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Abstract

Inverse problems are inherently ill-posed and therefore require regularization tech-
niques to achieve a stable solution. While traditional variational methods have well-
established theoretical foundations, recent advances in machine learning based ap-
proaches have shown remarkable practical performance. However, the theoretical
foundations of learning-based methods in the context of regularization are still un-
derexplored. In this paper, we propose a general framework that addresses the cur-
rent gap between learning-based methods and regularization strategies. In particular,
our approach emphasizes the crucial role of data consistency in the solution of in-
verse problems and introduces the concept of data-proximal null-space networks as
a key component for their solution. We provide a complete convergence analysis by
extending the concept of regularizing null-space networks with data proximity in the
visual part. We present numerical results for limited-view computed tomography to
illustrate the validity of our framework.

Keywords: Regularization, null-space network, data-proximal network, convergence
analysis, data consistency

1 Introduction

Inverse problems arise in all kinds of practical applications, such as medical imaging, signal
processing, astronomy, computer vision, and more. In this paper, we combine learning-
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based methods with established regularization concepts for solving inverse problems. Math-
ematically, an inverse problem can be expressed as the problem of recovering the unknown
x ∈ X from noisy data

yδ = Ax+ η , (1.1)

where A : X → Y is a linear operator between separable Hilbert spaces X and Y, η ∈ Y
with ∥ηδ∥ ≤ δ is the unknown data error, and δ ≥ 0 is the known noise bound [10].

1.1 Regularization methods

A major feature of inverse problems is their ill-posedness, so that exact solutions of Ax = y
are either not unique or unstable with respect to data perturbations. Non-uniqueness,
on the other hand, may even cause A+Ax⋆ to be different from x⋆. To obtain reliable
reconstructions, one must use regularization techniques that adopt a stable approach to
solving (1.1) and account for instability and non-uniqueness. Regularization methods
consist of a family of continuous mappings Rγ : Y → X for γ ∈ Γ which, together with
a suitable parameter choice strategy γ⋆(δ, yδ), are convergent in the sense specified in
Definition 2.1. Note that, for simplicity, we work with single-valued regularization methods.
For the definition of set-valued regularization methods, see [5]. In classical regularization
methods, Γ = (0,∞) is a directed interval for which we denote the regularization parameter
by α; see [10]. A regularization method is said to be linear if Rα is linear.

Prominent examples of classical linear regularization methods are Tikhonov regularization
and more general spectral filtering methods [10]. A class of non-linear regularization meth-
ods is variational regularization, where Rαy

δ is a minimizer of the generalized Tikhonov
functional

T δ
α (x) =

1

2
∥yδ −Ax∥2 + αP(x) . (1.2)

Here ∥yδ − Ax∥2/2 is the data fidelity term that enforces data proximity between Ax
and yδ, while the functional P incorporates prior information about the underlying signal
class. The regularization parameter α > 0 acts as a trade-off between proximity to the
data and regularity. The regularization approach (1.2) offers great flexibility because it is
easily tailored to the forward operator, the underlying signal, and the given perturbations.
Common selections for P include the TV penalty, Sobolev norms, or sparsity priors [30].
Additionally, variational regularization technique has a solid theoretical foundation. In
particular, under certain weak additional assumptions, one obtains convergence Rαy

δ → x⋆

and data proximity ARαy
δ → Ax⋆ as δ → 0.

1.2 Learned reconstructions

Major drawbacks of variational regularization are the challenging design of penalties P well
tuned to the signals of interest, and the time-consuming minimization of (1.2). To over-
come these issues, data-driven methods for solving inverse problems have been developed
recently [1,2,4,16,20,24,37]. In these methods, a class (Rθ)θ∈θ of reconstruction operators
Rθ : Y → X is designed to perform well on a class of training data (x1, y

δ
1), . . . , (xN , yδN ) ∈

X × Y consisting of pairs of desired reconstructions and noisy data. The class of recon-
struction operators should then be both large enough to include reasonable reconstruction
methods, and sufficiently constrained to account for the limited amount of training data
and computational resources.
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Popular architectures for inverse problems are two-step residual networks,

Rθ(y
δ) := (IdX +Wθ) ◦Bα(y

δ) , (1.3)

where Bα : Y → X is an initial classical reconstruction method and (Wθ)θ∈Θ is an image-
to-image architecture such as the U-net [29]. Given the initial reconstructions zδn = Bα(y

δ
n),

the network Wθ is trained independent of the forward operator, by minimizing the em-
pirical risk LN (θ) = (1/N) ·

∑N
n=1∥xn − (IdX +Wθ)(z

δ
n)∥2. Empirically such approaches

have been proven to provide excellent results [3, 15–17, 19, 21, 28]. However, from a reg-
ularization point of view, (1.3) lacks theoretical justification. Even if Bα together with
parameter choice α = α(δ, yδ) is a regularization method, convergence of neither Rα,θ(y

δ)
nor A ◦Rα,θ(y

δ) is granted as δ → 0. In particular, they even lack data consistency in the
sense that there is no control over the proximity between the reconstruction Rα,θ(y

δ) and
yδ which limits applicability in safety-critical applications such as medical imaging.

To enforce data consistency several approaches integrating the forward operator into the
network architecture have been proposed including variational, iterative networks or net-
work cascades [13, 14, 18, 31, 39]. However such architectures still do not automatically
provide theoretical reconstruction guarantees. A strategy to overcome this issue has been
presented in [32, 33], where the use of so-called null-space networks has been proposed.
Null-space networks are a special form of (1.3) where Wθ is restricted to have values only
in the kernel of A. It can be taken as W = PN (A)Uθ where (Uθ)θ∈Θ is any architec-
ture. In [32] it has been shown that null-space network provable convergent regularization
method for (1.1) adapted to the training data. As a drawback, they only modify the
initial reconstruction Bα(y

δ) on the kernel ker(A) and keep the part in the complement
unchanged. Moreover only linear Bα have been included in the analysis in [32]. The
regularizing networks [33] relaxes the null-space assumption but the design of suitable
architectures is less obvious.

1.3 Main contributions

In this paper we propose and analyze an architecture which allows an update of the com-
ponent in the complement of the null space, but is limited in the data domain by the noise
level. The general architecture for which we design a rigorous analysis takes the form of
the residual network (1.3) with

Wθ,β = PN (A)Uθ +A+ΦβAVθ , (1.4)

where [Vθ,Wθ]θ∈Θ is is an image-to-image architecture with two output channels and Φβ

is a function with ∥Φβz∥ ≤ β. We will show that data-proximal networks (1.4) together
with (1.3) yields a data-proximal regularization method together with convergence rates.
In particular we are show rate-r data proximity which we refer to as data-error estimates
of the form ∥Axδα − yδ∥ = O(δr). Note the architecture (1.4) in particular uses an explicit
decomposition in the null-space N (A) and its complement N (A)⊥ = R(A+).

This paper generalizes the regularization results of null-space networks of [32] (which are of
the form (1.4) with Vθ = 0) to data-proximal networks. Furthermore, opposed to [32, 33]
our analysis (Bα)α>0 does not have to be linear and for example can be of variational type
(1.2). The idea to only learn the null-space components has also been used in [7, 22, 35].
In the finite dimensional setting, learning the null-space and its complement has been
proposed in [9]. A regularization approach using approximate null-space networks has been
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proposed in [33] without explicitly splitting into null-space component and complements.
In contrast, our architecture also allows learning updates in the orthogonal complement of
the kernel of A and has a specific form, which allows to include data consistency easily.

1.4 Outline

The remainder of this paper is organized as follows. In Section 2 we present the theoretical
analysis. In particular, we introduce the background and the concept of data-proximal
networks, followed by a rigorous convergence analysis. In Section 3 we apply the frame-
work to the limited-view problem in computed tomography. We test the method with
FBP and TV regularization as initial reconstruction and compare it with plain null-space
learning. The paper ends with section 4 where we give a short summary and discuss some
generalizations and lines of potential future research.

2 Theory

Throughout this paper let A : X → Y be a linear bounded operator between separable
Hilbert spaces X and Y. We use N (A) and R(A) to the denote the null-space and range
of A, respectively. The inversion of (1.1) is unstable if R(A) is non-closed and non-unique
if N (A) ̸= {0}. Our goal is the stable solution of (1.1) in such situations, by combining
regularization methods with learned networks.

2.1 Data-proximal regularization

In order to solve (1.1) we use regularization methods with general parameter sets including
the classical setting as well as learned reconstruction as special cases.

Definition 2.1 (Regularization method). Let Γ be an index set, M ⊆ X, (Rγ)γ∈Γ a family
of continuous mappings Rγ : Y → X, and γ⋆ : (0,∞) × Y → Γ. The pair ((Rθ)θ∈Θ, γ

⋆) is
said to be a (convergent) regularization method for Ax = y over M, if

∀x ∈ M : lim
δ→0

(
sup{∥x−Rγ⋆(δ,yδ)(y

δ)∥ | yδ ∈ Y ∧ ∥yδ −Ax∥ ≤ δ}
)
= 0 . (2.1)

Classical regularization methods use Γ = (0,∞) in which case we denote its elements by
α and the parameter choice by α⋆. In this situation one usually additionally assumes
γ⋆(δ, yδ) → 0 uniformly in yδ as δ → 0. Many classical methods are further based on the
pseudoinverse A+ where the set of limiting solutions is given by M = N (A)⊥ = R(A+);
see for example [10]. However also different limiting solutions are frequently used, in
particular in variational regularization.

Remark 2.2 (Variational regularization). The prime example with different limiting so-
lutions is variational regularization (1.2) which together with α, δ2/α → 0 gives a regular-
ization method over the set of P-minimizing solutions defined by argminx{P(x) | Ax = y}
with y ∈ R(A). This implicitly requires unique minimizers of (1.2). For some regulariza-
tion methods, Bα should be taken set-valued and (2.1) adjusted accordingly (see [5]). For
the sake of simplicity in the presented theory we restrict to the single-valued case.

We are in particular interested in regularization methods ((Rγ)γ∈Γ, γ
⋆) that are rate-r data

proximal in the following sense.
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Definition 2.3 (Data-proximal regularization method). Let r ∈ (0, 1]. A regularization
method ((Rγ)γ∈Γ, γ

⋆) for Ax = y over M is called rate-r data proximal, if for some τ > 0,

∀x ∈ M ∀yδ ∈ Y : ∥yδ −Ax∥ ≤ δ ⇒ ∥yδ −ARγ⋆(δ,yδ)(y
δ)∥ ≤ τδr . (2.2)

Data proximity of a regularization method seems a reasonable condition as the true solution
is known to satisfy the data proximity condition ∥yδ − Ax∥ ≤ δ. Thus any potential
reconstruction without data proximity lacks the only information provided by the noisy
data yδ. Even though this is such an important property we are not aware of an explicit
definition in the literature. This may partially be due to the fact that it is automatically
satisfied by common regularization methods. For example rate-1 data proximity is satisfied
by filter based methods under the source condition x+ ∈ (A∗A)µ for any µ > 0 as well as
for variational regularization under the source condition ∂P(x+) ∈ R(A∗). The following
example shows that for filter based methods rate-r data proximity for all r < 1 even holds
without a source condition.

Example 2.4 (Data proximity without source condition). Consider a filter based regular-
ization method ((Bα)α>0, α

⋆) where Bα = gα(A
∗A)A∗ for filter functions gα : R → R and

α⋆, δ2/α⋆ → 0; see [10] for precise definitions. Then

∥ABαy
δ − yδ∥ = ∥(Agα(A

∗A)A∗ − IdY)(y
δ)∥

≤ ∥(Agα(A
∗A)A∗ − IdY)(Ax− yδ)∥+ ∥(Agα(A

∗A)A∗ − IdY)A(x)∥
≤ ∥Agα(A

∗A)A∗ − IdY∥ δ + ∥A(gα(A
∗A)A∗A− IdX)∥ ∥x∥

≤ ∥Agα(A
∗A)A∗ − IdY∥ δ + α1/2 ∥x∥ ,

where the latter inequality used that the filter has at least qualification 1/2. Noting that
∥A(gα(A

∗A)A∗A− IdY)∥ is bounded for any filter, this shows that for all r < 1 and R > 0
with α⋆ ≍ δ2r and ∥x∥ ≤ R we get ∥ABα⋆yδ − yδ∥ ≤ τδr.

Variational regularization approximates solutions of Ax = y with minimal value of P.
In particular for P = ∥·∥2/2 this minimal norm solution is given by the Moore-Penrose
inverse A+(y) ∈ ker(A)⊥. The same holds true for other spectral filtering methods. The
concepts of null-space networks [32] addresses potentially suboptimal solution selection by
approximating elements in a general set parameterized by R(A+).

Example 2.5 (Null-space networks). The regularizing null-space networks analyzed in [32]
take the form

∀α > 0: Rα := (IdX + PN (A)U) ◦Bα , (2.3)

where ((Bα)α>0, α
⋆) is a regularization method with admissible set R(A+), and U a Lip-

schitz function. The function U can be selected from any network architecture (Uθ)θ∈Θ
based on training data x1, . . . , xN . Except of being Lipschitz, no other assumptions are
required from a theoretical point of view. In [32] it is shown that ((Rα)α>0, α

⋆) is a regu-
larization method with M := (IdX+PN (A)U)(R(A+)). Further, (IdX+PN (A))U preserves
data proximity of Bα in the sense that ∥ABα(y

δ)− yδ∥ ≤ τδr ⇒ ∥ARα(y
δ)− yδ∥ ≤ τδr.

Data consistency of null-space networks comes at the cost that the component of Bα(y
δ) in

the range R(A+) remains unchanged by (IdX + PN (A)U). Allowing a network to also act
in R(A+) is however beneficial, if the forward operator A contains many small singular
values. How to obtain data consisten regularizations for networks that also act in R(A+)
are studied in the present paper.
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2.2 Data-proximal networks

Throughout this section assume that we have given a data-proximal, potentially non-linear,
regularization method ((Bα)α>0, α

⋆).

Definition 2.6 (Data-proximal null-space networks). Let [Uθ,Vθ]θ∈Θ be a family of Lip-
schitz mappings Uθ,Vθ : X → X and (Φβ)β>0 a family of mappings Φβ : R(A) → R(A)
such that ∀β > 0 ∀z ∈ R(A) : ∥Φβy∥2 ≤ β. We call the family of mappings

Dθ,β := IdX + PN (A) ◦Uθ +A+ ◦ Φβ ◦A ◦Vθ (2.4)

data-proximal null-space network defined by Uθ,Vθ,Φβ,A.

Note that for the special case Vθ = 0 we obtain a null-space network IdX + PN (A) ◦Uθ.
The latter obeys strict data consistency in the sense that A ◦ (IdX + PN (A) ◦ Uθ) = A.
Data-proximal networks relax the strict data consistency to the data proximity condition

∥A ◦ (IdX + PN (A) ◦Uθ +A+ ◦ Φβ ◦A ◦Uθ)(x)−Ax∥2 = ∥(Φβ ◦A ◦Vθ)(x)∥ ≤ β .

In particular, if ∥Ax−yδ∥ ≤ δ, then ∥ADθ,βx−yδ∥ ≤ δ+β independent of the selected θ.
Any reconstruction method without such an estimate seems unreasonable as ∥Ax−yδ∥ ≤ δ
is the information provided by the noise data and therefore should be respected.

Remark 2.7 (Special cases). The proposed architecture includes many image reconstruc-
tion methods as special case:

• Classical regularization: With Uθ = Vθ = 0 we have classical regularization Rα =
Bα. For example, in convex variational regularization elements Bα converge to P-
minimizing solutions [30]. No trained network can be included (expect of course
learning the regularizer and the regularization parameter).

• Standard residual networks: With Uθ = Vθ and Φβ = IdY (thus formally using
β = ∞) and Bα = A+ we obtain the residual network Rθ = (IdX + Uθ) ◦ A+

of [16,19]. However it lacks data consistency for which we need β < ∞.

• Regularized null-space networks: With Vθ = 0, Uθ = U and Bα a regularization
for A+ we obtain the regularized null-space networks Rα = (IdX + PN (A)U) ◦ Bα

of [32]. This network architecture does not allow to learn anything orthogonal to the
null-space.

• Range-nullspace decomposition: With Φβ = id and Bα = A+ we range-nullspace
decomposition Rθ = (IdX + PN (A)Uθ + PR(A+)Vθ) ◦ A+ considered in [9]. This
architecture does not include data consistency and moreover A+ might be unstable.

• Regularizing networks: With Uθ = Uθ, proper choice θ = θ(α) taking Bα as filter
based regularization and under certain convergence properties, we get the regularizing
networks Rα = (IdX+Uθ(α))◦Bα of [33]. This architecture does not explicitly include
data consistency.

Thus our architecture might be seen as generalization of ones of [9, 33]. Extending [9]
we allow A+ to be replaced by a regularization Bα, include the data proximity function
in the range network PR(A+)Vθ and allow the ill-posed case. We extend [33] by treating
the range and null-space components separately, include the data proximity function in the
range network and treat θ as independent parameter in the architecture.
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Extending the concept of regularizing null-space networks, our aim is to show that Rα,β,θ =
Dβ,θ ◦Bα yields a convergent data consistent regularization method in the sense of Defini-
tions 2.1 and 2.4 with parameter selections α⋆, β⋆, θ⋆. Our strategy assuring this is simple.
Starting with an rate-r data-proximal regularization method ((Bα)α>0, α

⋆) we select θ⋆

and β⋆ such that convergence is preserved, however to an element different to x⋆ selected
by a limiting null-space networks. The network A+ ◦Φβ ◦A ◦Vθ is especially relevant in
the noisy case in order to obtain improved denoising properties on specific sets and Φβ is
used to preserve data-proximity. Note that the parameter β in data-proximal null-space
network directly allows to control the data proximity between any x and Dθ,β(x). Opposed
to θ It is not intended to be subject to the training process.

2.3 Convergence analysis

Throughout this section let ((Bα)α>0, α
⋆) be a regularization method over M and Dθ,β be

a data-proximal null-space network defined by Uθ,Vθ,Φβ,A. The goal is to show that
Dθ,β ◦Bα gives a convergent (data-proximal) regularization method with rates.

Theorem 2.8 (Convergence). Suppose there a Lipschitz function U : X → X and β⋆ =
β⋆(δ, yδ), θ⋆ = θ⋆(δ, yδ) such that (Dθ,β)θ,β are uniformly Lipschitz on bounded sets and

∀z ∈ M : Dθ⋆,β⋆(z) → (IdX + PN (A)U)(z) as δ → 0 . (2.5)

Then with (Rγ)γ := (Dθ,β ◦Bα)α,β,θ and γ⋆ := (α⋆, β⋆, θ⋆), the following hold:

1. ((Rγ)γ , γ
⋆) is a convergent regularization method on (IdX + PN (A)U)(M).

2. If β⋆ = O(δr) then ((Rγ)γ , γ
⋆) is r-rate data proximal, provided ((Bα)α, α

⋆) is.

Proof. Let x∗ = (IdX + PN (A)U)(z⋆) with z⋆ ∈ M. Then

∥x⋆ −Rγ(y
δ)∥ = ∥(IdX + PN (A)U)(z⋆)−Dβ,θ(Bαy

δ)∥
≤ ∥Dβ,θ(Bα(y

δ)− z⋆)∥+ ∥(IdX + PN (A)U)(z⋆)−Dβ,θ(z
⋆)∥

≤ L∥Bα(y
δ)− z⋆)∥+ ∥(IdX + PN (A)U)(z⋆)−Dβ,θ(z

⋆)∥

With the convergence of ((Bα)α>0, α
⋆) and (2.5) this shows the convergence of ((Rγ)γ , γ

⋆).
Now let ((Bα)α, α

⋆) be r-rate data proximal and β⋆ = O(δr). By the definition of Rγ we
have ∥yδ − ARγ(y

δ)∥ ≤ ∥yδ − A(Bα(y
δ)∥ + β which gives the r-rate data proximity of

((Rγ)γ , γ
⋆) be

Under additional assumptions we also obtain convergence rates.

Theorem 2.9 (Convergence Rates). In the situation of Theorem 2.8, let ((Bα)α>0, α
⋆)

be rate-r data consistent regularization method over Ms ⊆ M that is convergent of rate s.
Then under the approximation assumption ∥(IdX + PN (A)U)(z⋆)−Dβ,θ(z

⋆)∥ = O(δr) on
Ms we have, for β⋆ = O(δr) and with x⋆ ∈ ((IdX + PN (A)U)(Ms) with ∥yδ −Ax⋆∥ ≤ δ

∥x⋆ −Bγ(y
δ)∥ = O(δs) as δ → 0 , (2.6)

∥yδ −ARγ(y
δ)∥ = O(δr) as δ → 0 . (2.7)

That is, the regularization method ((Rγ)γ , γ
⋆) is rate-r data proximal and rate-s convergent

on (IdX + PN (A)U)(Ms).
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Proof. Condition (2.7) follows from Theorem 2.8. Moreover according to the proof of the
theorem we have ∥x⋆ −Rγ(y

δ)∥ ≤ L∥Bα(y
δ)− z⋆)∥+ ∥(IdX + PN (A)U)(z⋆)−Dβ,θ(z

⋆)∥.
This gives the claim by the parameter choice and the made approximation assumption.

3 Application

In this section we present a numerical example for our proposed data-proximal regular-
ization approach. We consider limited angle computed tomography (CT) modeled by the
Radon transform as forward problem.

3.1 The Radon transform

The Radon transform of a compactly supported smooth function u : R2 → R is defined by
Kx(θ, s) :=

∫
L(θ,s) u(x) dL(x) for (θ, s) ∈ [−π/2, π/2)×R. Here L(θ, s) := {(x1, x2) ∈ R2 |

x1 cos(θ)+x2 sin(θ) = s} denotes the line in R2 with singed distance s ∈ R from the origin
and direction (cos(θ), sin(θ))T with θ ∈ [−π/2, π/2). In limited angle CT, the data is only
known within a limited subset Ω ⊆ [−π/2, π/2) of the full angular range. The limited
angle Radon transform is then defined as

KΩ : D(KΩ) ⊆ L2(R2) → L2(S1 × R) : u 7→ χΩ×RKu.

The well known filtered back-projection (FBP) inversion formula for the full data Radon
transform reads u = K∗I(Ku), where I is the so-called Riesz-potential and defined in the
Fourier domain by F2(Iu) := ∥·∥(F2u)/(4π) where F2 is the Fourier transform in the second
component; see [23]. The application of the FBP formula to limited angular data is known
to cause prominent streak artifacts which can obscure important information [26,27]. While
these artifacts have been characterized by methods from microlocal analysis [6, 11, 12],
finding suitable reconstruction strategies is still an ongoing challenge. Thus, we will employ
our proposed data-proximal null-space network to obtain a reliable and data-proximal
reconstruction.

In our simulations we use synthetic Shepp-Logan type phantoms supported within the
ball of radius one where u is represented by discrete image x ∈ RN×N with N = 128.
To obtain a discretized versions for the forward operator, we evaluate the limited angle
Radon transform at Ns = 128 equidistant distances in [−1, 1] and NΩ = 120 equidistant
angles in [−π/3, π/3). More details on the implementation of the discretized version of
the Radon transform which we used in our experiments can be found in the repository
https://github.com/drgHannah/Radon-Transformation. The discretized limited angle
Radon transform and FBP formula are denoted by A and A♯, respectively.

3.2 Network design and training

Throughout all numerical calculations, the networks architectures for Uθ and Vθ are taken
as the basic U-net [29], which is still considered a state-of-the-art model due to its ability
to reliably learn image features. Based on the U-net we then consider the architectures

M
(1)
θ = idX+Uθ ,

M
(2)
θ = idX+PN (A)Uθ ,

8
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M
(3)
θ = idX+PN (A)Uθ +A♯ΦβAVθ ,

where M
(1)
θ is the plain residual U-net, M

(2)
θ the null-space architecture and M

(3)
θ the

prosed data-proximal null-space network. The data-proximal network uses shared weights
and divides the output in two streams via projections onto the kernel and the orthogonal
complement, respectively.

The data-proximity function is taken as radial function

Φβ(x) :=

{
x, ∥x∥2 ≤ β,

β · x/∥x∥2, else .
(3.1)

In the numerical simulations we use β := δ
∑N

i=1∥ηi∥2/N . This way, we obtain an estimate
of the magnitude of the perturbations present in the data domain.

As initial reconstruction method we use the FBP operator as well as total-variation (TV)
regularization, which is known to be a good prior for the missing data setup [25, 34, 36,
38]. The family (Bα)α>0 is then given by Bαy

δ := argminx∥Ax − yδ∥22/2 + α∥∇x∥1 and
numerically solved with the Chambolle-Pock algorithm [8].

For training the networks we generate data pairs (xi, y
δ
i )

600
i=1 with yδi = Axi + δηi where

δ = 0.05 and ηi ∼ ∥Axi∥∞ · N (0, 1). All networks M
(i)
θ are trained by minimizing

LN (θ) :=
1

N

N∑
i=1

∥MθBθ(y
δ
i )− xi∥22 (3.2)

by the Adam optimizer with learning rate of 0.001. We trained each network for a total
50 epochs, and chose the learned network parameters with minimal validation error during
training as our final network weights. We split our dataset into 500 training and 100 test
samples. For further implementation details regarding our experiments we refer to our
github repository https://github.com/sgoep/data_proximal_networks.

3.3 Results

For the presented results we write x⋆ for the ground truth image, xFBP for the FBP recon-
struction, xTV for the TV-regularized solution and add the superscripts RES, NSN, DP for
subsequent residual network, null-space network and data-proximal network, respectively.
All reconstructions are compared to the ground truth via the mean squared error (MSE),
the peak-signal-to-noise-ratio (PSNR) and the structural similarity index measure (SSIM).

Reconstruction results are shown in Figure 3.1. We see that all data-driven modalities
overall yield rather good results. Looking closely at the fine grid like features in the
magnified section, we can observe that reconstructions shown in Figure 3.1d-3.1g tend to
differ in their extent of their expression. However, these details appear to be recovered more
accurately by our proposed data proximity approach as shown in Figure 3.1h. Here, all dots
are of similar intensity and shape. Furthermore, the intersecting part of the upper and left
bigger ellipse like features inside the phantom are recovered more precisely. We attribute
these improvements to our data-proximal architecture, which with which the output of the
residual network is constraint to the correct energy level and able to converge faster to a
suitable solution. A quantitative error comparison is shown in Table 1. We see that our
proposed data proximity reconstruction performs best in the chosen metrics. This is in
line with our visual inspection above.
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(a) x⋆ (b) xFBP (c) xTV (d) xRES
FBP

(e) xRES
TV (f) xNSN

FBP (g) xNSN
TV (h) xDP

TV

Figure 3.1: Exemplary reconstructions from limited angle data for the methods described
above. All data-driven approaches give visually good results. Looking closely at the figure
3.1h, we see that our proposed method is able to recover the fine details in the magnified
region with the highest accuracy.

Method MSE PSNR SSIM
xFBP 0.0137 24.6556 0.2867
xTV 0.0020 33.0772 0.6089
xRES

FBP 0.0013 34.9414 0.8455
xRES

TV 0.0010 35.7354 0.9032
xNSN

FBP 0.0012 35.2030 0.8437
xNSN

TV 0.0009 36.6717 0.9184
xDP

TV 0.0008 37.1900 0.9265

Table 1: Reconstruction errors for CT reconstruction with limited angular range. The best
values in each column are highlighted in bold.

4 Conclusion

In this paper, we have introduced a provably convergent data-driven regularization strat-
egy in terms of data-proximal networks. We have demonstrated improved reconstruction
properties in our numerical experiments. These experiments were performed on synthetic
phantoms and for the parallel beam geometry of the Radon transform. In particular,
data were generated and the noise model is explicitly known. Future work could focus
on real world applications. It is possible to combine our approach with appropriate noise
estimation techniques and different data proximity functions. More precise adaptation
can be achieved by designing more problem-specific data proximity functions of a certain
regularity. Analysis under random noise also appears to be an interesting line of research.
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