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Abstract

In this article, we address the challenge of solving the ill-posed reconstruction problem
in computed tomography using a translation invariant diagonal frame decomposition (TI-
DFD). First, we review the concept of a TI-DFD for general linear operators and the
corresponding filter-based regularization concept. We then introduce the TI-DFD for the
Radon transform on L2(R2) and provide an exemplary construction using the TI wavelet
transform. Presented numerical results clearly demonstrate the benefits of our approach
over non-translation invariant counterparts.
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1 Introduction

Computed tomography (CT) is a widely applied imaging modality in medicine and industry,
where the underlying mathematical model is the Radon transform. For a function or signal
f : R2 → R, the Radon transform is denoted by Rf : S1 × R → R. It is well-known, that
reconstructing a function f from approximate knowledge of its line integrals amounts to an
ill-posed inverse problem of the form gδ = Rf + η [13]. Here, δ > 0 is some noise level and η
denotes the data distortions with ‖η‖ ≤ δ. In particular, this means that inverting the Radon
transform is unstable and that small perturbations in data can cause big reconstructions errors.

Classical filter based regularization is a well-known stabilization concept. Assuming a singular
value decomposition (SVD) Rf =

∑
n∈N σn 〈f, un〉 vn for the Radon transform, a regularized

reconstruction is given by f δα =
∑

n∈N Φα(σn)
〈
gδ, vn

〉
un, depending on a so-called regularizing

filter Φα, see [5, 8]. However, filtering based on the SVD comes with several shortcomings.
In general, for an arbitrary linear operator, the SVD might be hard to compute numerically
or not be known analytically. Additionally, the basis elements un, vn are only adapted to the
operator itself, but not the underlying signal class of interest.

To overcome these limitations, the so-called diagonal frame decomposition (DFD) as a gen-
eralization of the SVD has been studied thoroughly in the recent years. In particular, DFDs
are better suited as they not only can be adjusted to the underlying application and involved
signals, but often also provide efficient implementations. A prominent example of a DFD
for the Radon transform is the wavelet-vaguelette decomposition (WVD) introduced in [4].
Related construction involving curvelets and shearlets can for example be found in [1, 3]. A
more general analysis of regularization properties and convergence results have been presented
in [5, 6, 9].

One drawback of the classical WVD reconstruction approach is that in general it lacks trans-
lation invariance, which can lead to well-known wavelet artifacts in the reconstruction [11].
Translation invariant systems on the other hand are known to perform better in that regard
for simple tasks such as denoising [2, 12]. To overcome this, in [7] the authors have intro-
duced the concept of the translation invariant diagonal frame decomposition (TI-DFD) for
general linear operators. Along with an analysis of the regularization properties of the filter
based TI-DFD, the authors gave an exemplary construction of a TI-WVD regarding stable
differentiation. These findings indicate improved regularization properties, when translation
invariance is restored in the underlying wavelet system. Thus, the goal of the present paper
is to construct a TI-WVD for the Radon transform. This way, we obtain an explicit filter
based regularization strategy, which can be implemented efficiently. We will demonstrate its
improved regularization properties by comparing the results to the classical WVD in a numer-
ical example.
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Notation. For f ∈ L2(R2), the Fourier transform is denoted by f̂ = Ff , where f̂(ξ) :=∫
R2 f(x)e−i〈ξ,x〉 if f ∈ L2(Rd) ∩ L1(Rd). For f ∈ L2(S × R), the one dimensional Fourier
transform in the second variable is be denoted by F2. Furthermore, we write u∗(x) := u(−x),
where z is the complex conjugate of z ∈ C.

2 The Translation Invariant Diagonal Frame Decomposition

In this section, we recall the concept of translation invariant (TI) frames [11] and translation
invariant diagonal frame decompositions (TI-DFDs) of linear operators [7]. Furthermore, we
recall the concept of filtered regularization using TI-DFDs.

Definition 2.1 (TI-frame). Let Λ be an at most countable index set. We call the family
(uλ)λ∈Λ ∈ L2(Rd)Λ a translation invariant frame (TI-frame) for L2(Rd) if for all λ ∈ Λ we
have ûλ ∈ L∞(Rd) and there exist constants A,B > 0, such that

∀f ∈ L2(Rd) : A‖f‖2 ≤
∑
λ∈Λ

‖u∗λ ∗ f‖2 ≤ B‖f‖2 . (2.1)

We call a TI-frame (uλ)λ∈Λ tight if (2.1) holds with TI-frame founds A = B = 1.

Defining wλ := F−1(2πûλ/
∑

µ∈Λ|ûµ|2) for every TI frame element uλ, we obtain the so-called
canonical dual (wλ)λ∈Λ of (uλ)λ∈Λ. It holds that

∀f ∈ L2(Rd) : f =
∑
λ∈Λ

wλ ∗ (u∗λ ∗ f). (2.2)

Note that (2.2) in fact holds true for any dual frame (wλ)λ∈Λ defined by the property
∑

λ(Fwλ)·
(Fuλ) = 2π. In particular, the canonical dual always exists but it not uniquely defined by
(2.2). Further note that TI-frame is not a frame in the classical sense. In particular, TI frame
coefficients u∗λ ∗ f(x) = 〈f, uλ(· − x)〉 use a continuous translation parameter x.

Definition 2.2 (TI-DFD). Let K : D(K) ⊆ L2(Rd) → Y be a closed linear operator and let
the space of bounded operators between Y and L2(Rd) be denoted by B(Y, L2(Rd)). We call
the system (uλ,V∗λ, κλ)λ∈Λ a translation invariant frame decomposition (TI-DFD) for K, if
the following hold:

(TI1) (uλ)λ∈Λ ∈ L2(Rd)Λ is a TI-frame for L2(Rd).
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(TI2) ∀λ ∈ Λ we have V∗λ ∈ B(Y, L2(Rd)) and

∀g ∈ ranK :
∑
λ∈Λ

‖V∗λg‖2 � ‖g‖2 .

(TI3) ∀λ ∈ Λ: κλ ∈ (0,∞) and

∀f ∈ D(K) : V∗λ(Kf) = κλ (u∗λ ∗ f).

Here, we define F � G :⇔ ∃c1, c2 > 0: c1G ≤ F ≤ c2G.

Definition 2.3 (Regularizing filter). A family (Φα)α>0 of piecewise continuous functions
Φα : (0,∞)→ R is called a regularizing filter if the following hold:

(F1) ∀α > 0: ‖Φα‖∞ <∞.

(F2) ∃C > 0: sup{|κΦα(κ)| : α > 0 ∧ κ ≥ 0} ≤ C.

(F3) ∀κ ∈ (0,∞) : limα→0 Φα(κ) = 1/κ.

The following theorem summarizes main results of [7, Sections 2 and 3]. For that recall the
notion of a regularization method [8, Definition 3.1].

Theorem 2.4. Let (uλ,V∗λ, κλ)λ∈Λ be a TI-DFD for K, let (wλ)λ∈Λ be a dual TI-frame for
(uλ)λ∈Λ and

RΦ
αg :=

∑
λ∈Λ

wλ ∗ (Φα(κλ) · (V∗λg)) (2.3)

where (Φα)α>0 is a regularizing filter. Then we have:

1. ∀g ∈ ran(K) : K−1g =
∑

λ∈Λwλ ∗ (κ−1
λ · (V

∗
λg)).

2. The family (RΦ
α)α>0 together with suitable parameter choice, defines a regularization

method for inverting K.

The instability of inverting K is reflected via the quasi-singular values (κλ)λ∈Λ. More precisely,
in [7] it has been shown that the inverse operator K−1 is unbounded if and only if the quasi-
singular values κλ accumulate at zero, assuming infλ‖V∗λ‖ > 0.
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3 TI-DFD for the Radon Transform

Recall that for f ∈ L1(R2) ∩ L2(R2) the Radon transform Rf : S× R→ R is defined by

Rf(θ, s) =

∫
R
f(sθ + tθ⊥) dt , (3.1)

for almost every (θ, s) ∈ S1 × R. In this section we extend the Radon transform to a closed
operator between L2 spaces [14] and then construct corresponding TI-DFDs.

3.1 The Radon transform on L2

In what follows, we will make extensive use of the Fourier Slice theorem which states that for
all f ∈ L1(R2) ∩ L2(R2) and almost every (θ, σ) ∈ S1 × R we have

F2Rf(θ, σ) = Ff(σθ) . (3.2)

In fact we use an extension of (3.2) to the natural domain of definitionD(R) ) L1(R2)∩L2(R2).
To this end we define the operator B : D(B) ⊆ L2(R2)→ L2(S1 × R) by

∀(θ, σ) ∈ S1 × R : Bf(θ, σ) := f(σθ) (3.3)

According to (3.2), B is the Fourier representation of the Radon transform on L1(R2)∩L2(R2).
We next state some properties of B, without proofs.

Proposition 3.1 (Properties of B). The operator B as defined above satisfies the following:

(a) D(B) = {f : ‖·‖−1/2f ∈ L2(R2)}

(b) D(B∗) =
{
g : | · |−1/2g(θ, ·) ∈ L2(S1 × R)

}
(c) D(B) and D(B∗) are dense in L2, respectively.

(d) B is well-defined, linear, injective and unbounded.

(e) B∗g(ξ) = ‖ξ‖−1g (ξ/‖ξ‖, ‖ξ‖).

Definition 3.2 (Radon transform on L2). The operator R : D(R) ⊆ L2(R2) → L2(S1 × R)

defined as composition
Rf := (F−1

2 ◦ B ◦ F)(f) (3.4)
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is called the Radon transform on L2.

Proposition 3.3 (Properties of R). The Radon transform R satisfies the following properties:

(a) R is well-defined, linear, injective and unbounded.

(b) R is the closed extension of the operator defined by (3.1).

(c) D(R) = {f ∈ L2(R2) | Ff ∈ D(B)}.

(d) D(R∗) = {g ∈ L2(S1 × R) | F2g ∈ D(B∗)}.

(e) D(R) and D(R∗) are dense in L2, respectively.

(f) R∗ = F−1 ◦ B∗ ◦ F2.

Proposition 3.3 in particular states that the Radon transform R is an unbounded operator.
On the other hand, the restriction of R to various closed subspaces is bounded. The most
common case is the restriction of R to L2

D(R2) :=
{
f ∈ L2(R2) : supp(f) ⊆ D

}
. However,

the restriction to functions with compact support poses a-priori assumptions that are not
translation invariant. Further, with the above considerations we obtain the classical filtered
backprojection formula (FBP) [13] between L2-spaces, i.e.

R−1g =
1

4π
(R∗ ◦ I1)(g), (3.5)

where g = Rf and f ∈ D(R) [14,15]. Here, the operator I1f := F−1(|·|Ff) is known as Riesz
potential.

3.2 Necessary conditions

Before constructing a TI-DFD for the Radon transform on L2(R2) we derive some necessary
conditions.

Lemma 3.4 (Necessary Conditions). Let uλ ∈ L2(R2), vλ ∈ L2(S1 × R) and κλ > 0 satisfy
R∗v∗λ = κλu

∗
λ and v̂λ, |·|−1v̂λ ∈ L∞(S1 × R), and define V∗λg := R∗(v∗λ ∗ g).

1. (Vλ)λ∈Λ satisfies (TI3).

2. If (uλ,V∗λ, κλ)λ∈Λ is a TI-DFD for R, then

∀λ ∈ Λ: v̂λ(θ, σ) = κλ|σ|ûλ(σθ). (3.6)
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Proof. 1) Let f ∈ D(R). Then

κλ(u∗λ ∗ f) = F−1(κλû
∗
λ · f̂)

= F−1(B∗v̂∗λ · ‖·‖B∗Bf̂)

= F−1B∗(v̂∗λ · R̂f)

= F−1B∗F2(v∗λ ∗s Rf)

= R∗(v∗λ ∗s Rf)

= V∗λ(Rf) .

2) According to 1) and the definition of V∗λ we have R∗(v∗λ ∗ Rf) = κλ(u∗λ ∗ f). By applying
the Fourier transform on both sides and since D(R) is dense, we obtain (3.6).

3.3 Construction of the TI-DFD

Now, let (uλ)λ∈Λ be a 2D (tensor product) TI wavelet frame with mother wavelet u ∈ L2(R2).
That is, we assume the multi-scale structure

∀(j, l) ∈ Λ := Z× {H,V,D} : uj,l(x) = 2ju0,l(2
jx) , (3.7)

where j ∈ Z is the scale index and l ∈ {H,V,D} indicates the horizontal, vertical or diagonal
mother wavelet, respectively.

Theorem 3.5 (TI-WVD for R). Let (uj,l)j,l∈Λ be defined by (3.7), suppose supp(û0,l) = {ξ |
a ≤ ‖ξ‖ ≤ b} for some a, b > 0, and for (j, l) ∈ Z× {H,V,D} define

vj,l := 2−j/2I1Ruj,l (3.8)

V∗j,l(g) := R∗(v∗j,l ∗ g) . (3.9)

Then the system (uj,l,V∗j,l, 2−j/2)j,l∈Λ defines a TI-DFD for R, which we will call TI-WVD for
the Radon transform.

Proof. For the proof it remains to verify that (V∗j,l)j,l satisfies (TI2). Let g ∈ ran(R), then by
the Parseval identity and changing to polar coordinates inside the integral, we have

‖V∗j,lg‖2 = ‖F(V∗j,lg)‖2

=

∫
S1

∫ ∞
0

1

σ
|v̂∗j,l(θ, σ)|2 · |ĝ(θ, σ)|2 dσ dθ
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=

∫
S1

∫ ∞
0

σ

2j
|ûj,l(σθ)|2 · |ĝ(θ, σ)|2 dσ dθ.

Since a2j ≤ σ ≤ b2j on the support of the integrand and since (uj,l)j,l is a TI frame, taking the
sum on both sides yields aA ≤

∑
j,l ||V∗j,lg||2 ≤ bB, where A,B > 0 are the TI frame constants

of (uj,l)j,l.

4 Numerical Experiments

In this section, we present numerical comparisons between the classical WVD [4,5] and the TI-
WVD for the Radon transform, introduced in this article. The essential step in implementing
the filtered TI-DFD reconstruction formula (2.3) is calculating V∗j,lg = R∗(v∗j,l ∗ g). To this
end, we use the explicit expression (3.6) and calculate

R∗(v∗j,l ∗ g) = κj,l(u
∗
j,l ∗ R∗I1g).

Note that R∗I1 is the filtered backprojection (FBP) as given in (3.5). Together with the the
Tikhonov filter Φ

(2)
α (κ) := κ/(κ2 + α), the regularized TI-DFD (2.3) for the Radon transform

is given as

Rαg =
∑
j,l

2−j/2

2−j + α
uj,l ∗ (u∗j,l ∗ R∗I1g).

Since the wavelet transform and the FBP can be efficiently implemented, this results in an
efficient algorithm of the regularized reconstruction. For the implementation, we used Python
3.9.12. The Radon transform and in particular the FBP where implemented via the scikit-
image package, version 0.19.2 [16]. The (TI) wavelet transform was employed via the Py-
Wavelets package, version 1.3.0 [10].

We use a discretized synthetic phantom f ∈ R256×256 and chose the maximum of 8 decom-
position levels using the Haar-wavelet as underlying frame. Note that the Haar-wavelet is
not band-limited, and thus Theorem 3.5 not applicable in this case. However, we expect the
result of the theorem to hold under weaker assumptions, but we do not yet have proof of
this. We added white Gaussian noise to the data gδ = Rf + δη. Here, we chose δ = 0.05

and η ∼ ‖Rf‖∞N (0, 1). To guarantee a fair comparison, we performed a parameter search
to determine the optimal regularization parameter α > 0 for both methods. The parameter
was optimized in terms of the relative `2 reconstruction error ‖fαrec− f‖2/‖f‖2, where f is the
ground truth and fαrec is the reconstruction, depending on the selected parameter.
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(a) (b) (c)

Figure 4.1: Reconstructions from noisy Radon data gδ with δ = 0.05. (a) Filtered backprojec-
tion reconstruction using (3.5). (b),(c) Reconstructions via WVD and TI-WVD, respectively.
Both reconstructions use the maximum number of 8 levels of decomposition for the Haar-
wavelet.

Numerical results are shown in Figure 4.1, which clearly show that the TI-DFD approach
outperforms the standard WVD. While the denoising property of both methods is evident,
the decimated DFD suffers from the well-known block like artifacts which are due to the
sub sampling step in the decimated wavelet decomposition. Quantitatively, the relative `2

reconstruction error for the WVD amounts to 0.054 and for the TI-WVD to 0.048.

5 Conclusion

In this article we presented the concept of the translation invariant frame decomposition (TI-
DFD) for the solution of linear operator equations. Subsequently, we constructed a TI wavelet-
vagulette decomposition (TI-WVS) for the Radon transform as an instance of the TI-DFD. An
advantage of classical frame decompositions is the translation invariance of the system which
also has been demonstrated numerically. We have seen, that the use of translation invariant
frames leads to improved reconstructions when compared to classical frames.
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