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Abstract

Tikhonov regularization involves minimizing the combination of a data discrep-

ancy term and a regularizing term, and is the standard approach for solving inverse

problems. The use of non-convex regularizers, such as those defined by trained

neural networks, has been shown to be effective in many cases. However, find-

ing global minimizers in non-convex situations can be challenging, making existing

theory inapplicable. A recent development in regularization theory relaxes this re-

quirement by providing convergence based on critical points instead of strict mini-

mizers. This paper investigates convergence rates for the regularization with critical

points using Bregman distances. Furthermore, we show that when implementing

near-minimization through an iterative algorithm, a finite number of iterations is

sufficient without affecting convergence rates.

Keywords: Inverse problems, regularization, critical points, convergence rates,

variational methods

1 Introduction

Many practical applications such as in medical imaging or remote sensing, can be repre-

sented by an equation of the form Ax+z = yδ, where A : X → Y describes the system, z

is some noise with ‖z‖ ≤ δ, and x is the signal of interest to be recovered. However, such
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problems are often ill-posed, making direct inversion impossible or unstable. To con-

struct stable solutions, variational regularization methods are often used which minimize

the combination of a data-fidelity term and a regularization term. Such methods are

well-established and provide stable recovery under reasonable assumptions [5,8,14,15,17].

In addition, convergence rates can be derived, giving quantitative estimates of how close

the regularized solution is to the true solution [1, 4, 7, 11, 16].

However, the theory of variational regularization assumes knowledge of exact minimizers,

which can be difficult to obtain in the case of non-convex regularizers. In contrast,

the critical point regularization introduced in [13] discards the requirements of having

access to global minimizers. Instead, it uses critical points relative to a certain tolerance

function φ : X → [0,∞). It has been shown that this relaxed approach leads to a stable

and convergent regularization method.

In this paper, we build upon [13] and derive convergence rates for critical point regular-

ization using the absolute symmetric Bregman distance. With the additional assumption

of having access to near-minimizers, we also establish convergence rates in the Bregman

distance. Furthermore, we demonstrate that having access to near-minimizers is often a

reasonable assumption, for instance, when an iterative minimization algorithm is avail-

able. This gives a new perspective on variational and, particularly, convex regularization

methods and shows that inexactness in the minimization process for the construction of

critical points does not reduce the convergence rate.

Outline: The rest of the paper is organized as follows. Section 2 gives background and

an overview of the most relevant results of [13]. Section 3 presents convergence rates

in the absolute symmetric Bregman-distance for exact and inexact critical points. In

Section 4 we consider critical points that are close to global minimizers of the Tikhonov

functional and derive additional convergence rates. Section 5 presents a simple numerical

example showing that inexact minimization may lead to significantly slower rates. The

paper finishes with a short conclusion presented in Section 6.

2 Background

Throughout this paper, X and Y denote Hilbert spaces and A : X → Y is a linear and

bounded operator. We consider the Tikhonov functional

Hα,yδ =
1

2
‖A(·)− yδ‖2 + αR , (2.1)

where ‖Ax− y‖2/2 is the data-fidelity term and R a regularization term.
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2.1 Notation

The following concepts are introduced in [13].

Definiton 2.1 (Relative sub-differentiability). Let R : X → R and φ : X → [0,∞). Then

ξ ∈ X is called φ-relative subgradient of R at x0 ∈ X if

∀x ∈ X : R(x0) + 〈ξ, x− x0〉 ≤ R(x) + φ(x) . (2.2)

The set of all φ-relative subgradients at x0 is denoted by ∂φR(x0) and called φ-relative

sub-differential of R. Functional R is called φ-relative subdifferentiable or relative sub-

differentiable with bound φ if ∂φR(x) 6= ∅ for all x ∈ X.

Definiton 2.2 (Relative critical points). Let R : X → R and φ : X → [0,∞). We call

x0 ∈ X a φ-critical point of R or relative critical bound with bound φ if 0 ∈ ∂φF(x0).

From the definition it follows that x0 ∈ X is a φ-critical point if and only if R(x0) ≤
R(x) + φ(x) for all x ∈ X.

Definiton 2.3 (Gradient selection). Let R : X → R be a relatively subdifferentiable

functional. Then any function G : X → X with G(x) ∈ ∂φR(x) for all x ∈ X is called

gradient selection for R.

Important examples of gradient selections include G(x) ∈ ∂0R(x) if R is convex and

subdifferentiable and G(x) = R′(x) if R is differentiable and φ is such that R′(x) ∈
∂φR(x).

Definiton 2.4 (Bregman-distance). The Bregman-distance with gradient selection G

of a relatively subdifferentiable R is defined by

DG : X× X → R :

(x, x0) 7→ R(x)−R(x0)− 〈G(x0), x− x0〉 .

If the Bregman distance is used with fixed x0 and ξ = G(x0) we write Dξ(x, x0) =

DG(x, x0) as it only depends on the gradient selection at x0. This is different for the

symmetric Bregman distance defined next, that depends on the gradient selection at

both input elements.

Definiton 2.5 (Symmetric Bregman-distance). The symmetric Bregman-distance with

gradient selection G of a relatively subdifferentiable R is defined by

Dsym
G : X× X → R :

(x, x0) 7→ 〈G(x)−G(x0), x− x0〉 .

3



The symmetric Bregman-distance is actually symmetric and satisfies Dsym
G (x, x0) =

DG(x, x0) + DG(x0, x). If R is convex, then DG is non-negative with DG(x, x0) ≤
Dsym

G (x, x0) which in particular shows that the symmetric Bregman-distance in this case

is an upper bound for the Bregman-distance. In the non-convex case, both Bregman

distances may be negative and we thus derive convergence rates for the absolute values

of it.

Throughout we write α(δ) ≍ δ if C1δ ≤ α(δ) ≤ C2δ as δ → 0 for constants C1, C2 > 0.

2.2 Critical point regularization

The rates analysis use the following assumptions on the regularization functional R.

Condition A (Critical point regularization).

(A1) R is weakly lower semicontinuous

(A2) R is φ-relatively subdifferentiable

(A3) ∀α∀yδ : 1
2‖A(·) − yδ‖2 + αR is coercive.

Critical point regularization then consists in finding (αφ)-critical points of the Tikhonov

functional Hα,yδ . In particular, any xδα is such a regularized solution provided that

0 ∈ A
∗(Axδα − yδ) + α∂φR(xδα) .

The analysis of [13] implies the following.

Theorem 2.6 (Critical point regularization). Let y ∈ ran(A), yδ ∈ Y, α > 0 and let

Condition A be satisfied. Then the following hold

(1) Existence: Hα,yδ has a φ-critical point.

(2) Stability: Let (yk)k ∈ Y
N converge to yδ and let (xk)k ∈ X

N with 0 ∈ A
∗(Axk −

yk) + α∂φR(xk).

• (xk)k has a weakly convergent subsequence

• Weak cluster points of (xk)k are (αφ)-critical points of Hα,yδ .

(3) Convergence: Let (yk)k ∈ Y N satisfy ‖y − yk‖ ≤ δk, let δk, αk, δ
2
k/αk → 0 and let

(xk)k ∈ X
N with 0 ∈ A

∗(Axk − yk) + αk∂φR(xk).

• (xk)k has a weakly convergent subsequence and any weak cluster point x‡ of

(xk)k is a solution of Ax = y with R(x‡) ≤ inf{R(x) + φ(x) | Ax = y}.
• If the solution x‡ of Ax = y is unique, then (xk)k ⇀ x‡ as k → ∞.

• Any cluster point ξ of ξk ∈ ∂φR(xk) satisfies ξ ∈ ker(A) ∩ ∂φR(x‡).
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2.3 Example

Before we begin our discussion of convergence rates we start with a simple example which

shows that without any further assumptions on the αφ-critical points, convergence in

the value of R and in the Bregman-distance does not hold.

Example 2.7 (Non-convergence in R). Define the operator A : ℓ2(N) → ℓ2(N) by

Ax = (x1, 0, x3/3, . . . ) and the regularizer R = ‖·‖22/2. Let y ∈ ran(AA
∗), ‖yk−y‖ ≤ δk

where δk → 0 and supp(yk) ⊆ 2N− 1 and xk = argminHk with Hk := Hαk,yk , αk ≍ δk.

According to standard Tikhonov regularization, (xk)k → x‡ = (y1, 0, 3y3, . . . ) at the

convergence rate ‖xk − x‡‖2 = O(δk). We consider two cases.

1. For given ε > 0 denote zk = xk+εe2k where e2k ∈ ℓ2(N) has entries 0 except for the

(2k)-th entry where the value is 1. Then Hk(xε,k) ≤ Hk(x)+αkε
2/2 and thus xε,k

is an (αkε
2/2)-critical point of Hk. Further, zk ⇀ x‡ and R(zk) → R(x‡) + ε2/2

as k → ∞.

2. For εk → 0 consider zk = xk + εke2k. Then zk ⇀ x‡ and |R(zk)−R(x‡)| ≤ ε2k/2.

In particular, R(zk) → R(x‡) at a rate determined by εk.

These considerations show that without further assumptions on the critical points, the

Bregman distance might not converge to zero and even if it converges, the convergence

can be arbitrarily slow. To address this issue, we instead either work with the symmetric

Bregman-distance (see Section 3) or use a near-minimization concept (see Section 4).

3 Rates in the symmetric Bregman-distance

Throughout this section, let R : X → [0,∞] be a possibly non-convex regularization

functional that satisfies Condition A with tolerance function φ. Further let G be a

gradient selection for R and let the αφ-critical points xδα of Hα,yδ be chosen such that

A
∗(Axδα − y) + αG(xδα) = 0.

3.1 Error estimates

Convergence rates will be derived under the following assumption on x‡.

Condition B (Convergence rates).

(B1) G(x‡) ∈ ran(A∗)

(B2) ∃c∀z ∈ M(x‡) : 〈G(z), x‡ − z〉 ≤ c‖A(z − x‡)‖.
Here and below M(x‡) = {x ∈ X : G(x) ∈ ran(A∗) ∧ |R(x) −R(x‡)| < φ(x‡)}.
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We have the following result.

Theorem 3.1 (Convergence rates). Let Condition B hold, let y ∈ ran(A), (yk)k ∈ Y
N

satisfy ‖yk − y‖ ≤ δk where δk → 0 and let αk ≍ δk. Let xk satisfy A
∗(Axk − yk) +

αkG(xk) = 0 and let (xk)k weakly converge to x‡. Then the following hold

(1) ‖Axk − yk‖ = O(δk)

(2) |Dsym
G (xk, x

‡)| = O(δk).

Proof. By definition of the symmetric Bregman distance we have

|Dsym
G (xk, x

‡)| = 〈G(xk)−G(x‡), xk − x‡〉+ ηk〈G(x‡)−G(xk), xk − x‡〉

for ηk ∈ {0, 2} depending on the sign of 〈G(xk) − G(x‡), xk − x‡〉. By construction of

the critical points and following the proof in [13] we have xk ∈ M(x‡) for k sufficiently

large. By Condition B,

• 〈−G(x‡), xk − x‡〉 ≤ C1 (δk + ‖Axk − yk‖)

• 〈G(x‡)−G(xk), xk − x‡〉 ≤ C2 (δk + ‖Axk − yk‖)

for some constants C1, C2 > 0. Using the definition of xk, the convexity of the data-fit

term, equality Ax‡ = y and the estimate ‖y − yk‖ ≤ δk we get

1

2
‖Axk − yk‖2 + αk〈G(xk), xk − x‡〉

=
1

2
‖Axk − yk‖2 + 〈A∗(Axk − yk), x

‡ − xk〉

≤ 1

2
‖Ax‡ − yk‖2 ≤ δ2k/2 .

The above estimates together with Young’s product-inequality gives

1

2
‖Axk − yk‖2 + αk|Dsym

G (xk, x
‡)| ≤ 1

2
δ2k +C3αkδk + C4α

2
k +

1

4
‖Axk − yk‖2 ,

for some constants C3, C4 > 0. With the parameter choice αk ≍ δk we obtain (1),

(2).

Corollary 3.2 (Convex case). If R is convex and φ = 0, then (B1) implies (1), (2) of

Theorem 3.1.

Proof. Since R is convex and G(x) is a regular subgradient, 〈G(z)−G(x‡), z − x‡〉 ≥ 0

for any z ∈ X. By (B1) we get 〈G(z), x‡ − z〉 ≤ 〈G(x‡), x‡− z〉 ≤ ‖w‖‖Ax‡ −Az‖. This

implies (B2) and thus (1), (2) of Theorem 3.1.
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Corollary 3.2 with R(x) = ‖Kx‖22 for a bounded linear K recovers the known rate

‖K(xk − x‡)‖2 = O(δk). Next we discuss regularizers which locally behave convexly

around the exact solution.

Remark 3.3 (Locally convex case). Let y ∈ ran(A) and let x‡ be a solution to Ax = y

which satisfies (B1). Assume further that R is locally convex at x‡ and that R(x‡) +

〈G(x‡), x− x‡〉 ≤ R(x) for some r > 0 and all x ∈ Br(x
‡).

(1) If x ∈ Br(x
‡) satsfies Ax = y, then (B1) and x− x‡ ∈ ker(A) imply

R(x‡) = R(x‡) + 〈G(x‡), x− x‡〉 ≤ R(x) .

Thus x‡ is a local minimizer of R on the set of all solutions of Ax = y.

(2) Assume further that x‡ is the weak limit of a sequence (xk)k which was constructed

according to Theorem 3.1. Then (xk)k converges to a locally R-minimizing solution

of Ax = y with rates given by Theorem 3.1. This recovers a local version of the

well known convergence rates for R-minimizing solutions [16].

(3) Finally, let R be locally strongly convex around x‡ and 〈G(z) −G(x‡), z − x‡〉 ≥
µ‖z−x‡‖2 for all z ∈ Br(x

‡) and some r, µ > 0. By Theorem 3.1 we get ‖xk−x‡‖ =

O(
√
δk), if xk ∈ Br(x

‡).

Corollary 3.4 (Finite dimensional case). Let X be a finite dimensional, R coercive

and G bounded on bounded sets. Then (B2) is satisfied and the convergence rates of

Theorem 3.1 hold under (B1).

Proof. Since R is coercive the set M(x‡) is bounded. From G = A
∗(A∗)‡G where (A∗)‡

denotes the pseudo-inverse of A∗ we get

|〈G(z), x‡ − z〉| = |〈A∗(A∗)‡G(z), x‡ − z〉| ≤ ‖Ax‡ −Az‖ sup
z∈M

‖(A∗)‡G(z)‖ .

Since (A∗)‡ is continuous and G is bounded on bounded sets, supz∈M‖(A∗)‡G(z)‖ < ∞
which shows (B2).

Corollary 3.4 shows that (B2) is always satisfied in the case where X is finite dimensional.

Moreover, this corollary can readily be extended to infinite dimensional X if A has closed

range.

Remark 3.5 (Smooth regularizer). Consider assumption (B2) for a smooth regularizer

with G(x) = R′(x). Assume that ker(A) is non-empty and choose z ∈ ker(A). For t > 0

and z± = x‡ ± tz we have 〈G(z±), x
‡ − z1〉 = −t〈R′(x‡ ± tz),±z〉 ≤ 0. Adding these

inequalities and dividing by −t2 we find that

1

t
〈R′(x‡ + tz)−R′(x‡ − tz), z〉 ≥ 0.
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Taking t → 0 yields D2R(x‡)(x0, x0) ≥ 0 which shows that R satisfies the necessary

second order convexity around x‡ in any direction z ∈ ker(A). Conversely, if z ∈ X is

such that 〈R′(z), x‡ − z〉 > 0, then z − x‡ is a first order descent direction of R and

walking away from x‡ in the direction z − x‡ has to result in an appropriate increase in

data-error.

3.2 Converse result

Next we show that the source condition is not only sufficient, but essentially also neces-

sary for the convergence rates to hold.

Proposition 3.6 (Necessity of source condition). Let y, (yk)k, (xk)k, (δk)k, (αk)k, x
‡ be

as in Theorem 3.1 and assume that G is weakly continuous. Then ‖Axk − yk‖ = O(δk)

implies the range condition (B1) and the convergence rate Dsym
G (xk, x

‡) = O(δk).

Proof. From ‖Axk−yk‖ = O(δk) it follows that wk = (Axk−yk)/αk is bounded. Hence

it has subsequence, again denoted by (wk)k, which weakly converges to w. Because A

is continuous, G(xk) = −A
∗wk ⇀ −A

∗w. Due to the weak continuity of G and the

uniqueness of the limit it follows that G(x‡) = −A
∗w. Moreover,

|Dsym
G (xk, x

‡)| = |〈A∗(wk − w), xk − x‡〉| ≤ C (δk + ‖Axk − yk‖)

implies the desired rate.

Proposition 3.6 suggests the Morozovs discrepancy principle (see [2, 3] and references

therein) for selecting the regularization parameter, since in this case the condition

‖Axk − yk‖ = O(δk) is satisfied by definition. While this is an interesting line of future

research such an analysis is beyond the scope of this paper.

3.3 Inexact critical points

In the following we consider inexact critical points where ‖A∗(Axk − yk) +αkG(xk)‖ is

sufficiently small. This case has also been analyzed in [13] where it has been shown to

yield to a convergent regularization. The following theorem provides rates in this case.

Theorem 3.7 (Inexact rates). Let Condition B hold, y ∈ ran(A), (yk)k ∈ Y
N, ‖yk −

y‖ ≤ δk → 0 and αk ≍ δk. Assume that (xk)k is such that for zk = A
∗(Axk − yk) +

αkG(xk) we have ‖zk‖ ≤ αkηk for some ηk → 0 and 〈zk, xk〉 ≤ 0. Denote by x‡ the weak

limit of (xk)k. Then the following hold

(1) ‖Axk − yk‖ = O
(
√

δ2k + δkηk

)

8



(2) |Dsym
G (xk, x

‡)| = O(δk + ηk).

Proof. The proof is similar to the one of Theorem 3.1 and we only show main changes.

By construction

αk〈G(xk), xk − x‡〉
= 〈zk, xk − x‡〉+ 〈A∗(Axk − yk), x

‡ − xk〉
≤ ‖zk‖‖x‡‖+ 〈A∗(Axk − yk), x

‡ − xk〉
≤ Cδkηk + 〈A∗(Axk − yk), x

‡ − xk〉 .

Hence,
1

2
‖Axk − yk‖2 + αk〈G(xk), xk − x‡〉 ≤ δ2k

2
+ Cδkηk .

Following the proof of Theorem 3.1 yields (1), (2).

Theorem 3.7 provides convergence rates dependent on ηk as a measure for the exact-

ness of the critical points. To recover the rates of Theorem 3.1 the choice ηk = δk is

appropriate. While Theorem 3.7 requires ηk → 0 the same proof can be given for a

bounded sequence (ηk)k. In this case the absolute symmetric Bregman-distance might

not converge and the convergence in the discrepancy is only O
(√

δk
)

.

Remark 3.8 (Iterative minimization). Suppose that the critical points are approxi-

mated using an iterative descent algorithm and write zk = A
∗(Axk − yk) + αkG(xk)

where xk is the approximate critical point. In this context the conditions of Theorem 3.7

on zk are quite natural. First, 〈zk, xk〉 < 0 is a descent condition for a descent direc-

tion. Second, the condition ‖zk‖ ≤ αkηk is simply a common stopping criterion for the

iteration dictated by the noise-level and the desired accuracy.

Note that the necessity of the source condition for inexact critical points can be derived

as in Proposition 3.6. In Section 5 we will provide an example showing that the inexact

choice can indeed result in a significantly slower convergence rate.

4 Rates for near minimizers

In the previous section we have derived convergence rates for exact and inexact critical

points which can be very different from global minimizers. In this section we derive con-

vergence rates for near-minimizers in the absolute Bregman-distance extending results

of [10].

Throughout this section let y ∈ ran(A) and (yk)k ∈ Y
N be a sequence of noisy data with

‖yk − y‖ ≤ δk. Further assume δk → 0 and αk ≍ δk. Let xk be an (αkφ)-critical point of
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the Tikhonov functional Hk = 1
2‖A(·)−yk‖2+αkR where the regularizer R : X → [0,∞)

satisfies Condition A. Further, let x‡ be the weak limit (xk)k∈N.

4.1 Error estimates

We call ∆k(x) = Hk(xk)−Hk(x) the Tikhonov gap between xk and x ∈ X. Convergence

rates will then be derived under the following assumption.

Condition C (Rates using Tikhonov gap).

(C1) ∃ξ ∈ ∂φR(x‡) ∩ ran(A∗).

(C2) ∃c∀z ∈ B(x‡) : R(x‡) − R(z) ≤ c‖Az − Ax‡‖. Here B(x‡) := {x ∈ X : |R(x‡) −
R(x)| ≤ ε} where ε > max{0, supk ∆k/αk}.

We have the following result.

Theorem 4.1 (Rates using Tikhonov gap). Let y, yk, δk, αk and x‡ be as introduced

above and let Assumption C be satisfied. Then

(1) ‖Axk − yk‖ = O
(

√

δ2k +∆k

)

(2) |Dξ(xk, x
‡)| = O(δk +∆k/δk).

Proof. By definition of Dξ,

|Dξ(xk, x
‡)| = R(xk)−R(x‡)− 〈r, xk − x‡〉

+ ηk

(

R(x‡)−R(xk) + 〈r, xk − x‡〉
)

,

with ηk ∈ {0, 2}. By (C1), (C2)

R(x‡)−R(xk) + 〈r, xk − x‡〉 ≤ C1‖Axk −Ax‡‖ ≤ C1 (‖Axk − yk‖+ δk) ,

By definition of the Tikhonov gap ∆k,

1

2
‖Axk − yk‖2 + αkR(xk)− αkR(x‡) ≤ 1

2
‖Ax‡ − yk‖2 +∆k ≤ δ2k/2 + ∆k.

Using once again (C1) it follows that

1

2
‖Axk − yk‖2 + αk|Dξ(xk, x

‡)|

≤ ∆k + δ2k/2 + C̃αk (‖Axk − yk‖+ δk)

≤ ∆k + δ2k/2 +C2(αkδk + α2
k) + ‖Axk − yk‖2/4 ,
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where the last inequality follows again by Young’s product-inequality. With αk ≍ δk we

get (1), (2).

Clearly, if ∆k ≤ δ2k we obtain the classical convergence rates. Note, however, that ∆k

depends on x‡ and hence controlling ∆k is challenging. We next discuss a special case

where such an assumption is achievable.

Assume that we can construct xk as a near-minimizer,

Hk(xk) ≤ inf
z
Hk(z) + αkηk . (4.1)

Since (ηk)k is bounded, [13] shows that (xk)k has a weakly convergent subsequence.

After restriction to such a convergent subsequence and denoting its limit by x‡ we get

εk(x
‡) ≤ αkηk. With αk ≍ δk, according to Theorem 4.1 we get the rates ‖Axk−yk‖2 =

O(δ2k + δkηk) and |Dξ(xk, x
‡)| = O(δk + ηk).

4.2 Iterative minimization

In the following we assume that near minimization (4.1) of Hk is realized with some

iterative algorithm.

Corollary 4.2 (Iterative minimization). Let Ak be an iterative algorithm for minimizing

Hk such that for the n-th iterate xk,n we have Hk(xk,n) ≤ infHk+fk(n) with fk(n) → 0

as n → ∞. Let xk,n(k) satisfy (4.1). Then

(1) ‖Axk,n(k) − yk‖ = O
(
√

δ2k + δkηk

)

(2) DG(xk,n(k), x
‡) = O(δk + ηk).

If ηk → 0 then (xk,n(k))k converges to an R-minimizing solution of Ax = y in the

Bregman-distance.

Proof. The rates follow from Theorem 4.1 and because xk,n(k) is an αkηk-minimizer.

That x‡ is an R-minimizing solution of Ax = y is shown similar to [16].

An important feature of Corollary 4.2 is that the points xk,n(k) can be obtained in a

finite number of steps of the algorithm Ak and still result in convergence rates of order

O(δk). Opposed to this, classical theory needs access to global minimizers which usually

requires an infinite number of steps.

Remark 4.3 (Convex regularizers). The assumption of having access to an algorithm

Ak is applicable if R is convex. In this case Hk is convex and algorithms such as

subgradient descent, heavy ball methods or accelerated gradient methods guarantee
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convergence [6, 12]. For such algorithms the number of iterations in dependence of δk

can be stated. Assume ηk = δk and that the algorithm Ak is convergnt with a rate

of f(n) = Cn−β for some β > 0. According to Corollary 4.2, we need to perform on

the order of (αkδk)
−1/β to guarantee convergence to an R-minimizing solution. With

the choice αk ≍ δk this yields that we need to perform on the order of δ
−2/β
k iterations.

For example, if β = 1, e.g. in the case of the heavy ball method [6], we need on the

order of δ−2
k number of iterations which is comparable to the number of iterations for

the Landweber iteration [5].

Theorem 4.1 suggests that slower rates might occur if Hk is not sufficiently small. In-

deed, it is easy to construct examples where this is the case and convergence in the

Bregman-distance is considerably slower than the rate O(δ); compare Example 2.7. As

a consequence, this means that depending on the algorithm Ak, its initialization and

the choice of hyper-parameters that in some cases the required number of iterations

necessary is strict.

Remark 4.4 (Comparison of inexactness results). Finally, we briefly compare the re-

sults of Theorem 3.7 and Theorem 4.1. Both Theorems deal with the case of inexactness

in the construction of the regularized solution, but they rely on different measures for

inexactness. As such these Theorems might be more suitable in different situations.

Assume that in both cases regularized solutions are constructed using an iterative algo-

rithm. The main advantage of Theorem 3.7 is that the condition ‖zk‖ ≤ αkηk for some

user-defined ηk > 0 is easily checkable in an online manner during the the algorithm

itself and no prior information other than the tolerance ηk is necessary. However, it

may not be known a-priori how long this might take and the number of iterations could

significantly increase depending on ηk. Opposed to this, Corollary 4.2 gives an estimate

of the number of iterations necessary.

5 Numerical example

We perform a simple test to numerically check the convergence rates derived in the

previous sections in the context of iterative minimization.

5.1 Setting

As inverse problem we adapt the “Depth Profiling and Depth Resolution” as presented

in [9, Section 7.8]. We take X = Y = L2(0, π/2) and the linear operator A : X → Y

defined by

(Ax)(s) =

∫ arcsin(cos(s))

0
exp(− sin(τ)) cos(τ)x(τ)dτ,
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δ δβ x0 = 1 x0 = 0

10−2 6 · 10−1 2 · 10−1 1 · 10−2

10−4 4 · 10−1 6 · 10−2 2 · 10−4

10−6 3 · 10−1 2 · 10−2 3 · 10−6

Table 5.1: Error ‖xk − x‡‖2 in for different noise levels using gradient descent for two
different initial values.

for x ∈ X and s ∈ (0, π/2).

We consider the quadratic regularizer R = 1/2‖·‖2 in which case according to Corol-

lary 3.2, Condition B holds true whenever the source condition (B1) is satisfied. We

construct near minimizers using gradient descent. As theoretical framework for the con-

vergence rates we use Theorem 3.7 for which conditions on gradients can be checked

during iteration; compare Remark 4.4. The source condition is satisfied, whenever

x‡ ∈ ran(A∗).

5.2 Implementation details

For the presented results we choose the true signal x‡ = A
∗w with w(s) = cos(10s) +

sin(5s2) which satisfies the source condition by definition.

We simulate noisy data yδ by adding white noise for different noise levels δ ∈ {10−k : k =

2, . . . , 7} to y = Ax‡. We choose the regularization parameter αk = δk and consider

the Tikhonov functional Hk = ‖A(·) − yk‖2/2 + αk‖·‖2/2. We choose the tolerance

level ηk = αβ
k with β = 0.1. Hence we stop the gradient descent iteration once we have

‖∇Hk(xk)‖ ≤ δ1+β
k . It should be noted, that since we stop gradient descent before con-

vergence, the resulting xk depends on the initial value x0 and hence we test for different

choices of x0 namely the constant 0 and constant 1 functions. The code for the numerical

simulations is publicly available at https://git.uibk.ac.at/c7021101/cpr-rates.

5.3 Results

Numerical results are shown in Table 5.1 where the difference ‖xk − x‡‖2 is given in

dependence of δ for the two different initial values x0. One notices that the convergence

rate obtained with x0 = 0 is way better than the one given in Theorem 3.7 and is

closer to δ than δβ . The estimated rate is around βest = 0.99. On the other hand, the

convergence rate for the initial value x0 = 1 is closer to δβ . The estimated rate in this

case is βest = 0.22. This shows that depending on the input-parameters of the algorithm

the convergence rate obtained can significantly differ. This also indicates that without

further assumptions better rates than the one in Theorem 3.7 can be expected.
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6 Conclusion

In this paper, we have presented convergence rates in the absolute symmetric Bregman

distance for the regularization of critical points under a classical source condition and an

assumption on the nonconvexity of the regularizer R. This result has been generalized

to inexact critical points, where the inexactness is measured in the magnitude of the

gradient of the Tikhonov functional. Making the additional assumption that almost-

minimizers can be achieved, we derived convergence rates in the absolute Bregman

distance. A direct consequence is that, in contrast to the classical theory, access to

global minimizers is not necessary for regularization, while known rates of O(δ) are

preserved in the absolute Bregman distance. We have also shown that near-minimizers

on the order of δ−2/β iterations can be achieved using an iterative algorithm with rate

n−β.

We finally presented numerical simulations showing that non-exactness of the critical

points can indeed lead to different convergence rates depending on the input parameters

of the algorithm. Corollary 3.6 suggests Morozov’s discrepancy principle for choosing the

regularization parameters, and establishing conditions for when this leads to a convergent

regularization method is an interesting line of future research. Other directions of future

work could focus more on the practical aspect of minimization and to derive conditions

under which rates can be improved under an inexactness assumption.
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