads to unstable behavior under noise when standard solution methods

are used. For this reason, regularization methods have been developed that compromise

between data fitting and prior structure. Recently, data-driven variational regularization

methods have been introduced, where the prior in the form of a regularizer is derived

from provided ground truth data. However, these methods have mainly been analyzed

for Tikhonov regularization, referred to as Network Tikhonov Regularization (NETT).

In this paper, we propose and analyze Morozov regularization in combination with a

learned regularizer. The regularizers, which can be adapted to the training data, are

defined by neural networks and are therefore non-convex. We give a convergence analysis

in the non-convex setting allowing noise-dependent regularizers, and propose a possible

training strategy. We present numerical results for attenuation correction in the context

of photoacoustic tomography.

Key words: Inverse problems, learned regularizer, convergence analysis, Morozov regu-

larization.

MSC codes: 65F22; 68T07

1 Introduction

In this paper, we consider the solution of linear inverse problems where we aim to reconstruct

the unknown x ∈ X from noisy data

yδ = Ax+ ηδ . (1.1)
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Here A : X → Y is a linear bounded operator between Hilbert spaces X and Y, and ηδ is the

data error that satisfies ∥ηδ∥ ≤ δ with noise level δ ≥ 0. We are especially interested in the

ill-posed case where solving (1.1) without prior information is non-unique or unstable. Several

applications in medical image reconstruction, nondestructive testing, and remote sensing are

instances of such linear inverse problems [9, 23, 28].

Characteristic features of inverse problems are the non-uniqueness of solutions and the un-

stable dependence of solutions on data perturbations. To account for these two issues, one

must apply regularization methods (see, for example, [4, 9, 14–16, 21, 28, 29, 31]) that serve

two main purposes: First, in the case of exact data y ∈ ran(A), they select a specific solution

B0(y) among all possible solutions of the exact data equation y = Ax. Second, to account for

noise, they define stable approximations toB0 in the form of continuous mappingsBα : Y → X
that converge to B0 as α → 0 in an appropriate sense.

1.1 Morozov regularization

There are several well established methods for the stable solution of inverse problems. A

general class of regularization methods are variational regularization methods which includes

Tikhhonov regularization, Ivanov regularization (the method of quasi solutions), and Morozov

regularization (the residual method) as special cases. In Tikhonov regularization, approximate

solutions are defined as minimizers of ∥Ax − yδ∥2/2 + αR(x), where R : X → [0,∞] is a

regularization functional that measures the feasibility of a potential solution and α is the

regularization parameter. Ivanov regularization considers minimizers of ∥Ax − yδ∥ over the

set {x ∈ X | R(x) ≤ τ} for some τ > 0. In this paper, we consider Morozov regularization

where approximate solutions defined as solutions of

min
x∈X

R(x) s.t. ∥Ax− yδ∥ ≤ δ . (1.2)

Compared to Tikhonov regularization and Ivanov regularization, the latter has the advantage

that no additional regularization parameter has to be selected, which is typically a difficult

issue. Relations between Tikhonov regularization, Ivanov regularization and Morozov regu-

larization are carefully studied in [16].

Note that variational regularization methods are designed to approximate R-minimizing so-

lution of Ax = y for the limit δ → 0, defined as elements in argmin{R(x) | Ax = y}. This

addresses the non-uniqueness in the case of exact data. To account for noise, Morozov regular-

ization relaxes the strict data consistency Ax = y to data proximity ∥Ax− yδ∥ ≤ δ. Even in

the case that A is injective, different regularization terms behave differently and significantly

affect convergence. Therefore the choice of the regularizer is crucial and a nontrivial issue.

Classical choices for the regularizers are the squared Hilbert space norm R(x) = ∥x∥2/2 or
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the ℓ1-norm R(x) =
∑

λ∈Λ|⟨uλ, x⟩|, where (uλ)λ is a frame of X. These regularizers may

not be optimally adapted to highly structured signal classes, as is often the case in practical

applications. In this paper, we address this issue and propose a data-driven regularizer using

neural networks adapted to the signal class represented by training data in combination with

Morozov regularization.

1.2 Neural network regularizers

In this paper, we study Morozov regularization with a Neural network based and data-driven

and noise-dependent regularizer

Rδ(x) =
1

2
∥Φθ(δ)(x)− x∥2 + λQ(x) . (1.3)

HereΦθ(δ) : X → X is a neural network tuned to noisy data, andQ : X → [0,∞] is an additional

noise-adaptive data-driven regularization term. We will refer to (1.2) with the data-driven

regularizer (1.3) instead of the fixed regularizer R as data-driven Morozov (DD-Morozov) reg-

ularization and show that, under reasonable assumptions, this gives a regularization method.

Furthermore, we present a training strategy for selecting the noise-dependent neural network

among a given architecture.

Besides stabilizing the signal reconstruction, the main purpose of a particular regularizer is

to fit the reconstructions to a certain set where the true signals are likely to be contained. In

reality, this set is not known analytically, but it is possible to draw examples from it. For this

reason, we follow the learning paradigm and choose training signals x1, . . . , xN ∈ X and adapt

the architecture (Φθ)θ∈θ to xi. More precisely, θ = θ(δ) is chosen such that Φθ(xi) ≃ xi and

Φθ(xi + ri,j) ≃ xi, where ri,j are appropriate perturbations. Thus, Rδ has small values for

the exact xi and larger values for the perturbed signals xi + ri,j . Since the training data is

only taken from a certain subset of X, it is difficult to obtain the necessary coercive condition

from training alone. Therefore, it seems natural to add another regularization term Q which

is known to be coercive.

While learned regularizers have recently become popular in the context of Tikhonov regu-

larization [11, 19, 20, 24], we are not aware of any work utilizing the Morozov variant. In

fact, our analysis as well as the training strategy are closely related to the Network Tikhonov

Approach (NETT) of [19, 24]. However, in this paper we use a refined training strategy that

is suitable for ill-posed problems and we consider a different regularization concept. A dif-

ferent strategy for learning a network regularizer has been proposed in [20] in the context of

adversarial regularization. Other approaches for learning a regularizer are the fields of experts

model [27], deep total variation [17] or ridge regularizers [11]. Other data-driven regulariza-

tion methods for inverse problems can be found for example in [1–3, 7, 14, 22, 25, 30] and the
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references therein. From the theoretical side, Morozov regularization in a general non-convex

context has been studied in [12]. The analysis we present below allows the regularizer to be

noise-dependent and further we derive strong convergence under total nonlinearity condition

of [19].

1.3 Outline

The remainder of this paper is organized as follows. In Section 2 we present our theoretical

results. In particular we present the convergence analysis (Section 2.1) and the prosed training

strategy (Section 2.2). In Section 3 we present numerical results illustrating our proposal.

Specifically, we test our reconstruction strategy on a severely ill-posed problem regarding

attenuation correction for photoacoustic tomography in damping media [18]. To numerically

solve (1.2) we implement the primal dual scheme of [6]. The paper concludes with a short

summary in Section 4 .

2 Theory

Throughout this paper, X, Y are Hilbert spaces and A : X → Y a bounded linear operator.

Recall that a functional R : X → [0,∞] is coercive, if R(xn) → ∞ for all sequences (xn)n∈N ∈
XN with ∥xn∥X → ∞, and weakly lower semicontinuous, if R(x) ≤ lim infn→∞R(xn) for

(xn)n∈N ⇀ x, where ⇀ denotes weak convergence, and → strong convergence. Any element

in argmin {R(x) | Ax = y} is called an R-minimizing solution of the equation Ax = y.

2.1 Convergence analysis

For networks Φ,Φθ(δ) on X and δ > 0 we define the noise-dependent regularizer Rδ by (1.3),

the limiting regularizer by R(x) = ∥Φ(x)− x∥2/2 + λQ(x) and consider noise-adaptive DD-

Morozov regularization

min
x∈X

Rδ(x) s.t. ∥Ax− yδ∥ ≤ δ . (2.1)

Our results on the convergence of (1.3), (2.1) are derived under the following conditions,

which we assume to be satisfied throughout this subsection.

Assumption 2.1.

(A1) Φ,Φθ(δ) : X → X are weakly continuous.

(A2) Φθ(δ) → Φ weakly uniformly on bounded sets as δ → 0.

(A3) Φθ(δ) → Φ strongly pointwise on R-minimizing solutions as δ → 0.

(A4) Q : X → [0,∞] is proper, coercive and weakly lower semicontinuous.
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In (A2), weak uniform convergence on bounded sets means that for all bounded B ⊆ X and

all h ∈ X we have supx∈B|⟨Φθ(δ)(x)−Φ(x), h⟩| = 0 as δ → 0. In the convergence analysis we

assume that the networks Φθ(δ) are trained, where θ(δ) potentially depends on the noise, and

all other quantities are given by the application or are user-specified. In many applications,

the function Φθ(δ) is a neural network for which ∥(Φθ(δ) − Id)(·)∥ may not be coercive which

is the reason to add the term Q in (1.3).

Lemma 2.2. The regularizers R,Rδ are coercive and weakly sequentially lower semicontinu-

ous. Further, the feasible set {x ∈ X | ∥Ax− yδ∥ ≤ δ} is weakly closed and non-empty for all

δ > 0 and all data yδ with ∥Ax⋆ − yδ∥ ≤ δ for some x⋆ ∈ dom(Q).

Proof. Let (xn)n∈N ∈ XN. Because Q is coercive and ∥Φθ(δ)(x) − x∥2 and ∥Φ(x) − x∥2 are

non-negative, the functionalsR,Rδ are coercive. Let (xn)n∈N ∈ XN converge weakly to x ∈ X.
Because Φ is weakly continuous, (Φ(xn)− xn)n∈N converges weakly to Φ(x)− x. Due to the

weak sequential lower semicontinuity of the norm, we infer ∥Φ(x)−x∥X ≤ lim infn→∞ ∥Φ(xn)−
xn∥X which shows that R and in a similar manner Rδ are weakly lower semicontinuous. Now,

according to [5, Lemma 1.2.3], a functional F is weakly sequentially lower semicountinuous

if and only if {x ∈ X | F(x) ≤ t} is weakly sequentially closed for all t > 0. Because A is

linear and bounded it is weakly continuous. Because the norm is weakly sequentially lower

semicontinuous, x 7→ ∥Ax − yδ∥ is weakly sequentially lower semicontinuous, too. Hence

{x ∈ X | ∥Ax− yδ∥ ≤ δ} is weakly closed for all δ > 0 and non-empty as it contains the exact

data Ax⋆.

Lemma 2.3 (Existence). For all data yδ ∈ Y with ∥Ax⋆ − yδ∥ ≤ δ for some x⋆ ∈ dom(Q),

the constraint optimization problem (2.1) has at least one solution.

Proof. Because Rδ ≥ 0, the infimum M of R over Sδ := {x ∈ X | ∥Ax − yδ∥ ≤ δ} is

nonnegative and there exists a sequence (xm)m of elements of Sδ with limm→∞Rδ(xm) = M .

Because Rδ is coercive and {Rδ(xm) |m ∈ N} is bounded, we infer that (xm)m is bounded

and thus there exists a weakly convergent subsequence (xm(k))k converging to some x ∈ X.
Moreover, due to the weak closedness of Sδ we obtain x ∈ Sδ. Because Rδ is weakly lower

semicontinuous, R(x) ≤ M and thus x is a solution of (1.2).

Analogous to the proof of Lemma 2.3 one shows that there exists at least one R-minimizing

solution of Ax = y whenever it is solvable in dom(Q).

Theorem 2.4 (Weak convergence). Let Ax = y be solvable in dom(Q), (yn)n∈N ∈ YN

satisfy ∥y − yn∥ ≤ δn, where (δn)n∈N ∈ (0,∞)N with δn → 0, write Rn := Rδn and Φn :=

Φθ(δn), and choose xn ∈ argmin{Rn(z) | ∥Az − yn∥ ≤ δn}. Then (xn)n∈N has at least one

weak accumulation point x+ ∈ X. Moreover, the limit of each weakly converging subsequence

(xn(k))k∈N is an R-minimizing solution of Ax = y and Rn(k)(xn(k)) → R(x+) for k → ∞. If
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the R-minimizing solution x+ of Ax = y is unique, then xn ⇀ x+ and Rn(xn) → R(x+) as

n → ∞.

Proof. Set Sn := {z ∈ X | ∥Az − yn∥ ≤ δn} and S⋆ := {z ∈ X | Az = y}. Clearly

S⋆ ⊆ Sn and because Ax = y is solvable, S⋆ is non-empty. Thus Rn(xn) ≤ Rn(x
+) =

Q(x+) + ∥Φn(x⋆)− x⋆∥2/2, where x⋆ is an R-minimizing solution of Ax = y. From the weak

convergence of Φn(x⋆) we see that the right hand side is bounded. Thus Q(xn) is bounded and

with the coercivity of Q we conclude there exists a weakly converging subsequence (xn(k))k∈N.

Because ∥A(·)− y∥ is weakly lower semicontinuous,

∥A(x+)− y∥ ≤ lim inf
k→∞

∥A(xn(k))− y∥

≤ lim inf
k→∞

∥A(xn(k))− yn(k)∥+ ∥yn(k) − y∥ ≤ 2δn (2.2)

and thus x+ ∈ S⋆. It remains to verify that x+ is an R-minimizing solution of Ax = y.

According to (A1), (A2) we have Φn(k)(xn(k)) ⇀ Φ(x+) and Φn(x⋆) → Φ(x⋆), and thus

Q(x+) +
λ

2
∥Φ(x+)− x+∥ ≤ lim inf

n→∞
Q(xn) +

λ

2
∥Φn(xn)− xn∥

≤ lim sup
n→∞

Q(xn) +
λ

2
∥Φn(xn)− xn∥

≤ lim sup
n→∞

Q(x⋆) +
λ

2
∥Φn(x⋆)− x⋆∥

= Q(x⋆) +
λ

2
∥Φ(x⋆)− x⋆∥ .

Thus x+ is an R-minimizing solution of Ax = y with R(xn(k)) → R(x+). Finally, if the R-

minimizing solution x+ of Ax = y is unique, then (xn)n∈N has exactly one weak accumulation

point x+ and Rn(xn) → R(x+).

As in the paper [19], we introduce the concept of total nonlinearity, which is required for

strong convergence.

Definiton 2.5 (Total nonlinearity). Let F : X → R be Gâteaux differentiable at x⋆ ∈ X. The

absolute Bregman distance BF (x⋆, ·) : X → [0,∞] and modulus of total nonlinearity νF (x⋆, ·) :
(0,∞) → [0,∞] of F at x⋆ are defined by

∀x ∈ X : BF (x⋆, x) := |F(x)−F(x⋆)−F ′(x⋆)(x− x⋆)| (2.3)

∀t > 0: νF (x⋆, t) := inf{BF (x⋆, x) |x ∈ X ∧ ∥x− x⋆∥X = t} . (2.4)

The functional F is called totally nonlinear at x⋆, if νF (x⋆, t) > 0 for all t ∈ (0,∞).

According to [19], F is totally nonlinear at x⋆ ∈ X if and only if for all bounded sequences
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(xn)n∈N ∈ XN with limn→∞ BF (x⋆, xn) = 0 we have limn→∞ ∥xn − x⋆∥X = 0.

Theorem 2.6 (Stong convergence). In the situation of Theorem 2.4 assume additionally that

the R-minimizing solution x+ of Ax = y is unique and that R is totally nonlinear at x+.

Then, ∥xn − x+∥X → 0 as n → ∞.

Proof. According to Theorem 2.4, the sequence (xn)n∈N converges weakly to x+ and R(x+) =

limn→∞R(xn). Because R′(x+) is bounded, R′(x+)(xn − x+) → 0 and thus BR(x
+, xn) =

|R(xn)−R(x+)−R′(x+)(xn−x+)| → 0. Because (xn)n∈N is bounded with the total nonlinearity

of R this yields xn → x+.

2.2 Training strategy

Given a sequence of noise levels (δn)n∈N, our aim is to construct the data-driven regularizer

∥Φn(x) − x∥2/2 with neural networks Φn adapted to training signals xi ∈ X for i ∈ I :=

{1, . . . , N} that we consider as ground truth and corresponding perturbed signals xi+ri,j,n ∈ X
for j ∈ Ji,n that we want to avoid. Given a family (Φθ)θ∈Θ we determine the parameter θ = θn

as the minimizer of

Ln(θ) :=
∑
i∈I

∑
j∈J⋆

i,n

∥Φ(xi + ri,j,n)− xi∥2 , (2.5)

where J⋆
i,n := Ji,n ∪ {0} and ri,n,0 := 0 for the ground truth signals.

By doing so, we have (Φ−Id)(xi) ≃ 0 for the ground truth signals xi and (Φ−Id)(xi+ri,j,n) ≃
ri,j,n for the perturbed signals xi + ri,j,n. Hence the regularizer ∥(Φ − Id)(·)∥ is expected to

be small for signals similar to xi and large for signals similar to xi + ri,j,n. A specific feature

of a learned regularizer is that it can depends on the forward problem. This is achieved by

making the perturbations ri,j,n operator specific. A strategy for increasing this dependence

is to let the architecture depend on A such as a null space network [30] or data-proximal

network [10].

Remark 2.7 (Choice of the perturbations). A crucial question is how to construct proper

perturbed signals xi + ri,j,n ∈ X. For NETT, we proposed in [19] to choose a single perturba-

tion ri,1,n = (Id−A+A) ∈ ker(A) per training sample, independent of the noise. This choice

is well suited to address non-uniqueness, which is the main problem in undersampled tomo-

graphic inverse problems where the kernel ker(A) is of high dimension. In this work, we are

also interested in severely ill-posed problems where small singular values are a further main

challenge. Therefore, we modify the training strategy of [19] by using multiple perturbations

ri,j,n that take into account two additional issues: Some of the perturbations represent noise

in the low-frequency components corresponding to large singular values, and some of them

represent truncated high-frequency components of the signal corresponding to small singular

values.
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Let (un, vn, σn)n∈N denote a singular value decomposition (SVD) of A. Using the SVD, we

can express A, its pseudoinverse, and the truncated SVD reconstruction by the formulas

A(x) =
∑
n∈N

σn⟨x, un⟩vn

A+(y) =
∑
n∈N

σ−1
n ⟨y, vn⟩un

Sα(y) =
∑
σ2
n≥α

σ−1
n ⟨y, vn⟩un ,

where α ≥ 0 is the regularization parameter.

Now if xi is a given ground truth signal and yi,n = Axi + zi,n corresponding noisy data, and

α[j, n] for j ∈ Jn are variable chosen regularization parameters in truncated SVD, we consider

perturbed signals

xi + ri,j,n := Sα[j,n](Axi + zi,n) .

In fact, the perturbed signals are truncated SVD regularized reconstructions with perturba-

tions ri,j,n = Sα[j,n](Axi + zi,j)− xi. In particular, for zi = 0 and α[j, n] = 0, we recover the

perturbations A+Axi − xi of [19], which are pure artifacts. The more general strategy that is

proposed here also includes perturbations due to noise and to Gibbs-type artifacts caused by

truncation of singular components.

3 Application

In this section we present numerical results for an ill posed problem related to attenuation

correction in photoacoustic tomography (PAT). We consider discrete setting where the op-

erator A ∈ Rd×d is a matrix of size d = 600 and x ∈ Rd is the time discretization of real

valued function defined on the interval [0, T ]. The additional regularizer Q is taken as total

variation. Details on the forward operator, the learned regularizer and numerical solution of

(2.1) are given below.

3.1 Implementation details

Forward operator: The forward operatorA is taken as a discretization of a one-dimensional

wave dissipation operator that models damping in PAT [18]. It corresponds to a discretized

one-dimensional integral operator that maps unattenuated pressure signals to attenuated sig-

nals. Its operation is illustrated in Figure 3.1. For details on how the matrix A was simulated,

see [13]. Due to the fast decay of the singular values of A (Figure 3.1 left), the solution of

(1.1) is strongly ill-posed. Moreover, the operator is not of convolutional form, and the ill-
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posedness increases for signal components corresponding to later times. This can be seen in

the right image in Figure 3.1, where the right part of the signal is significantly more blurred.

Also note the increased attenuation and shift to the right for later times.

Figure 3.1: Left: Singular values of A ∈ Rd×d modeling dissipation. Middle: Test signal
x ∈ Rd. Right: Exact data Ax for input from the middle picture. The horizontal axis in the
middle and right images represents time.

Network architecture: The architecture (Φθ)θ∈θ of the network resembles a one-dimensional

version of the 2D Unet of [26] with one skip connection. It starts with two 1D convolutions

of kernel size 7 and 16 channels, each followed by ReLU as the activation function. The

spatial size of the feature maps is then halved using a max pooling layer. This convolution

block is repeated twice, each time with twice as many filters (32 and 64). By applying three

convolutional upsamplings, we obtain an output of the same spatial size as the input. We

concatenate the input with the output and convolve one last time so that the network is able

to learn the identity for the correct signals. We keep the network architecture quite simple

to reduce the computational time of the gradient computation. Dropout layers are added to

prevent overfitting.

Network training: For the training signals xi we take collection of the block signal similar

to the ones of [8]. We construct noisy data Axi+ zi,n where zi,n is normally distributed noise

with mean zero and standard deviation 0.1. The full training data set consists 5000 ground

truth signals xi and 5000 noisy signal for each α[j, n] = j/10 with j ∈ {1, . . . , 8}. According to

Section 2.2, the network is trained by minimizing the risk Ln(θ) =
∑

i

∑
j∥Φθ(xi+ri,j,n)−xi∥2.

The trained network is then given by Φn := Φθn , where θn is the numerical minimizer of Ln.

Numerical DD-Morozov regularization: Reconstruction is done by numerically solving

(2.1) with the noise-adaptive data-driven regularizer Rn := ∥(Id−Φn)(·)∥2/2+ ∥Lx∥1, where
∥·∥1 is the ℓ1-norm and L is the discrete central difference operator with Neumann boundary
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conditions. For that purpose, we write (2.1) in the form

min
x

∥Φn(x)− x∥22 + λ∥Lx∥1 + 1B(Ax) (3.1)

with 1B denoting the indicator function of B = {y ∈ Rd | ∥y − yδ∥ ≤ δ}.

Optimization problem (3.1) is solved using the primal dual algorithm of [6]. With the abbre-

viations F (x) := ∥Φn(x)− x∥22, h1 := λ∥ · ∥1 and h2 := 1B, parameters τ, σ, ρ > 0 and initial

values x(0) and y(0) = (0, 0) the proposed reconstruction algorithm reads

z(i+1) := x(i) − τ∇f(x(i))− τL∗y
(i)
1 − τA∗y

(i)
2

x(i+1) := ρz(i+1) + (1− ρ)x(i)

w
(i+1)
1 := proxσh∗

1
(y

(i)
1 + σL(2z(i+1) − x(i)))

y
(i+1)
1 := ρw

(i+1)
1 + (1− ρ)y

(i)
1

w
(i+1)
2 := proxσh∗

2
(y

(i)
2 + σA(2z(i+1) − x(i)))

y
(i+1)
2 := ρw

(i+1)
2 + (1− ρ)y

(i)
2 .

Here prox denotes the proximity mapping and ()∗ the Fenchel dual. The proximity mappings

proxσh∗
1
, proxσh∗

2
can be easily computed using the relation proxh∗ +proxh = Id and the known

expressions for the proximity mappings of ∥ · ∥1 and 1B.

3.2 Results

Figure 3.2 shows results for a randomly selected block signal x that is not included in the

training data.The upper left image shows the noisy attenuated signal yδ, the upper right

image shows the Backprojection (BP) reconstruction AT yδ, the lower left image shows the

truncated SVD reconstruction Sαyδ with α = 0.1, and the lower right image shows the results

with the proposed DD-Morozov regularization.The BP reconstruction is clearly damped, while

the SVD reconstruction shows strong oscillations. The corresponding reconstruction using the

DD-Morozov method (1.3), (2.1) is obviously much better. Similar results have been obtained

for other randomly selected training signals.

Another example is shown in Figure 3.3, where we compare the ground truth, the network

prediction of the truncated SVD, the Tikhonov regularization, and the DD-Morozov regular-

ization. As regularization parameter α we have chosen the optimal value for the Tikhonov

method. The network prediction of the truncated SVD is the trained network Φn applied to

the SVD reconstruction. We see that the Tikhonov regularization is worse than the network

prediction of the truncated SVD, and the DD-Morozov regularization best recovers informa-

tion about the original signal. This suggests that the regularization property of the Morozov
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Figure 3.2: Top left: Noisy data yδ. Top right: BP reconstruction. Bottom left: SVD
reconstruction. Bottom right: DD-Morozov reconstruction.

method, together with a properly trained network, can be superior to either of these methods.

Figure 3.3: Two further randomly selected reconstruction results. In both figures, blue is the
original signal, orange is the DD-Morozov reconstruction, green is the network prediction of
truncated SVD, and red is the result of Tikhonov regularization.
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4 Summary

In this paper, we introduced and analyzed neural network-based noise-adaptive Morozov reg-

ularization using a data-driven regularizer (NN-Morozov regularization). We performed a

complete convergence analysis that also allows for noise-dependent regularizers. In addition,

we established convergence in strong topology. To make our approach practical, we developed

a simple yet efficient training strategy extending NETT [19]. We verified our methodology

through numerical experiments, with a special focus on its application to attenuation cor-

rection for PAT. Our research can provide the basis for a broader integration of data-driven

regularizers into various variational regularization techniques.
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