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Abstract

Reconstructing an image from noisy and incomplete measurements is a central

task in several image processing applications. In recent years, state-of-the-art recon-

struction methods have been developed based on recent advances in deep learning.

Especially for highly underdetermined problems, maintaining data consistency is a

key goal. This can be achieved either by iterative network architectures or by a

subsequent projection of the network reconstruction. However, for such approaches

to be used in safety-critical domains such as medical imaging, the network recon-

struction should not only provide the user with a reconstructed image, but also

with some level of confidence in the reconstruction. In order to meet these two

key requirements, this paper combines deep null-space networks with uncertainty

quantification. Evaluation of the proposed method includes image reconstruction

from undersampled Radon measurements on a toy CT dataset and accelerated MRI
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reconstruction on the fastMRI dataset. This work is the first approach to solving

inverse problems that additionally models data-dependent uncertainty by estimat-

ing an input-dependent scale map, providing a robust assessment of reconstruction

quality.

Keywords: Inverse problems, null space learning, neural network, uncertainty

quantification, accelerated MRI, limited angle

1 Introduction

Inverse problems arise in a variety of sciences and play a central role in many engineering

applications [17]. After discretization [30,34], an inverse problem can be written in the

form

y = Ax+ ε, (1.1)

where y, ε ∈ Rm, x ∈ Rn and A ∈ Rm×n. The goal is to recover the unknown signal

x from the knowledge of the noisy data y and the measurement operator A. In the

deterministic case, the data perturbation ε is assumed to satisfy ‖ε‖2 ≤ δ for some noise

level δ > 0. Inverse problems are characterized by non-uniqueness and sensitivity with

respect to data perturbations. In particular, for applications with incomplete data, the

reduced number of measurements results in a high dimensional set of potential solutions.

In order to obtain reliable reconstructions, it is therefore necessary to apply suitable

regularization techniques to the problem at hand, which address non-uniqueness and

instability [17,46].

Prime examples of ill-posed inverse problems are found in image reconstruction, such

as computed tomography (CT) and magnetic resonance imaging (MRI). Both of these

techniques often encounter problems with limited data because measurements are only

available for a limited subset. This is the case, for example, with limited-angle com-

puted tomography, where angular projections are available only within a strict subset

of the full angular range. These limitations may be due to the physical measurement

setup, for example, and naturally occur in practical applications such as digital breast

tomosynthesis, dental tomography or nondestructive testing. Due to the lack of avail-

able data, important features in the reconstructions can be obscured by artifacts caused

by hard cut-offs in the measurement domain. While the characterization of these ar-

tifacts has been thoroughly investigated [11, 19, 20], the reliable correction of missing

data is still a challenging task. Unlike computed tomography, MRI takes measurements

without exposing the patient to ionizing radiation. MRI has a variety of applications for

disease detection, general treatment, and prognosis. To save cost and time, it is com-

mon practice in MRI to reduce the acquisition time by taking an incomplete number

of measurements. Due to the resulting undersampling, the patient image is no longer
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uniquely determined by the available data. To overcome this limitation, methods of

compressed sensing (CS) and `1-regularization [10,13,15,25,41,44] have been developed

which allow accurate reconstruction from sparsely sampled data. As a result, CS and

sparsity regularization became key tools in modern MRI imaging, and is still an active

area of research.

In recent years, machine learning (ML) and neural networks (NN) have emerged as new

paradigms for solving inverse problems [2, 4, 8, 33, 39, 43, 51], in which a trainable NN

is adjusted to the available dataset. The fitting process, also referred to as network

training, can be treated both as a supervised or unsupervised learning task. Supervised

training attempts to infer a cross-domain correspondence between measurements and

ground truth data, while unsupervised training attempts to estimate an overall image

distribution from which reconstructions can be sampled [14, 24]. Note that any inverse

problem can be considered a supervised ML task, as long as a sufficient amount of data

is available and the forward operator is known explicitly. In many cases, data-driven

solvers significantly reduce reconstruction time while improving accuracy. However,

given the highly nonlinear structure of a NN, it remains unclear how accurately a network

processes the provided data. This is of particular importance for medical applications,

where reliable reconstruction is essential. In particular, for problems with limited data,

it is desirable to explicitly enforce data consistency in order to obtain reliable predictions.

The difficult-to-interpret nature of NNs combined with the lack of theoretical guarantees

still limits the practical applicability of DL-based solvers in clinical trials [16, 22]. Null

space networks that promote data-consistent reconstruction through architectural design

have been introduced and analyzed in [48, 49] and shown to result in a convergent

regularization technique.

Due to the difficult-to-interpret structure, it is often argued that NNs suffer from the

so-called black-box paradigm [12]. In general, no interpretable connection can be made

between the learned network parameters and the actual inter-domain relationship. As

a result, network behavior is almost unpredictable in the presence of out-of-distribution

(OOD) data, which are not included in the training set [1, 35]. OOD data occurs, for

example, when the scanner’s measurement quality suddenly degrades or unusual objects

(such as tumors or metal parts in medical imaging) become visible in the patient. This is

a significant limitation to the applicability of DL-based reconstruction methods in safety-

critical applications. Dealing with data-dependent uncertainty and model uncertainty,

also known as aleatoric (stochastic) and epistemic (systematic) uncertainty, respectively,

has attracted much interest in computer vision over the last six years, along with effective

tools for assessing the reliability of model predictions [1,6,21,31,35,50]. In the context of

inverse problems, uncertainty quantification has been addressed in a Bayesian framework

by sampling the posterior distribution [9,34], which captures either epistemic or aleatory

uncertainty alone. A framework for deep learning based Bayesian inversion has been
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established in [3]. Modeling uncertainty inherent in training data with respect to direct

data consistent DL-based solvers requires further investigation.

In this work, we combine uncertainty estimation with data-consistent image reconstruc-

tion. For this purpose, we assume a parameterized Laplace distribution for the residuals

between reconstructions and true images. Incorporating the uncertainty estimate into

the reconstruction loss enables the simultaneous learning of a reconstruction and the

corresponding uncertainty map. The uncertainty map can be used to infer the quality

of a reconstructed image in the absence of ground truth. Data consistency is realized

by null space networks. The approach is comprehensively tested using limited data

problems in CT and MRI as practical use cases.

2 Methods

Consider the inverse problem (1.1) where x ∈ Rn stands for the vectorized image to be

recovered and A ∈ Rm×n is the forward matrix. In this section, we introduce the scheme

of null space networks and other networks architectures that will be used as benchmarks.

We discuss what adjustments can be made in the loss function during network training

to simultaneously derive an uncertainty map while reconstructing the signal.

2.1 Image reconstruction

A reconstruction method for (1.1) is a family (Mα)α∈Λ of potentially nonlinear oper-

ators Mα : Rm → Rn : y 7→ Mα(y) mapping noisy data y ∈ Rm to the reconstruction

Mα(y) ∈ Rn. The crucial property is the convergence of the method to a right inverse

M0 : ran(A) ⊆ Rm → Rn of the forward matrix defined by the property A◦M0◦A = A;

see [27, 42]. Convergence of the reconstruction method means that for all x ∈ Rn we

have

sup
y
‖Mα̂(δ,y)(y)−M0(Ax)‖ → 0 as δ → 0 , (2.1)

where the supremum is taken over all noisy data y ∈ Rm with ‖y − Ax‖ ≤ δ and the

parameter α = α̂(δ, y) is chosen dependent on the noise level and the actual data. If

Λ = R>0 then α̂ is called parameter choice and (2.1) means that ((Mα)α>0, α̂) is a

regularization method for (1.1), see [17,46].

Classical reconstruction methods converge to the Moore-Penrose inverseM0 = A‡ of A.

If A has linearly independent columns, then A‡ := (A∗A)−1A∗ where A∗ is the conjugate

transpose. Examples of such reconstruction methods include Tikhonov regularization,

truncated SVD or Landweber regularization. Different examples are variational regular-

ization, where the right inverse M0 is defined as a quasi-solution having minimal value
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of a so-called regularization functional. More recent examples are neural network based

methods as we discuss next.

2.2 Learned reconstruction

In learned reconstruction methods, (Mθ)θ∈Θ consist of a rich family of mappings that

typically depends on a high dimensional parameter θ and includes neural networks. This

allows to extract knowledge from available training data such as databases of medical

images [23]. NNs provide state-of-the-art for a variety of image processing tasks such

as segmentation [5, 40], image synthesis [6, 14] and reconstruction [26, 52]. The steady

improvements in CNN architectures is evident in the increase in accuracy for medical

imaging applications, with the U-net [45] architecture still considered a high-performance

model due to its ability to learn reliably in a limited data environment.

In the context of image reconstruction, popular approaches use networks of the form

[29,33]

Mα,θ := Nθ ◦ Bα (2.2)

where (Bα)α>0 is a classical reconstruction method and (Uθ)θ∈Θ a neural network archi-

tecture. Here an initial reconstruction Bα(y) is found based on data y and a network

is trained to enhance this reconstruction according to the trained parameters. While

Bα serves as an approximate inversion of the forward operator, the learned part can

be seen as a correction of the artifacts such aliasing artifacts for compressed sensing in

MRI or streak artifacts in limited angle CT. Specifically, in our work we will use residual

networks of the form

R(1)
θ := Id +Uθ1 , (2.3)

R(2)
θ := (Id +Uθ2) ◦ (Id +Uθ1), (2.4)

defined by an arbitrary network architecture (Uθ)θ∈Θ, as reference method. In this study,

(Uθ)θ∈Θ is considered a basic U-net architecture unless stated otherwise.

2.3 Data consistency

Given an initial reconstruction Bα(y) and any network Uθ, the two step method (2.2)

does not promote data-consistent solutions. This means that even if A(Bα(y)) is close

to the data y this is not necessarily the case for A(Uθ ◦Bα)(y). To address this issue, one

approach is to consider variational or iterative networks [2, 22, 28, 37, 47, 53]. However,

models with an iterative architecture increase training time and controlling the data

discrepancy ‖Ax− y‖2 is still challenging.
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In order to derive a data-consistent solution from any reconstruction xM := M(y) we

therefore consider the orthogonal projection

PL(xM) = arg min
x
{‖xM − x‖ | Ax = y} (2.5)

onto the solution space L(A, y) := {x | Ax = y}. An iterative way to calculate the

orthogonal projection is given by the Landweber iteration [18,38]

∀j ∈ N : xj+1 = xj − λjA∗(Axj − y) , (2.6)

with initial value x0 = xM, where λj > 0 is the stepsize for the j-th iteration. Note that

the Landweber iterations (2.6) will be applied to the output of an already trained net-

work. This allows for a large number of iterations, which ensures a good approximation

of the projection onto L and does not prolong the training process. In the ill-posed case,

regularization can be integrated into (2.6) by early stopping, by replacing the forward

model A in with an operator having a stable pseudoinverse, or by replacing the data y

with (A ◦ Bα)(y) in a two-step method Mα,θ = Nθ ◦ Bα.

2.4 Null space networks

In order to obtain solutions that are guaranteed to be data consistent, the concept of

null space networks has been introduced in [48]. Null space networks basically denote

residual networks that only modify components in the kernel of the forward problem.

More formally, let (Uθ)θ∈Θ be any network architecture and P0 denote the orthogonal

projection onto the null space of A. We then call

Ψ
(1)
θ := (Id +P0 ◦ Uθ) , (2.7)

Ψ
(2)
θ := (Id +P0 ◦ Uθ2) ◦ (Id +P0 ◦ Uθ1), (2.8)

null space network associated to operator A with architecture (Uθ)θ∈Θ and cascade

length one and two, respectively. An illustration of a null space network (with cascade

length one) is shown in Figure 1.

We use null space networks in the context of the two-step reconstruction (2.2). Note

that any null space network is a particular form of a residual network, where the residual

correction only operates in the null space of the forward operator A and by that ensuring

data consistency A◦Ψ
(2)
θ = A◦Ψ

(1)
θ = A. One readily verifies that (Id +P0 ◦Uθ)(A‡y) =

PL(Id +Uθ)(A‡y). Therefore two-step reconstructions using either a null space network

Id +P0◦Uθ or a projected residual network PL◦(Id +Uθ) for given parameters coincide [7].

However, training a null-space network is clearly different from training the residual

network followed by a projection onto PL.
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x . . . +x = Ψθ(x)

Id

P0

Uθ

Figure 1: Null space network. Illustration of a null space network Id +P0Uθ. The last
layer projects the output of the residual part Uθ on the null space of forward operator
A.

2.5 Network training

Let (Mθ)θ∈Θ be a reconstruction method whose parameter vector θ is selected based

on training data (Axi, xi)Ni=1. Note that the subscript α for the classical reconstruc-

tion (Bα)α>0 in (2.2) is omitted here for simplicity. The common training procedure

minimizes the empirical risk

L(θ) :=
1

N

N∑
i=1

‖Mθ(Axi)− xi‖1 (2.9)

According to [6, 50], the underlying assumption can be interpreted that every com-

ponent of the residual image (εθ,p)
n
p=1

:= Mθ(Ax) − x follows a Laplace distribution

εθ,p ∼ Laplace(0, σ) with density exp (−|εθ,p|/σ) /(2σ). Maximum likelihood optimiza-

tion yields

θ̂ = arg max
θ

1

N

∏
i,p

1

2σ
exp (−|εθ,p|/σ)

= arg min
θ

1

N

∑
i,p

|(Mθ(Axi)− xi)p|/σ +
1

N
log(2σ)

= arg min
θ

1

N

∑
i

‖Mθ(Axi)− xi‖1/σ +
1

N
log(2σ) .

Hence, for pixel independent scale parameter σ, maximum likelihood optimization min-

imization recovers minimization of the empirical risk (2.9).
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2.6 Uncertainty quantification

Obviously, the assumption of a fixed scale for all residuals εθ,p := (Mθ(Ax) − x)p is

quite strong. In the context of uncertainty quantification it can be relaxed considering

input-dependent scale parameter. To do so, the scale is now taken as a whole image

σ = (σp)
n
p=1 modeled as a function of data y ∈ Rm. More precisely, the network now

simultaneously predicts a reconstruction xθ = Mx
θ (y) and its corresponding scale map

σθ = Mσ
θ (y). In our implementation, the reconstruction network Mx

θ will be taken as

a two-step architecture (2.2) combined with the null space network (2.7) or (2.8). The

uncertainty estimating network Mσ
θ has the similar architecture and nearly shares all

parameters. More precisely, we split the network architecture Uθ in the last null space

block to obtain two output-branches, where one gives the data-consistent reconstruction

and one the uncertainty map. For further implementation details we refer to the available

github repository https://github.com/anger-man/cascaded-null-space-learning.

The networks Mx
θ and Mσ

θ are trained by simultaneously minimizing the uncertainty-

aware loss

Lunc(θ) :=
1

N

∑
i,p

|(Mx
θ (Axi)− xi)p|

(Mσ
θ (Axi))p

+
1

N

∑
i,p

log (2 · (Mσ
θ (Axi))p) . (2.10)

By taking (Mσ
θ (Axi))p = σ as a constant, (2.10) would reduce to (2.9). However

simultaneous minimization allows both reconstructing the image and the associated

uncertainty. For regions with large absolute residuals we obtain large values in the

scale map corresponding to high uncertainty. At the same time, the logarithmic term

penalizes the model to avoid predicting high uncertainty for all pixel regions.

The benefits of uncertainty-aware models are versatile. The training process is more

robust against OOD data in the training set, insufficient measurement quality is estab-

lished during prediction, and unwanted objects or artifacts that may effect the recon-

struction are detected and localized in the absence of ground truth data.

2.7 Implemented methods

In our simulations we compare a total of eight different learned reconstruction methods

against the ground truth and the Moore-Penrose inverse:

• x0: Ground truth used for error evaluation.

• x‡ = A‡(y): Pseudoinverse reconstruction.

• xR,1 = R(1)
θ (x‡): Two-step reconstruction (2.2) + (2.3).

• xR,2 = R(2)
θ (x‡): Two-step reconstruction (2.2) + (2.4).
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• PL (xR,1): Projection of xR,1 onto L(A, y) (2.5).

• PL (xR,2): Projection of xR,2 onto L(A, y) (2.5).

• xΨ,1 = Ψ
(1)
θ (x‡): Null space reconstruction (2.2) + (2.7).

• xΨ,2 = Ψ
(2)
θ (x‡): Null space reconstruction (2.2) + (2.8).

• xunc
Ψ,1: Uncertainty-aware reconstruction using (2.7).

• xunc
Ψ,2: Uncertainty-aware reconstruction using (2.8).

The underlying networks R(1)
θ , R(2)

θ , Ψ
(1)
θ , Ψ

(2)
θ are trained using the MAE loss func-

tion (2.9), except for the uncertainty-aware networks xunc
Ψ,1, xunc

Ψ,2, which are trained by

minimizing the uncertainty aware loss (2.10). For the reconstructions PL (xR,1) and

PL (xR,2) the projection onto the space of all solutions of Ax = y is calculated using

15 iterations of the Landweber iteration. Reconstruction quality is assessed by peak-

signal-to-noise ratio (PSNR) and the structural-similarity index (SSIM).

3 Results

In this section we present the numerical results for the discussed reconstruction meth-

ods. To this end, we will consider two examples of inverse problem of the form (1.1):

(A) Reconstruction from subsampled Fourier measurements on fastMRI dataset [36,54];

(B) reconstruction of limited angle Radon measurements on a self-acquired toy dataset.

Note that it is not the aim of this study to propose a new state-of-the-art model to

solve specific inverse problems. With these experiments, we show that simple adjust-

ments to the network architecture and slight modifications to the loss function result in

a significant increase in reconstruction quality and the benefit of pixel-based confidence

prediction for each reconstruction. Note also that these modifications are implemented

and evaluated considering the basic U-network architecture widely used in image pro-

cessing tasks. However, our rationale can be applied to any network architecture.

3.1 Study A: 4-fold accelerated MRI

The first case study is devoted to a real-world scenario of compressed sensing in MRI. To

this end, we use the public fastMRI dataset, which consists of 1594 multi-coil knee MRI

scans (https://fastmri.med.nyu.edu/). The experiments are based on the subset of

571 randomly selected diagnostic cases without fat-suppression. For a practice-oriented

evaluation on unseen individuals, 5 % of the scans have been randomly selected to rep-

resent the test cases. This yields nearly 20000 samples for training and 1000 samples for
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testing. For the training set (xi)
N
i=1, we draw magnitude images xi ∈ R320×320 obtained

by fully sampled multi-coil data. Similar to [22], our model corresponds to the simpler

modality of single-coil MRI. The fastMRI challenge also provides emulated single-coil

data, that is drawn in a retrospective way from the multi-coil measurements. However,

we decided to sample from the multi-coil reconstructions in the favor of higher image

quality and noise-reduced measurements.

(a) x0 (b) x‡ (c) PL(xR,1)

(d) PL (xR,2) (e) xΨ,1 (f) xΨ,2

Figure 2: Accelerated MRI reconstruction results. Ground truth image x0 (central
slice of a randomly selected volume from the test set), pseudoinverse reconstruction x‡,
projected two-step reconstructions PL (xR,1), PL (xR,2) and null-space reconstructions
xΨ,1, xΨ,2.

Implementation details

Here, the forward operator takes the form A = S ◦F , where F : C320×320 → C320×320 is

the two-dimensional discrete Fourier transform and S : C320×320 → C320×320 is a subsam-

pling operator, implemented via a binary mask omitting Fourier measurement lines in

the phase-encoding direction. The amount of dropped k-space lines depends on the ac-

celeration factor and in our case is set to 75 %, following the subsampling scheme in [32].

The Fourier transform is a unitary operator. Therefore, the Moore-Penrose inverse of A
is given by the conjugate transpose of the forward operator, A‡ = A∗ = F∗◦S. Note that
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we actually have complex-valued data. Thus before feeding the instances to a neural net-

work function, we concatenate real and imaginary part such that they are treated as sep-

arat channels, x‡ ∈ R2(320×320). The data processing pipeline and the models are imple-

mented in Python using PyTorch library (https://pytorch.org/) for GPU-accelerated

computation. For any details on training and hyperparameter selection, we refer to our

github repository https://github.com/anger-man/cascaded-null-space-learning.

Table 1: Accelerated MRI. Quantitative evaluation on nearly 1000 test slices. The
reported metrics are PSNR and 100× SSIM (higher is better).

benchmark

xR,1 PL(xR,1) xR,2 PL(xR,2)

PSNR 31.29 32.12 31.5 32.35

100× SSIM 85.13 86.17 85.44 86.5

null space networks

xΨ,1 xunc
Ψ,1 xΨ,2 xunc

Ψ,2

PSNR 32.25 32.28 33.39 33.44

100× SSIM 86.31 86.4 88.2 88.29

Reconstruction results

The quantitative results shown in Table 1 demonstrate the superior accuracy of DL based

solvers. The benchmark xR,1 already achieves a PSNR of 31.29 and a SSIM of 0.851 for

the set of nearly 1k unseen test slices. The result is quite impressive when we consider

an acceleration rate of 4 in the compressed sensing scenario, i.e., only 25 % of the lines

in phase encoding directions have been kept. The projection of the previously trained

basic method onto the solution space L leads to approximately data-consistent solutions.

Its impact is confirmed by a slight increase for both test metrics. The extension of xΨ,1

to a cascaded scheme xΨ,2 has a positive impact on the entire optimization procedure

as indicated by a significant increase to 33.39 and 0.882 for PSNR and SSIM metric,

respectively.

In Figure 2 we observe the prominent aliasing artifacts in the pseudoinverse reconstruc-

tion x‡ = A‡(y). These artifacts are obviously removed in all learned reconstructions.

The examination of the magnified areas shows that the contrast in the high-frequency

details is higher for the null space networks than for the residual networks. Using the

null space approach for joint reconstruction and uncertainty prediction does not sig-

nificantly change the reconstruction quality. Therefore, it is possible to incorporate

uncertainty awareness into the cascade of null space blocks without affecting the re-

11

https://pytorch.org/
https://github.com/anger-man/cascaded-null-space-learning


covery performance at all. Benefits of an uncertainty estimate are investigated in the

following.

Figure 3: Position-related uncertainty in accelerated MRI. The presence of an
atypical irregularity in the knee causes artifacts on the entire horizontal trace of the
pseudo-inverse solution x‡ (first column) and leads to an unpredictable behavior of the
reconstruction xunc

Ψ,2 at the corresponding locations (second column). In the simulta-
neously predicted uncertainty maps (third column), these irregular objects are clearly
indicated by higher uncertainty values.

Uncertainty quantification

The uncertainty reconstruction provides a pixel-wise confidence value additionally to

the reconstruction, which can be used to detect suspicious objects that are not covered

by the training distribution. Furthermore, uncertainty evaluation based on these region-

based confidence maps can serve as a quality assessment of the overall prediction. In

the following, both advantageous properties are investigated numerically.

Unknown local properties of a patient’s knee under investigation can lead to unpre-

dictable behavior of the reconstruction method in that region. Unknown properties

here refer to the occurrence of non-ubiquitous objects such as cancer or bone fractures.

We assume here that the presence of these objects is true, i.e., the irregularity is not

caused by the measurement process itself. For the simulations, we select two magnitude

images from the test cases and add salt-and-pepper noise to small subregions. We then
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apply the forward operator to obtain measurement data ycor describing the actual mea-

sured data if such an irregularity would be present in the examined knee. The results of

applying the Moore-Penrose inverse A‡ and the uncertainty aware null space approach

to ycor are shown in Figure 3. As can be seen, the predicted uncertainty maps show large

values at the corresponding location, visualized by a brighter color intensity. We claim

that this characteristic of the uncertainty-aware null space networks clearly identifies

unreliable regions in the reconstruction caused by the presence of abnormal features in

an examined knee.

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Mean Uncertainty

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ea

n
Ab

s
Re

si
du

al

noise-reduced
noise || ||2 5 × 103
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Figure 4: Prediction error versus mean uncertainty for accelerated MRI. A
clear correlation is found between the prediction error and the average value of the mod-
eled uncertainty maps. Perturbations of the measurement data simultaneously increases
prediction error and mean uncertainty score.

The experiments in this study are based on the root-sum-of-squares reconstruction of

multi-coil measurements. As a consequence, the slices in the training set (xi)
N
i=1 denote

noise-reduced samples. We select 100 test slices and perturb the measured data by

additive noise, i.e. we generate measurements yi = Axi + ε for i = 1, . . . , N , where

‖ε‖2 ≤ δ for δ ∈ {0, 5× 103, 9× 103}. For each test slice, we define the average pixel

value of the uncertainty map as the image-based uncertainty score and plot it against

the corresponding mean absolute residual between reconstruction and noise-free ground

truth in Figure 4. In the noise-reduced case ε = 0, we infer a fairly clear positive

correlation between the mean uncertainty and the mean absolute residuals. For ‖ε‖2 ≤
5× 103 the prediction error as well as the uncertainty values increase. The effect is

amplified by increasing the scale of the additive Gaussian noise to ‖ε‖2 ≤ 9× 103. The

perturbation of the measured data during testing leads to OOD data, which is clearly

indicated by an increase in uncertainty scores. We conclude that the proposed method
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can be used to assess reconstruction quality (correlation with MAE) and to detect out-

of-distribution data (larger scale for noise-perturbed data).

(a) x0 (b) x‡ (c) PL(xR,1)

(d) PL(xR,2) (e) xΨ,1 (f) xΨ,2

Figure 5: Limited view CT reconstruction results. Ground truth image x0 (ran-
domly selected), pseudoinverse reconstruction x‡, projected two-step reconstructions
PL (xR,1), PL (xR,2) and null-space reconstructions xΨ,1, xΨ,2.

3.2 Study B: limited angle CT

In our second study, we address limited angle CT, where the angular range of the

available data is limited to a strict subset. The experiments are based on artificial

phantoms. The structure of the phantoms (xi)
N
i=1 of size 192 × 192 pixels is based on

the Shepp-Logan phantom. Each sample consists of a randomly rotated phantom disc

that contains smaller ellipses and rectangles drawn in a random fashion. Furthermore,

some instances also contain high-frequency details (cf. Figure 5). All in all we generated

2000 toy samples for training and another 200 slices for testing.

Implementation details

The forward operator takes the form A = S ◦ R, where R is the discretized Radon

transform with full angular range [0◦, 180◦). Here, S ∈ {0, 1}m×m is a binary mask for
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removing angular projections such that we obtain a total of 60 angular projections with

angular directions in [0◦, 120◦]. We again make use of the Moore-Penrose inverse as

initial reconstruction method. In this case, the inverse is approximated by the singular

value decomposition (SVD) [18]. Python code for the discretization of A and a stable

inexact pseudoinverse using truncated SVD is provided in our github repository https:

//github.com/anger-man/cascaded-null-space-learning.

Table 2: Limited view CT. Quantitative evaluation on 200 test phantoms. The
reported metrics are PSNR and SSIM×100 (higher is better).

benchmark

xR,1 PL(xR,1) xR,2 PL(xR,2)

PSNR 34.88 34.9 35.97 35.98

100× SSIM 98.38 98.36 98.71 98.7

null space networks

xΨ,1 xunc
Ψ,1 xΨ,2 xunc

Ψ,2

PSNR 35.87 35.8 37.87 37.14

100× SSIM 97.47 97.59 98.78 98.68

Reconstruction results

Quantitative results are summarized in Table 2. The baseline method xR,1 yields a

PSNR of 34.88 and SSIM of 0.984. Both metrics increase to 35.97 and 0.987 if using

the cascaded U-net architecture xR,2. Interestingly, subsequent projection onto L for

xR,1 and xR,2 does not enhance results at all. This is mainly due to the small stepsize

of λ = 0.003 for the Landweber iterations. However, increasing the stepsize leads to

instabilities and thus insufficient solutions. Again, leveraging the methods xR,1 and

xR,2 to the null space schemes xΨ,1 and xΨ,2 significantly increases the PSNR. Best

results have been achieved by the cascaded null space network xΨ,2, which yields a

PSNR and SSIM of 37.87 and 0.988, respectively. Better reconstruction performance

is only observed in the PSNR while the SSIM does not seem to improve. However, for

the toy dataset, the SSIM can be observed to already be rather small. Analogously to

study A, incorporating the uncertainty-aware risk functional in (2.10) does not show

any impact on the recovery performance of the null space networks.

In Figure 5(b) we see the characteristic limited angle streak artifacts by in the pseu-

doinverse reconstruction. Again, all learned reconstruction strategies are able to remove

these artifacts completely. The single U-net architectures shown in Figure 5 (c) and (e)

have problems when reconstructing high-frequency details. This can be clearly observed
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when we look at the enlarged patches in the red boxes. Qualitative reconstruction of

these patches is more satisfying for the cascaded architectures in Figure 5 (d) and (f),

while the latter yields the best visual reconstruction compared to the ground truth.

Uncertainty quantification

Figure 6: Position-related uncertainty in limited view CT. The presence of an
unknown material in the synthetic phantomcauses artifacts classical reconstruction x‡

(first column). While the reconstruction method Ψ
(2)
θ (x‡) reliably reconstructs the phan-

tom (second column) the predicted uncertainty maps (third column) clearly identifies
this irregular object and unreliable regions in the prediction by a higher uncertainty
values.

Similar to Study A, the benefits of simultaneously modeling the uncertainty maps for

the toy phantom dataset are qualitatively explored. In this case, we simulate OOD data

by adding a square object to the phantom. This may be interpreted as a very simple

simulation of for example metal being present inside the human body, which can be

the case due to dentures or artificial joints. Metal artifacts in CT can be particularly

problematic in the areas surrounding the metal objects, where the image quality can be

severely degraded. Again, behavior of the Moore-Penrose inverse and the cascaded null

space network is investigated on two test phantoms shown in Figure 6. The inserted

square perturbation yields strong streak artifacts for the model-based reconstruction x‡

(first row) and is visible in the DL-based reconstruction of Ψ
(2)
θ (x‡) (second row). The

position of the square is clearly marked with high intensity in the corresponding uncer-
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tainty maps (third row). Also in the setting of limited angle CT the uncertainty-aware

null space network clearly identifies unreliable regions during reconstruction caused by

presence of unknown metal artifacts.

4 Conclusion

In this paper we presented a learning-based method for simultaneous image reconstruc-

tion and uncertainty estimation. The proposed uncertainty estimation procedure in-

troduces a second output branch into the reconstruction network, which can be seen as

scale map for the Laplace distributed residuals between reconstructed image and ground

truth. This leads to small uncertainty values for regions that are easy to learn based

on the training data. On the other hand, rapid changes in pixel intensities and out of

distribution data create new regions of high frequency detail, a property for which the

second output branch has already been developed to predict high uncertainty. Our ex-

periments demonstrate that simple modifications to the network architecture and slight

modifications to the risk functional yield uncertainty information and increased recon-

struction quality. The approach is implemented and evaluated based on the standard

U-net architecture commonly used in image processing tasks. However, our framework

can also be combined with more complex architectures or integrated into state-of-the-art

image reconstruction methods.
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[4] F. Altekrüger, A. Denker, P. Hagemann, J. Hertrich, P. Maass, and G. Steidl.

Patchnr: Learning from small data by patch normalizing flow regularization. CoRR,

abs/2205.12021, 2022.

[5] C. Angermann and M. Haltmeier. Deep structure learning using feature extraction

in trained projection space. Computers & electrical engineering, 92:107097, 2021.

[6] C. Angermann, M. Haltmeier, and A. R. Siyal. Unsupervised joint image transfer

and uncertainty quantification using patch invariant networks. In Computer vision–

ECCV 2022 workshops: Tel Aviv, Israel, October 23–27, 2022, proceedings, part

VIII, pages 61–77. Springer, 2023.

[7] S. Antholzer, J. Schwab, and M. Haltmeier. Deep learning versus `1-minimization

for compressed sensing photoacoustic tomography. In 2018 IEEE International

Ultrasonics Symposium (IUS), pages 206–212. IEEE, 2018.
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