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Abstract

In a variety of tomographic applications, data cannot be fully acquired, leading
to severely underdetermined image reconstruction. Conventional methods result in
reconstructions with significant artifacts. In order to remove these artifacts, regu-
larization methods have to be applied that incorporate additional information. An
important example is TV reconstruction which is well known to efficiently compen-
sate for missing data and well reduces reconstruction artifacts. At the same time,
however, tomographic data is also contaminated by noise, which poses an additional
challenge. The use of a single regularizer within a variational regularization frame-
work must therefore account for both the missing data and the noise. However, a
single regularizer may not be ideal for both tasks. For example, the TV regularizer
is a poor choice for noise reduction over different scales, in which case `1 curvelet
regularization methods work well. To address this issue, in this paper we introduce a
novel variational regularization framework that combines the advantages of two differ-
ent regularizers. The basic idea of our framework is to perform reconstruction in two
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stages, where the first stage mainly aims at accurate reconstruction in the presence of
noise, and the second stage aims at artifact reduction. Both reconstruction stages are
connected by a data proximity condition. The proposed method is implemented and
tested for limited-view CT using a combined curvelet-TV approach. We define and
implement a curvelet transform adapted to the limited view problem and demonstrate
the advantages of our approach in a series of numerical experiments in this context.

Keywords: Image reconstruction, limited data, artifact reduction, sparse regulariza-
tion, complementary image reconstruction, wedge-adapted curvelets.

1 Introduction

Limited data computed tomography (CT) is a prerequisite for a wide range of applications
such as digital breast tomosynthesis, dental tomography and non-destructive testing. In
this case, the available data is only a subset of the full data that would be required to
uniquely identify the scanned object. Due to the lack of available scans, certain image
features are invisible and important information may be obscured by artifacts generated
during reconstruction [25, 26]. Although the characterization of limited view artifacts has
been well researched [2, 14, 15], effective artifact reduction or compensation for missing
data is still a challenge. This is even more true when the tomographic data is noisy, which
creates additional hurdles.

Mathematically, limited-data CT can be written as an inverse problem of the form

vδ = KIu+ ηδ , (1.1)

where u ∈ L2(R2) is the unknown image to be recovered, KI denotes the Radon transform
with restricted angular range I and ηδ denotes the noise in the data. While the inverse
problem of recovering an image from noisy CT measurements with complete data is already
ill-posed [23], the reconstruction problem in the presence of missing data is severely under-
determined. Direct methods such as filtered back projection (FBP) are sensitive to noise
and do not handle missing data well, leading to typical limited data artifacts. To account
for noise and missing data, further information that is available about the object to be
recovered must be incorporated. Specific methods are therefore required that can both
reliably remove noise and avoid artifacts caused by limited data.

One of the most successful approaches to problems of the form (1.1) is variational regu-
larization, in which a stable and robust solution uδα ∈ L2(R2) of the limited-data image
reconstruction problem is determined as a minimizer of

Tα(u, vδ) =
1

2
‖KIu− vδ‖2 + αR(u) , (1.2)

where R is a suitable regularizer incorporating prior information and ‖KIu − vδ‖2/2 is
the least squares data fitting functional. The variational approach offers great flexibility.
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In particular, it can be adapted to the forward problem, the signal class, and the noise.
For example, total variation R(u) = |u|TV has been shown to be a good prior to complete
missing data [24, 31, 35, 36]. On the other hand, the `1-norm R(u) = ‖Ψu‖1 of wavelet
or curvelet coefficients Ψu ∈ Θ, where usually one takes Θ = `2(Λ,R) with suitable
index set Λ, has been shown to be statistically optimal for Radon inversion from complete
data [5]. On the downside, the mono-scale nature of the total variation does not lead
to an optimal reconstruction in the presence of noise [18] and `1-reconstructions hardly
extrapolate missing data [27,28].

The individual advantages and disadvantages of specific regularizers have led to so-called
hybrid methods that combine two different regularizers within the variational regularization
framework (1.2). For example, hybrid `1-TV methods [19, 33] use the regularizer R(u) =

α|u|TV +β‖Ψu‖1. Given the above strengths and limitations of each individual regularizer,
this is particularly attractive for CT with noisy limited data. However, the single hybrid
regularizer must again account for both, the limited data and the denoising problem,
which is a challenging task. Unfortunately, a fixed hybrid regularizer cannot fully avoid
the drawbacks of the individual terms. For example, the TV term still leads to over or
under smoothing of certain scales in the visible range, while the curvelet part still tries
to suppress intensity values of invisible coefficients. To avoid these negative impacts, it is
necessary to adapt each regularizer to its actual purpose.

In this paper, we present a novel complementary `1-TV algorithm that addresses both
the limited data problem and the noise reduction problem. It is based on a modified
regularization approach that selects a regularizer for each of the two tasks and combines
them in a synergetic way through data-proximity. More precisely, the proposed iterative
reconstruction method generates two reconstructions θ ∈ Θ and u ∈ L2(R2) by alternately
solving

min
θ
‖KI(Ψ

∗θ)− vδ‖2/2 + α‖θ‖1 + µ‖KI(u−Ψ∗θ)‖2/2

min
u
R(u) + µ‖KI(u−Ψ∗θ)‖2/2 .

Here, the auxiliary reconstruction Ψ∗θ targets a noise suppressing reconstruction addressed
by the sparsity term ‖θ‖1. The main reconstruction u performs data completion based by
updating Ψ∗(θ) using the regularizer R(u). A key element is the coupling of both recon-
structions that requires ‖KI(u−Ψ∗θ)‖2 to be small, which we refer to as data-proximity
coupling. Although our concept is applicable to any image reconstruction problem with
limited data, we focus on limited data CT for clarity. In addition, we propose several
variations of the data-proximity coupling, which will be discussed later in the manuscript.

Note that our method is quite different from post-processing an original reconstruction.
In the latter case, the data-proximity term ‖KI(u−Ψ∗θ)‖2 is replaced by a proximity in
image space ‖u−Ψ∗θ‖2, which forces u to be close to Ψ∗(θ), making artifacts difficult to
remove.
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2 Background

Throughout this article, we will use the following notation. The Fourier transform of a
function u ∈ L2(R2) is denoted by Fu, where Fu(ξ) ,

∫
R2 u(x)e−i〈ξ,x〉 dx for integrable

functions and extended to L2(R2) by continuity. We write u∗(x) , u(−x), where z denotes
the complex conjugate of z ∈ C. Recall that the Fourier transform converts convolution
into multiplication. In particular, for u,w ∈ L2(R2), with Fu ∈ L∞(R2), the convolution
u ∗w ∈ L2(R2) is well-defined and given by u ∗w = F−1((Fu) · (Fw)). Furthermore, F2u

denotes the Fourier transform of u ∈ L2(S1 × R) with respect to the second argument.

2.1 The Radon transform

The full data Radon transform maps any function u ∈ L1(R2) ∩ L2(R2) to the collection
of its line integrals

Ku(ω, s) ,
∫
ω⊥
u(x+ sω) dx for (ω, s) ∈ S1 × R .

Here S1 = {ω ∈ R2 | ‖ω‖ = 1} is the unit circle and any line of integration {x ∈ R2 |
〈ω, x〉 = s} is described by a unit normal vector ω ∈ S1 and oriented distance s from the
origin. As the pairs (ω, s) and (−ω,−s) describe the same line, a full angular range of
the Radon transform is given by an arc covering 180°. The Radon transform can extended
to an unbounded densely defined closed operator K : D(K) ⊆ L2(R2) → L2(S1 × R) with
domain of definition D(K) , {u ∈ L2(R2) | ‖·‖−1/2Fu ∈ L2(R2)}; see [32].

Lemma 2.1 (Fourier slice theorem). For all u ∈ D(K) we have F2 (Ku) (ω, σ) = Fu(σω).

In Lemma 2.1 and below F2v(ω, σ) ,
∫
R v(ω, s)e−iσs ds the 1D Fourier transform of v ∈

L2(S1×R) in the second component. The Fourier slice theorem states that for any ω ∈ S1,
the Fourier transform of the Radon transform of some function in the second component
equals the Fourier transform of that function along the Fourier slice {σω | σ ∈ R}.

Opposed to the full data case, in limited data CT, the Radon transform is only known on
a certain subset. Equivalently, we may model limited view data with a binary mask as we
will do here. For any subset A ⊆ S1 × R we denote by χA the indicator function defined
by χA(ω, s) = 1 if (ω, s) ∈ A and χA(ω, s) = 0 otherwise.

Definition 2.2. For any I ⊆ S1 we define the limited data Radon transform as

KI : D(K) ⊆ L2(R2)→ L2(S1 × R)

u 7→ χI×R · (Ku) .

By the Fourier slice theorem, limited CT data is in one-to-one correspondence with the
Fourier transform Fu restricted to the set WI , {σω | σ ∈ R∧ω ∈ I}. We will call WI the
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visible wavenumber set, as only Fourier coefficients for wave numbers in WI are provided
by the data. Accordingly, we call R2 \WI the invisible wavenumber set. We see that if
R2 \ WI has non-vanishing measure, then KI has non-vanishing kernel consisting of all
functions u ∈ D(KI) with supp Fu ⊆WI .

In limited view CT the set WI forms a wedge, whereas in the sparse view case the set WI

forms a fan; see the left two images in Figure 2.1.

Figure 2.1: Left: Visible wavenumbers (blue) for limited view data covering 130°. Middle:
Visible wavenumbers (blue) for sparse angular sampling using 20 angles. Right: Original
NCAT phantom used for the numerical simulations shown below.

2.2 Frames and TI frames

In this article, we often use that the desired signal u allows a sparse representation in a
suitable frame. In particular, we work with curvelet frames, which give an optimal sparse
representation of cartoon-like images [5]. The same is true for shearlets [20]. Curvelets
and shearlets form frames of L2(R2), and this section provides the necessary background.

2.2.1 Translational-invariant (TI) frames

Let Λ be an at most countable index set. A family (ψλ)λ∈Λ in L2(R2) is called a translation
invariant frame (TI-frame) for L2(R2) if Fψλ ∈ L∞(R2) for all λ ∈ Λ and

∀u ∈ L2(R2) : A‖u‖2 ≤
∑
λ∈Λ

‖ψλ ∗ u‖2 ≤ B‖u‖2, (2.1)

for some A,B > 0. A TI-frame is called tight if A = B = 1. Because Fψλ ∈ L2(R2) ∩
L∞(R2) and Fu ∈ L2(R2), we have ψλ∗u = F−1((Fψλ)·(Fu)). From Plancherel’s theorem
we get ‖ψλ ∗u‖2 = 2π

∫
R2 |Fψλ|2|Fu|2. The right inequality in the TI-frame property (2.1)

therefore in particular implies (ψλ ∗ u)λ∈Λ ∈ `2
(
Λ, L2(R2)

)
. For some background on TI

frames see [22] and [16] for TI frames in the context of inverse probelems.

Along with TI-frames, we will make use of the TI-analysis and TI-synthesis operators
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respectively, which are defined by

Ψ : L2(R2)→ `2(Λ, L2(R2)) : u 7→ (ψλ ∗ u)λ∈Λ

Ψ∗ : `2(Λ, L2(R2))→ L2(R2) : (θλ)λ∈Λ 7→
∑
λ∈Λ

ψ∗λ ∗ θλ .

Note that the TI-analysis operator and the TI-synthesis operator are the adjoint of each
other. The composition Ψ∗Ψ is known as the TI-frame operator. Using the definition of the
TI-analysis operator we can rewrite the frame condition (2.1) as A‖u‖2 ≤ ‖Ψu‖2 ≤ B‖u‖2

for u ∈ L2(R2). The right inequality in (2.1) states that the TI-analysis operator Ψ is a
well-defined bounded linear operator. The left inequality states that Ψ is bounded from
below, that is, the pseudo-inverse Ψ‡ , (Ψ∗Ψ)−1Ψ∗ is continuous.

2.2.2 Regular frames

Regular frames use inner products instead of convolutions as in TI frames for defining
coefficients. Let Λ be an at most countable index set. A family (ψλ)λ∈Λ in L2(R2) is
called a frame for L2(R2) if

∀u ∈ L2(R2) : A‖u‖2 ≤
∑
λ∈Λ

|〈ψλ, u〉|2 ≤ B‖u‖2, (2.2)

for some A,B > 0. A frame is called tight if A = B = 1. In some sense the TI frame
can be seen as a frame with index Λ × R2. Note however that clearly the TI frame not a
regular frame because the set Λ× R2 is uncountable. Similar to the TI case, the analysis
and synthesis operators of a regular frame are defined by

Ψ : L2(R2)→ `2(Λ): u 7→ (〈ψλ, u〉)λ∈Λ

Ψ∗ : `2(Λ)→ L2(R2) : (θλ)λ∈Λ 7→
∑
λ∈Λ

ψ∗λ θλ

and the composition Ψ∗Ψ is the frame operator.

Under suitable regularity assumptions [10, 22], a regular frame with index set λ × Z2

can be obtained from a TI frame with index set λ by discretizing the convolution in
(2.1). For multiscale systems such as wavelets of curvelets, the associated λ-dependent
subsampling destroys translation invariance, which can lead to degraded performance and
reconstruction. The advantages of the TI system for simple denoising tasks have been
investigated in [8], and its regularization properties for inverse problems in [16].

2.3 Variational image reconstruction

A practically successful and theoretically well analyzed method for solving inverse problems
of the form (1.1) is variational regularization. Here, the available prior information is

6



incorporated by a regularization functional R : L2(R2)→ [0,∞] and an approximate image
is recovered by minimizing the Tikhonov functional Tα(u, vδ) = ‖KIu − vδ‖2/2 + αR(u)

with respect to u; see (1.2).

Variational regularization is well-posed, stable and convergent in the following sense: (i)
Tα(·, vδ) has a minimizer uδα; (ii) minimizers depend continuously on data vδ; (iii) if ‖v −
vδ‖ ≤ δ with v ∈ ran(KI) and α = α(δ) is selected properly then uδα converges (as δ → 0)
to an R-minimizing solution of KIu = v defined by

min
u
R(u) such that KIu = v . (2.3)

These properties hold true under the assumption that R is convex, weakly lower semicon-
tinuous and coercive [29]. The characterization (2.3) of the limiting solutions reveals two
separate tasks to be performed by the regularizer: Besides noise-robust reconstructions via
minimization of the Tikhonov functional, it also serves as criteria for selecting a particular
solution. Obviously, it is difficult to optimally perform both tasks with a single regularizer.

Note that the selection of a particular solution via (2.3) addresses the non-uniqueness and
implicitly performs data completion. This is equivalent to the selection of the component
of the reconstruction in the kernel ker(KI). While the standard Hilbert space norm reg-
ularizer completes the missing data with zero, other regularizers perform non-zero data
completion. The data completion strongly depends on the chosen regularizer.

While there are many reasonable choices for the regularizer R, in this paper we will mainly
focus on the `1-norm with respect to a suitably chosen frame and the total variation, each
one coming with its own benefits and shortcomings.

2.3.1 Sparse `1-regularization

Let Ψ∗ denote the synthesis operator of a frame and set Ψ‡ , (Ψ∗Ψ)−1Ψ∗. In particular,
any u ∈ L2(R2) can be written as u = Ψ‡Ψu. Synthesis sparsity that u = Ψ∗θ where θ
has only a few non-vanishing entries, whereas analysis sparsity refers to Ψu having only
few non-vanishing entries. Sparsity can be implemented via regularization using the `1

norm. There are at least two different basic instances of sparse `1-regularization namely
the synthesis and analysis formulations

fana
α,δ = arg min

u

1

2
‖KIu− vδ‖2 + α‖Ψu‖1 (2.4)

θsyn
α,δ = arg min

θ

1

2
‖KI(Ψ

∗θ)− vδ‖2 + α‖θ‖1 , (2.5)

with f syn
α,δ , Ψ∗(θsyn

α,δ ). Synthesis and analysis regularization are equivalent in the basis
case where they can be explicitly computed via the diagonal frame decomposition [11,16].
In the general case synthesis regularization, analysis regularization and regularization via
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the diagonal frame decomposition are however fundamentally different [13].

Frame based sparsity constraints have been widely employed for various reconstruction
tasks [3,4,34]. Note that theoretical and practical issues for general variational regulariza-
tion can in particular be applied to `1-regularization. Additionally, `1-regularization comes
with additional recovery guarantees both in the deterministic and statistical context [5,17].

2.3.2 TV regularization

Total variation regularization is a special case of variational regularization [1,29] where the
regularizer in (1.2) is taken as the total variation (TV)

|u|TV , sup
{∫

R2

u div v | v ∈ C1
c (R2,R2) ∧ ‖v‖2,∞ ≤ 1

}
,

where ‖v‖2,∞ , supx(v1(x)2 + v2(x)2)1/2. TV regularization has been proven to well
account for missing data in CT image reconstruction [24,31].

Adding the TV semi-norm to the data-fidelity-objective function tends to smooth out
noise in the image while preserving edges within the image. However as for other mono-
scale approaches, there is a trade-off between noise reduction and preserving features at
specific scales. Natural images have features across multiple scales which become either
over or under smoothed depending on the particular choice of the regularization parameter
[6,18]. This already has negative impact for fully sampled tomographic systems or simple
denoising. To account for the noise a sufficiently large regularization parameter is required
that at the same time removes structures at small scales.

2.3.3 Hybrid regularizers

Hybrid methods aim to combine benefits of an `1 regularizer and an additional regularizer
such as the TV-seminorm and minimize functionals of the type

T hybrid
α,β (u, vδ) =

1

2
‖KIu− vδ‖2 + α‖Ψu‖1 + βR(u) . (2.6)

In that context, the sparsity promoting nature of ‖·‖1 and the data completion property of
R = |·|TV are utilized. The `1-term targets a noise-reduced reconstruction and the R-term
targets artifact reduction.

Various forms of hybrid `1-TV regularization techniques have been proposed [19, 21, 34].
While these methods have been shown to outperform both pure TV and pure `1 regular-
ization, they still carry the drawbacks of both approaches.

Minimizing (2.6) has the drawback that the `1-penalty and the TV penalty work against
each other in the following sense. The `1-norm enforces sparsity of the reconstructed
coefficients and for that purpose seeks to recover an image where missing data completed
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by values close to zero. On the other hand, the strength of TV is to add missing data in
a non-vanishing matter. This can be clearly seen for plain inpainting problem where data
is given by the restriction vI = u|I . If for example u is a constant image then filling the
missing data with this constant results in minimal total variation. This however works
against the sparsity constraint in a localized frame which aims to fill missing data with
small intensity values.

3 Complementary `1-TV reconstruction

We now describe our proposed framework which basically alternates between a reconstruc-
tion step and an artifact reduction step inspired by backward backward (BB) splitting. For
the following let Ψ∗ : Θ→ L2(R2) be the synthesis operator of a frame (where Θ = `2(Λ))
or a TI-frame (where Θ = `2(Λ, L2(R2))).

3.1 BB splitting algorithm

Actual implementation of variational regularization(1.2) requires iterative minimization.
Splitting methods are very successful in that context. In particular, BB splitting applied
to the hybrid approach (2.6) will be the starting point of our approach. Consider the
splitting Tα,β(u, vδ) = Fα(u, vδ) + Gβ(u) with

Fα(u, vδ) ,
1

2
, ‖KIu− vδ‖2 + α‖Ψu‖1

Gβ(u) , βR(u) .

Because Fα(·, vδ) and Gβ are both non-smooth, methods that treat both functionals im-
plicitly are an appealing choice. For that purpose one can use the BB splitting algorithm
which with coupling constant µ > 0 and starting value u0 ∈ L2(R2) reads

wn+1 , arg min
h

Fα(w, vδ) +
µ

2
‖w − un‖2 (3.1)

un+1 , arg min
u

Gβ(u) +
µ

2
‖wn − u‖2 . (3.2)

The BB splitting algorithm is known to converge [9] to the minimizer of Fα(·, vδ) + βRµ
where R is the Moreau envelope Rµ(u) , infwR(u) + µ‖u − w‖2/2 of the hybride regu-
larizer.

The iterates of the BB splitting algorithm are noise-reduced near solutions of (1.1) because
of the functional Fα(w, vδ) in (3.1) and regular because of Gβ (3.2). The iterates wn, un
are coupled via the proximity measure ‖u−w‖2/2 resulting in two sequences that are close
to each other in the reconstruction domain.
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3.2 Proposed reconstruction framework

Our algorithm is motivated by the BB splitting iteration (3.1), (3.2) utilizing a synthesis
version for `1 minimization and TV regularization for the regularizer R. The main differ-
ence, however, to the BB iteration is that the proximity term ‖u− w‖2/2 in the iterative
updates are replaced by the data-proximity coupling term ‖KI(u− w)‖2/2.

Our goal is to construct two sequences (θn)n∈N and (un)n∈N such that Ψ∗θn as well un
are approximate solutions of KIu = vδ, however targeting different particular solutions.
The reconstruction Ψ∗θn is a noise reduced reconstructions and un is an updated version
of Ψ∗θn targeting reduced limited data artifacts based on R. To that end define the
functionals

Fα(θ, vδ) ,
1

2
, ‖KI(Ψ

∗θ)− vδ‖2 + α‖Ψu‖1

Gβ(u) , u 7→ β|u|TV + 1≥0 ,

with 1≥0 being the indicator function of the positive cone given by 1≥0(u) = 0 if u ≥ 0

and 1≥0(u) =∞ otherwise.

Image reconstruction is done in an iterative fashion similar to (3.1) however using the data-
proximity coupling ‖KI(u− w)‖2/2. For that purpose we suggest the iterative procedure

θn+1 , arg min
θ
Fα(θ, vδ) +

µ

2
‖KI(un −Ψ∗θ)‖2 (3.3)

un+1 , arg min
u

Gβ(n)(u) +
µ

2
‖KI(u−Ψ∗θn)‖2 , (3.4)

with starting value u0 ∈ L2(R2). Here ‖KI(u −Ψ∗θ)‖2/2 is the data-proximity coupling
term and µ, α, β(n) > 0 are parameters. The resulting complementary `1-TV reconstruc-
tion procedure is summarized in Algorithm 1.

Algorithm 1 Proposed complementary `1-TV minimization
Choose µ, α, β(n) > 0 and N ∈ N
Initialize f0 ← 0 and n← 0
repeat

θn+1 ← arg minθ Fα(θ, vδ) + µ‖KI(un −Ψ∗θ)‖2/2
un+1 ← arg minu Gβ(n)(u) + µ‖KI(u−Ψ∗θn)‖2/2
n← n+ 1

until n ≥ N

The proposed steps (3.3), (3.4) in Algorithm 1 come with a clear interpretation. The
first step (3.3) is a sparse `1-reconstruction scheme with good noise handling capabilities.
The second step minimizes the TV norm with the penalty ‖KI(u−Ψ∗θ)‖2/2 and targets
artifact reduction. Note that the number N of outer iterations in Algorithm 1 as well as
the parameters µ, α, β(n) have influence on the final performance. The theoretical analysis
is interesting and challenging but beyond the scope of this paper.
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4 Numerical Experiments

In this section we present numerical results using the proposed Algorithm 1 and compare
it with standard filtered back projection (FBP), `1-synthesis regularization (2.5), TV reg-
ularization and hybrid `1-TV regularization (2.6). We consider a limited view as well as
a sparse angle scenario and use the NCAT phantom [30] as image to be recovered (see
Figure 2.1). The NCAT phantom resembles a thorax CT scan, with the spine at the bot-
tom, and ribs on the sides. The forward and adjoint Radon transforms are computed using
Matlabs standard functions. To mimic real life applications we perturbed the data by
various Poisson noise corresponding to 10a incident photons per pixel bin with a = 3, 4, 5.

4.1 Implementation details

All minimization problems are solved with the Chambolle-Pock algorithm [7] using 200

iterations for `1 minimization, and 500 iterations for TV and hybrid `1-TV minimization.
This was also the case for the complementary approach, where for 105 and 104 photon
counts we chose N = 10 and for 103 photon counts we chose N = 4 outer iterations. We
take the n-th initial value for the θ and u update as θn−1 and un−1, respectively. For Ψ we
use a self-designed TI curvelet transform that in the case of limited view data is adapted
to the visible wedge; see Appendix A. Total variation is implemented as the (2, 1)-norm of
the discrete gradient computed with finite differences.

The regularization parameters for Algorithm 1 are optimized for µ, α, β with β(n) = 2nβ.
Since the described reconstruction techniques rely on good choices for regularization pa-
rameters α, β, µ we perform systematic parameter sweeps in all cases to obtain optimal
reconstructions and a fair comparison. The parameters were optimized in terms of the
relative `2 reconstruction error ‖urec − u‖2/‖u‖2, where u is the true signal and urec the
reconstruction. For each parameter and method, we performed a 1D grid search to obtain
the lowest `2 reconstruction error. In particular, for the proposed complementary `1-TV
algorithm, we first determine the optimal parameter α, and used the optimal choice of the
θ-update as input for the optimization of the parameter β. All subsequent iterations where
then calculated using these parameters.

For limited view experiments, we chose angular sampling points ω(φ) = (cos(φ), sin(φ))

with φ = −65°, . . . , 64° resulting in a total number of 130 directions covering an angular
domain of 130°. For the sparse view problem we generate Radon data with an angular
range of [−90°, 90°), and a total number of 50 angular projections. Photon noise using 104

photon counts per bin was added to the data.
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Figure 4.1: Reconstructions from limited view data. From top to bottom, each row shows
results using FBP, `1-curvelet reconstruction, TV reconstruction, hybrid `1-TV and com-
plementary `1-TV regularization. Each column from left to right, corresponds to a different
number of photons 105, 104 and 103. The pixel value range is set to [0, 1] for all images.

4.2 Results for limited view data

Figure 4.1 shows reconstruction results for the limited view problem using FBP, `1 curvelet
reconstruction, TV reconstruction, hybrid `1-TV and the proposed complementary `1-
TV reconstruction. The results show that the complementary `1-TV approach seems to
combine the denoising and artifact removing properties of the regularizers in an optimal
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way. Taking a closer look at the lowest noise level (105 photon counts) in the first column,
we see that the FBP-reconstruction (top row) and the `1-reconstruction (row 2) suffer from
severe limited view artifacts. While the TV regularized (row 3) shows less artifacts, we
find on the other hand that the fine details of the spine in the magnified part of the image
are not reconstructed correctly anymore. This is typical for TV regularization when the
regularization parameter has to be chosen too high in order to address the noise, resulting
in block like artifacts. A similar observation holds true for the hybrid `1-TV reconstruction
(row 4). Taking a closer look at the results for the proposed algorithm (bottom row) we
see that not only are we able to remove the limited view artifacts, but also to recover the
fine details accurately. Furthermore, in comparison to the TV reconstruction we observe
that the overall shape of the phantom is better approximated by our approach.

# photons method `2-error PSNR SSIM

105

FBP 0.2496 17.1021 0.2693
`1 0.0756 22.590 0.559
TV 0.0187 29.725 0.953
`1-TV 0.0368 25.4124 0.8540
proposed 0.0103 31.438 0.949

104

FBP 0.2719 16.7306 0.1635
`1 0.0784 22.1291 0.5430
TV 0.0246 27.1590 0.9210
`1-TV 0.0500 24.0859 0.7633
proposed 0.0161 29.0141 0.8815

103

FBP 0.4961 14.1189 0.0696
`1 0.0907 21.4974 0.4328
TV 0.0411 24.9321 0.8621
`1-TV 0.0545 23.7100 0.7898
proposed 0.0311 26.1420 0.7906

Table 1: Reconstruction errors for limited view reconstructions.

Similar conclusions can be drawn from the second column of Figure 4.1 showing results for
104 photon counts. Here for the TV and hybrid `1-TV regularization even more details are
lost. For the other methods, we still have a high level of details visible in the recovered im-
ages. However, only for the proposed method we also obtain an artifact free reconstruction.
We attribute the remaining perturbations to the soft-thresholding procedure, that are part
of the θ-update step. The last column in Figure 4.1 depicts the reconstructions for 103

photon counts (the highest noise level in our experiments). As we see, no method is able to
recover the fine structures reliably anymore. However, note that for TV and hybrid `1-TV
regularization some of the ribs, which are boundaries of ellipse like structures, now appear
to be filled. Simple curvelet-`1 regularization and the complementary `1-TV approach still
recover the fine holes inside these structures. Again, our method is capable of removing
the limited view artifacts, while also being able to produce a good approximation to the
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overall shape and details of the phantom.

Summarizing, we can say that our proposed algorithm combines the advantage of both, the
denoising capabilities of curvelet-`1 regularization, the artifact removal and data recovery
properties of the TV regularization approach. A quantitative comparison is given in Table 1
which compares the reconstructions in terms of the relative `2-error, the peak signal-to-
noise ratio (PSNR), as well as the structural similarity index measure (SSIM). The best
values in each group are highlighted by bolt letters. As we can see, the complementary `1-
TV approach produces the best reconstructions in terms of the `2-error and PSNR, while
simple TV regularization is optimal in terms of the SSIM. We find that quantitatively,
TV regularization and the complementary `1-TV approach are rather similar. However,
qualitatively the advantages of the complementary `1-TV method are clearly visible.

Figure 4.2: Reconstructions from sparse view data using FBP (top left), `1-curvelet (top
center), TV reconstructions (top right), hybrid `1-TV (bottom left) and complementary
`1-TV (bottom right). The pixel value range is set to [0, 1] for all images.

4.3 Results for sparse view data

Figure 4.2 shows reconstruction results for the sparse view problem using FBP, `1 curvelet
reconstruction, TV reconstruction, hybrid `1-TV and the proposed complementary `1-TV
regularization. We see that all reconstruction methods are able to reproduce the overall
phantom rather good. Taking a closer look a the magnified details, we see that the `1-
curvelet reconstruction is able to image the spine rather good. However, we also see that
the phantom also suffers from perturbations caused by the soft-thresholding of curvelet
coefficients. The TV regularized reconstruction one hand does not show severe artifacts,
but on the other hand is not able to well recover fine details. Furthermore, some of the
inner holes of the ribs start to become filled by the TV regularization, similar to the limited
view case. The hybrid `1-TV and the proposed complementary `1-TV reconstruction on
the other hand are able to incorporate both advantages from curvelet-`1 as well as TV
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regularization. The spine is represented rather well and the phantom does not suffer from
curvelet artifacts in both reconstructions.

# photons method `2-error PSNR SSIM

104

FBP 0.1048 20.8702 0.1767
`1 0.0136 29.7290 0.7308
TV 0.0117 30.3933 0.9294
`1-TV 0.0080 32.0445 0.8884
proposed 0.0101 31.0289 0.9302

Table 2: Reconstruction errors for sparse view reconstructions.

A quantitative error assessment is given in Table 2. Quantitatively, the hybrid `1-TV
method appears to perform slightly better than the other methods. The visual difference
however is quite small and both methods produce equally good reconstructions, where the
fine details in the phantom are well represented.

5 Conclusion

Similar to many other image reconstruction problems, limited-data CT suffers from in-
stability regarding noise and non-uniqueness, leading to artifacts in image reconstruction.
Common regularization approaches use a single regularizer to address both issues, which is
accurate for one of the two tasks but not well adapted to the other. To address this issue,
in this paper we propose a complementary `1-TV algorithm that advantageously combines
the denoising properties of `1-curvelet regularization and the data completion properties
of TV. The main ingredient of our procedure is data-proximity coupling instead of the
standard image-space coupling.

There are many potential future research directions extending our framework. We can in-
tegrate the data-proximity coupling into other splitting type method using proximal terms
such as the ADMM algorithm. Further, data-proximity coupling can be combined with
preconditioning or other coupling terms. For example, one might replace ‖KI(u−Ψ∗θ)‖2

by ‖Pker(KI)(u−Ψ∗θ)‖ or may use hard constraints forcing KIΨ
∗θ = KIu. Further, one

can also consider general discrepancy functionals F0 in place of the least squares functional
‖KIu − vδ‖2/2. From the analysis side, studying convergence of iterative procedures as
well as regularization properties is an important line of future research. Furthermore, a
comprehensive investigation of TI frames for iterative regularization methods would be
an interesting research focus. This includes a thorough analysis of theoretical properties
along with numerical experiments. In particular, in combination with the limited view CT
problem, the study of wedge adapted curvelets, and similar extensions to other limited
data problem, could be of high interest.
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A Wedge-adapted TI curvelet frames

Standard curvelets are not well adapted to limited angle data as some curvelets elements
might may have small visible components. Our aim is therefore to construct a curvelet
transform that is adapted to the limited view data KI where I = {(cosφ, sinφ) | φ ∈
[−Φ,Φ[} for some Φ < π/2. The basic idea is to construct a specific partition of the
frequency plane that respects the visible wedge WI = RI; see left image in Figure 2.1.
We work with TI variants as the lack of translation invariance usually results in visual
artifacts [22]. For a recent work on TI frames in the context of regularization theory
see [16].

A.1 Standard TI curvelet frame

Consider the basic radial and angular Mayer base windows W : [1/2, 2] → [0, 1] and
V : [−1, 1]→ [0, 1]

W (r) ,



cos ((π/2)ν (5− 6r)) if 2/3 ≤ r ≤ 5/6

1 if 5/6 ≤ r ≤ 4/3

cos ((π/2)ν (3r − 4)) if 4/3 ≤ r ≤ 5/3

0 otherwise ,

V (φ) ,


1 if |φ| ≤ 1/3

cos ((π/2)ν (3|φ| − 1)) , 1/3 ≤ |φ| ≤ 2/3

0 otherwise .

Here, the auxiliary function ν is chosen to satisfy ν(0) = 0, ν(1) = 1 and ν(x)+ν(1−x) = 1.
Possible choices are polynomials, for example ν(x) = 3x2 − 2x3, ν(x) = 5x3 − 5x4 + x5 or
ν(x) = x4(35 − 84x + 70x2 − 20x3). Depending on the choice of ν, the angular windows
have smaller or bigger overlap. In this paper we use ν(x) = χ(0,1)s(x−1)/(s(x−1) + s(x))

with s(x) = exp(−(1 + x)−2 − (1− x)−2).

The TI-curvelets are defined in the frequency space using products of rescaled versions of
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the radial and angular base windows

Fψj,`(ξ) = 23j/4W (2−jr)2 · V
(
2πφ/Nj − `

)2
, (A.1)

where ξ = r(cosφ, sinφ) andNj ∈ N and Λ , {(j, `) | j ∈ N ∧ ` ∈ {−Nj/2, . . . , Nj/2− 1}}.
At every at scale j the radial window W (2−jr) defines a ring that is further partitioned
into Nj angular wedges V

(
2πφ/Nj − `

)
.

Theorem A.1. (ψj,`)(j,`)∈Λ is a tight TI-frame.

Proof. From the definition of the basis windows we have
∑Nj/2−1

`=−Nj/2
V
(
2πφ/Nj − `

)2
= 1

and
∑

j∈Z|W (2−jr)|2 = 1 and therefore
∑

j,`|Fψj,`(ξ)|2 = 1. By the Plancherel identity
this is equivalent to the tight frame condition (2.1) with A = B = 1.

Curvelet frames are defined by sampling ψj,` ∗ u at points Mj,`k with a sampling matrix
Mj,` ∈ R2×2 and sampling index k ∈ Z2. Defining ψj,`,k := ψj,`(x −Mj,`k), this results
in curvelet coefficients ψj,` ∗ u(Mj,`k) =

〈
ψj,`,k, f

〉
. The family (ψj,`,k)j,`,k is a tight

frame which the associated reproducing formula u =
∑

j,`,k

〈
u,ψj,`,k

〉
ψj,`,k. Note that the

scale and wedge depending sampling destroys the translation invariance and the improved
denoising property of TI systems [8, 16].

(a) (b) (c)

Figure A.1: (a) Standard curvelet tiling. (b) Visible wedge WI indicated in blue and
non-adapted standard curvelet tiling. (c) Visible wedge WI and wedge adapted tiling.

A.2 Wedge adaption

Due to the limited angular range, the essential support of the Fourier transformed curvelets
near the boundary of the visible wedge WI is not fully contained in WI ; see Figure A.1b.
This results in an associated curvelet transform that is not well adapted to the kernel of
the limited Radon transform [12]. In order to adapt to the visible wedge we modify the
standard angular tiling and define two systems (ψvis

j,` )j,` and (ψinv
j,` )j,` that we call the visible

and invisible parts of the curvelet family. For that purpose we define the adjusted angular
windows V vis(φ) and V inv and make sure that the windows at the boundary sum up to one.
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Now the wedge-adapted TI curvelets ψvis
j,` , ψ

inv
j,` are defined as in (A.1) with V replaced by

V vis, V inv respectively. As in Theorem A.1 one shows that the family (ψvis
j,` ,ψ

inv
j,` )j,` forms

a TI frame of L2(R2). Opposed to the standard TI curvelet frame (ψj,`)j,` it has controlled
overlap at the boundary between visible and invisible frequencies. In a similar manner we
could construct wedge adapted curvelets where we use different numbers Nd

j for each of the
four basic wedges. Finally, note that each of windows has finite bandwidth. Thus similar
to the case of the standard curvelets we can use Shannon sampling theorem define a wedge
adapted curvelet frame by wedge adapted sampling. A detailed mathematical analysis of
properties of its properties is beyond the scope of this paper.
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