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Abstract

Non-uniqueness and instability are characteristic features of image reconstruc-

tion processes. As a result, it is necessary to develop regularization methods that

can be used to compute reliable approximate solutions. A regularization method

provides of a family of stable reconstructions that converge to an exact solution

of the noise-free problem as the noise level tends to zero. The standard regular-

ization technique is defined by variational image reconstruction, which minimizes

a data discrepancy augmented by a regularizer. The actual numerical implemen-

tation makes use of iterative methods, often involving proximal mappings of the

regularizer. In recent years, Plug-and-Play image reconstruction (PnP) has been

developed as a new powerful generalization of variational methods based on replac-

ing proximal mappings by more general image denoisers. While PnP iterations yield

excellent results, neither stability nor convergence in the sense of regularization has

been studied so far. In this work, we extend the idea of PnP by considering families

of PnP iterations, each being accompanied by its own denoiser. As our main theo-

retical result, we show that such PnP reconstructions lead to stable and convergent

regularization methods. This shows for the first time that PnP is mathematically

equally justified for robust image reconstruction as variational methods.

keywords Regularization, Plug-and-Play, image prior, convergence analysis, sta-

bility, inverse problems, ADMM, forward backward splitting
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1 Introduction

Image reconstruction is an essential step for a variety of important applications including

biomedical imaging, non-destructive testing and remote sensing. These problems are

often formulated as an inverse problem of the form

Estimate x from yδ = Ax+ zδ . (1.1)

Here x ∈ X is the image to be recovered, A : dom(A) ⊆ X → Y is an operator between

Hilbert spaces modeling the forward problem, zδ denotes the data perturbation and yδ

are the given noisy data. Throughout we assume a deterministic error model where we

assume the estimate ‖zδ‖ ≤ δ with noise level δ ≥ 0. For vanishing noise level δ = 0 we

refer to Ax as exact data.

Most image reconstruction problems suffer from non-uniqueness and instability. To

overcome both issues regularization methods have to applied. A regularization method

consists of a family (Rλ)λ>0 of continuous reconstruction mappings Rλ : Y → X that

are convergent in the sense that for a suitable parameter choice λ = λ(δ, yδ) we have

‖Rλ(δ,yδ)(y
δ)− x‖ → 0 as δ → 0 uniformly in all yδ with ‖yδ −Ax‖ ≤ δ. The main goal

of this work is to uncover Plug-and-Play (PnP) image reconstruction as a new member

of the class of regularization methods.

1.1 Variational regularization

To put our results into perspective we start with variational image reconstruction

that is probably the most established regularization concept. It defines near-solutions

xδα = Rλ(y
δ) of (1.1) as minimizers of the generalized Tikhonov functional Tyδ,λ(x) ,

‖Ax− yδ‖2/2+λR(x). The data discrepancy term ‖Ax− yδ‖2/2 penalizes the distance

between the predicted data Ax and the measured data yδ, making minimizers of the

Tikhonov functional being a near-solution of (1.1). The regularizer R on the other hand

includes prior information thereby enforcing stability and regularity of the recovered im-

age. The regularization parameter λ > 0 allows to balance between data discrepancy

and regularity and can be selected depending on the noise level and other available prior

information. Benefits of variational regularization are clear interpretation and the well-

developed theoretical understanding. While classically hand-crafted regularizers such

as quadratic penalties, the ℓ1 norm or total variation [1, 8, 9, 20] are utilized, in recent

works the use of trained neural networks has also been proposed [12,13,18].

The realization of variational regularization requires iterative algorithms for minimizing

the Tikhonov functional. A particular flexible algorithm for minimizing Tyδ,λ is the

forward-backward splitting (FBS) iteration xδλ,n+1 = proxsλR(x
δ
λ,n − sA∗(Axδλ,n − yδ))
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where proxsλR , (IdX +sλ∇R)−1 is the proximal mapping of the scaled regularizer sλR

and s > 0 is the step size acting as scaling parameter. In the case that R is strongly

convex and the step size is chosen properly then convergence of the FBS iterates towards

a minimizer of Tyδ,λ follows from the Banach fixed point theorem. Convergence of FBS

iterations also holds for more general regularizers [6, 8]. Other common algorithms for

minimizing the Tikhonov functioal include ADMM [11] or primal dual [5] algorithms.

1.2 Plug-and-Play image reconstruction

The proximal operator proxsλR used in iterative image reconstruction algorithms can be

seen as specific denoiser defined by a regularizer. The basic idea of Plug-and-Play (PnP)

image reconstruction [23], is to select a proximal algorithm and to replace the proximal

operator with a more general denoiser Φ(λ, ·) : X → X. In particular, such a strategy

has been implemented for FBS [19], ADMM [21, 22] and primal dual methods [14]. In

this paper we focus on PnP-FBS which for (1.1) reads

xδλ,n+1 = Φ(λ, ·) ◦ (xδλ,n − sA∗(Axδλ,n − yδ)) . (1.2)

Clearly FBS is a special case by taking Φ(λ, ·) = proxsλR. However, PnP-FBS allows

to include other state-of-the-art denoisers such as BM3D [7] or trained CNNs [24]. PnP

offers greater flexibility than the variational approach. First, a potential variational

characterization of the a denoiser as proximal mapping might not be known. Second, and

more importantly, any proximal mapping is in particular the gradient of some functional

which excludes any denoiser that is not of gradient form. Hence PnP significantly

extends the class of variational image reconstruction.

One theoretical question in the context of PnP is convergence of the iteration (2.2).

Due to the fixed point structure, convergence can be derived from the large pool of

existing fixed point theorems guaranteeing convergence to a fixed point of Φ(λ, ·) ◦

(IdX−sA∗(A(·) − yδ)). However, main theoretical question such as stability and con-

vergence of fixed points as δ → 0 has not been addressed so far. This gap will be closed

in this paper.

1.3 Main results

As one main result of this paper we show that PnP fixed points define a stable and

convergent regularization method. To the best of our knowledge, regularization theory

of PnP has not been established so far. For that purpose we consider an admissible

family of denoisers (Φ(λ, ·))λ>0 (see Definition 3.1 below for precise terminology), each
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associated with a corresponding PnP iteration and associated fixed point

PnP(λ, yδ) , Fix(Φ(λ, ·) ◦ (IdX−sA∗(A(·)− yδ))) . (1.3)

Under conditions specified below we show that (1.3) defines a convergent regularization

method for (1.1). Furthermore, we derive a characterization of the limiting problem

extending the concept of R-minimizing solutions known from variational regularization.

The following theorems are the main result of this paper. In that theorems (Φ(λ, ·))λ>0

is a family of admissible denoisers, that we rigorously define in Section 3. In that section

we also give more complete statements in a more general setting including the standard

inverse Problem (1.1) as special case.

Theorem A (Stability). For all regularization parameters λ > 0, PnP(λ, ·) is continu-

ous.

Proof. See Section 3.3.

Theorem B (Convergence). For any y ∈ ran(A) and any sequence (δk)k∈N ∈ (0,∞)N

of noise levels converging to 0 there exists a sequence (λk)k∈N ∈ (0,∞)N of regularization

parameters converging to 0 such that for all yk ∈ Y with ‖y − yk‖ ≤ δk the following

hold:

(a) (PnP(λk, yk))k∈N has a weakly convergent subsequence.

(b) The limit of every weakly convergent subsequence of (PnP(λk, yk))k∈N is a solution

of (1.1).

Proof. See Section 3.4.

Theorems A and B imply that (PnP(λ, ·))λ>0 is a regularization method for (1.1). Actu-

ally these results are derived in a more general framework (introduced in Subsection 2.1)

that includes (1.1) as a special case.

Theorem C (PnP limits). In the situation of Theorem B suppose Φ(λ, ·)−1 is single

valued and that (Φ(λ, ·)−1−Id)/α converges weakly uniformly on bounded sets to a weakly

continuous H : X → X. Then any weak accumulation point x∗ of (PnP(λk, yk))k∈N

satisfies A(x∗) = y and H(x∗) ∈ ker(A)⊥.

Proof. See Section 3.5.
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1.4 Notation

Operator T : X → X is called L-Lipschitz continuous with L > 0 if ‖T(x1)−T(x2)‖ ≤

L‖x1 − x2‖ for all x1, x2 ∈ X. By Lip(T) we denote the smallest possible Lipschitz

constant of T. If Lip(T) ≤ 1 then T is called non-expansive and if Lip(T) < 1 then it

is called contraction. Finally, T is called firmly non-expansive if ‖T(x1) − T(x2)‖
2 ≤

〈x1 − x2,T(x1) − T(x2)〉 for all x1, x2 ∈ X. Recall x ∈ X is called a fixed point of T

if T(x) = x. We write Fix(T) = {x ∈ X | T(x) = x} for the set of all fixed points. If

Fix(T) consists of a single element we denote this element by fix(T).

A family (Tλ)λ>0 of mappings on X is said to pointwise strongly convergence to T if

limλ→0‖Tλ(x) − T(x)‖ = 0 for all x ∈ X. It is said to converge weakly uniformly on

some set B ⊆ X if ∀z : supx∈B〈Tλ(x)−T(x), z〉 → 0.

Let Γ0(X) denote the set of all R : X → [0,∞] that are proper, convex and lower semi-

continuous. For R ∈ Γ0(X) the proximal mapping proxR : X → X is uniquely defined by

proxR(x) := argminz∈X‖x− z‖2/2 +R(z) and firmly nonexpansive [4, Prop. 12.28].

2 Background

Throughout this paper, X and Y denote possible infinite dimensional Hilbert spaces

equipped with the inner product 〈·, ·〉 and induced norm topology.

2.1 Ill-posed minimization problems

In the exact data situation, solving (1.1) reduces to the solution of the equation Ax =

y. Equivalently this amounts minimizing the least squares functional ‖Ax − y‖2/2.

Throughout this paper we consider the more general situation where we look for mini-

mizers of some discrepancy functional D : Y × X → [0,∞) with respect to the variable

x. We thus consider

Estimate argmin
x

D(·, y) from yδ = y + zδ . (2.1)

Here y, yδ ∈ Y are exact and noisy data, respectively, and we assume the known noise

bound ‖zδ‖ ≤ δ. With the particular choice D(x, y) = ‖Ax − y‖2/2, Problem (2.1)

reduces to the standard image reconstruction Problem (1.1). One may take D(x, y) =

L(Ax, y) for a loss function L. However, our framework also includes cases where no

forward operator A can be identified or where A is defined implicitly via minimization.

Throughout the paper we will make the following assumptions on the discrepancy func-

tional.
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Assumption 2.1 (Assumptions on D).

(A1) D is convex and Fréchet differentiable in x.

(A2) ∇xD is 1/β-Lipschitz continuous in x with β > 0.

(A3) ∇xD is weakly sequentially continuous in x

(A4) (∇xD(x, ·))x∈X is equicontinuous.

Recall that (∇xD(x, ·))x∈X is equicontinuous if ‖yk−y‖ → 0 implies supx∈X‖∇xD(x, yk)−

∇xD(x, y)‖ → 0 .

Example 2.2 (Least squares). Let us verify that (A1)-(A4) are indeed satisfied for

the standard inverse Problem (1.1) with bounded linear A : X → Y and associated least

squares functional DLS(x, y) , ‖Ax− y‖2/2. Clearly DLS is convex and Fréchet differ-

entiable in x with gradient ∇xDLS(x, y) = A∗(Ax − y). Further, ∇xDLS(·, y) is ‖A‖2-

Lipschitz continuous and weakly continuous. Finally, the estimate ‖∇xDLS(x, y1) −

∇xDLS(x, y2)‖ ≤ ‖A‖‖y1 − y2‖ shows that (∇xDLS(x, ·))x∈X is equicontinuous.

Under (A1) the following fixed point characterization holds.

Proposition 2.3 (Exact data). Let (A1) be satisfied. For all (x0, y0) ∈ X×Y and s > 0

the following are equivalent:

(i) x0 ∈ argminD(·, y0).

(ii) ∇xD(x0, y0) = 0.

(iii) x0 ∈ Fix(IdX−s∇xD(·, y0))

If these conditions are satisfied for at least one x0 then we refer to y0 as exact data.

Proof. Since is D(·, y) is convex and Fréchet differentiable, by Fermat’s rule [4, Prop.

17.4], x0 is a minimizer of ∇xD(·, y0) if and only if the first order optimality condition

∇xD(x0, y0) = 0 holds which is the equivalence of (i) and (ii). By elementary refor-

mulation, the optimality condition is equivalent to x0 = x0 − s∇xD(x0, y0) which is

(iii).

Lemma 2.4. If (A1), (A2) hold then IdX−s∇xD(·, y) is non-expansive for all y ∈ Y

and s ∈ (0, 2β).
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Proof. Since D(·, y) is convex, Fréchet differentiable and ∇xD(·, y) is 1/β-Lipschitz, by

the Baillon-Haddad theorem [2, 3], the operator β∇xD(·, y) is firmly non-expansive.

Thus for all x1, x2 ∈ X we have

‖(x1 − s∇xD(x1, y)− (x2 − s∇xD(x2, y)‖
2

= ‖x1 − x2‖
2 + s2‖∇xD(x1, y)−∇xD(x2, y)‖

2

− 2s〈x1 − x2,∇xD(x1, y)−∇xD(x2, y)〉

≤ ‖x1 − x2‖
2 + s2/β〈x1 − x2,∇xD(x1, y)−∇xD(x2, y)〉

− 2s〈x1 − x2,∇xD(x1, y)−∇xD(x2, y)〉

≤ ‖x1 − x2‖
2 ,

where we used that s2 ≤ 2βs.

Image reconstruction problems are commonly ill-posed, which means that minimizers of

D(·, yδ) do not exist, are not unique, or depend unstably on data yδ. In order to account

for the ill-posedness one has to apply regularization methods [20]. In this paper we use

the following notion of a weakly convergent regularization method.

Definiton 2.5 (Regularization method). A family (Rλ)λ>0 of mappings Rλ : Y → X

together with a parameter choice rule λ∗ : (0,∞) → (0,∞) where limδ→0 λ
∗(δ) = 0 is

called regularization method for argminxD(x, y) over E ⊆ Y if the following holds:

(a) Stability: ∀λ > 0: Rλ is continuous.

(b) Convergence: For all y ∈ E, (δk)k∈N ∈ (0,∞)N converging to 0 and all yk ∈ Y with

‖y − yk‖ ≤ δk, the sequence (PnP(λ∗(δk), yk))k∈N has a weakly convergent subse-

quence and the limit of every weakly convergent subsequence of (PnP(λ(δk), yk))k∈N

is a minimizer of D(·, y).

The aim of this paper is to uncover PnP as a regularization method for argminxD(x, y).

2.2 The PnP method

Variational image reconstruction is probably the most established regularization method,

at least for the standard inverse Problem (1.1). Based on a regularizer R : X → [0,∞),

Rλ(y
δ) for the more general Problem (2.1), it is defined as a minimizer of the Tikhonov

functional D(·, yδ) + λR. The following characterization of variational regularization

generalizing Proposition 2.3 will serve as starting point of PnP.

Lemma 2.6 (Variational reconstruction). Let (A1) be satisfies and R ∈ Γ0(X), then

for all (xδλ, y
δ) ∈ X× Y and s, λ > 0 the following are equivalent:
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(i) xδλ ∈ argminD(·, yδ) + λR.

(ii) ∇xD(xδλ, y
δ) + λ∇xR(xδλ) = 0.

(iii) xδλ ∈ Fix(proxsλR(IdX −s∇xD(·, yδ)).

Proof. By Fermat’s rule, xδλ minimizes D(·, yδ) + λR if and only if ∇xD(xδλ, y
δ) +

λ∇xR(xδλ) = 0, which shows (i) ⇔ (ii). Moreover,

0 = ∇xD(xδλ, y
δ) + λ∇xR(xδλ)

⇔ xδλ + sλ∇xR(xδλ) = xδλ − s∇xD(xδλ, y) =

⇔ xδλ = (IdX+sλ∇xR)−1 ◦ (IdX−s∇xD(·, y))(xδλ)

⇔ xδλ ∈ Fix(proxsλR ◦(IdX−sλ∇xD(·, yδ))

which gives the equivalence to (iii).

Lemma 2.6 shows that minimizers of the Tikhonov functional are fixed points of the

operator proxsλR ◦(IdX−sλ∇xD(·, yδ)). Replacing proxsλR by a general denoiser results

in the PnP method as defined next.

Definiton 2.7 (PnP fixed points). Under (A1), (A2) we define the PnP reconstruction

using denoiser Φ(λ, ·) : X → X and step size s ∈ (0, 2β) by PnP(λ, ·) : Y → X,

PnP(λ, yδ) , Fix(Φ(λ, ·) ◦ (IdX−s∇xD(·, yδ))) . (2.2)

Note that the step size is fixed throughout our analysis and therefore not indicated in the

notation of PnP(λ, ·).

To compute (2.2) one may use for any initial value xδλ,0 ∈ X the fixed point iteration

xδλ,n+1 = Φ(λ, ·) ◦ (xδλ,n − s∇xD(xδλ,n, y
δ)) . (2.3)

In the special case whereΦ(λ, ·) = proxsλR, iteration (2.3) reduced to the FBS iteration.

In the general case, we thus refer to (2.3) as PnP-FBS iteration (for argminxD(x, y)

using denoiser Φ(λ, ·)). Convergence of (2.3) towards PnP(λ, yδ) can be deduced from

Banachs fixed point theorem:

Proposition 2.8 (Convergence of PnP-FBS). If (A1), (A2) hold and Φ(λ, ·) is a con-

traction, then (xδλ,n)n∈N strongly converge to PnP(λ, yδ). Moreover, linear convergence

∀n ∈ N : ‖xδλ,n+1 − PnP(λ, yδ)‖ ≤ c‖xδλ,n − PnP(λ, yδ)‖

with some c > 0 holds.
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Proof. According to Lemma 2.4 and (A1), (A2) and because Φ(λ, ·) is contractive,

Φ(λ, ·)◦(IdX−s∇xD(·, y)) is contractive. Hence Banachs fixed point theorem shows that

xδλ,n linearly converges to PnP(λ, yδ), the unique fixed point ofΦ(λ, ·)◦(IdX−s∇xD(·, yδ)).

Note that the convergence result of Proposition (2.8) is not a novel result and included

here for completeness. More general convergence results are also known. For example,

in [17] it is shown that (2.2) converges to a fixed point of Φ(λ, ·) ◦ (IdX−s∇xD(·, y)) if

D(·, y) is convex and Fréchet differentiable with Lipschitz continuous gradient, Φ(λ, ·)

is a-averaged for some a ∈ (0, 1), and the fixed point set of Φ(λ, ·) ◦ (IdX−s∇xD(·, y))

is not empty.

Remark 2.9 (PnP-ADMM and PnP-PD). Our theory targets fixed points of Φ(λ, ·) ◦

(IdX−s∇xD(·, yδ))) and therefore apply to any other family of PnP iterations as long

as it shares fixed-points with PnP-FBS. For example, the PnP version of ADMM (al-

ternating direction method of multipliers) reads

xδλ,n+1 = proxsD(·,yδ)(y
δ
λ,n − zδλ,n)

yδλ,n+1 = Φ(λ, xδλ,n+1 + zδλ,n)

zδλ,n+1 = zδλ,n + xδλ,n+1 − yδλ,n+1 ,

where yδλ,0, z
δ
λ,0 ∈ X are initializations, (yδλ,n)n∈N, (z

δ
λ,n)n∈N are auxiliary sequences and

(xδλ,n)n∈N is the main sequence. In [22, Proposition 3] is shown that if PnP-ADMM

is convergent, then (xδλ,n)n∈N converges to a fixed point of Φ(λ, ·) ◦ (IdX−s∇xD(·, y)).

Consequently, if the fixed point is unique PnP-FBS and PnP-ADMM converge to the

same point. The same holds also for primal dual PnP variants (PnP-PD) [14, Remark

3.1]. The regularization theory that we develop for PnP therefore applies equally to any

of these algorithms.

3 PnP as regularization method

In the following consider a family (Φ(λ, ·))λ>0 of denoisers each associated with the PnP-

FBS iteration and associated PnP limits PnP(λ, yδ) = Fix(Φ(λ, ·)◦(IdX−s∇xD(·, yδ)));

see Definition 2.7.

3.1 Main assumptions

Our analysis uses the following assumptions on the family (Φ(λ, ·))λ>0.

Definiton 3.1 (Denoising family). We call (Φ(λ, ·))λ>0 admissible family of denoisers

if the following hold:
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(B1) ∀λ > 0: Φ(λ, ·) : X → X is a contraction.

(B2) (Φ(λ, ·))λ>0 → IdX strongly point-wise

(B3) (Φ(λ, ·))λ>0 → Id weakly uniformly on bounded sets.

(B4) ∃E ⊆ X ∀x ∈ E : ‖Φ(λ, x)− x‖ = O(1− Lip(Φ(λ, ·))).

Convergence of PnP-FBS and stability of PnP limits only requires (B1). It can be seen

as our requirement for Φ(λ, ·) being a denoiser and is easily to achieve. A denoiser

might only be non-expansive rather than contractive, which is not directly included in

our theory. However as we show below this can be restored by a simple scaling trick.

Lemma 3.2 (Non-expansive denoisers). Let (Φ(λ, ·))λ>0 be a family of non-expansive

operators satisfying (B2), (B3) and let σ : [0,∞) → (0, 1] be strictly decreasing, contin-

uous at zero with σ(0) = 1 and ∀x ∈ E : ‖Φ(λ, x) − x‖ = O(1 − σ(λ)) as λ → 0. Then

(σ(λ)Φ(λ, ·))λ>0 satisfies (B1)-(B4).

Proof. Clearly, Lip(σ(λ)Φ(λ, ·)) ≤ σ(λ) and for all x ∈ X we have σ(λ)Φ(λ, x) → x

strongly, which gives (B1), (B2). Now let z ∈ X and B ⊆ X be bounded by R > 0, then

sup
x∈B

|〈σ(λ)Φ(λ, x) − x, z〉|

≤ sup
x∈B

|σ(λ)〈Φ(λ, x) − x, z〉 − (1− σ(λ))〈x, z〉|

≤ σ(λ) sup
x∈B

|〈Φ(λ, x)− x, z〉| +R(1− σ(λ))‖z‖ ,

which converges to zero as λ → 0, showing (B3). Finally, for x ∈ E we have

‖σ(λ)Φ(λ, x) − x‖

1− Lip(σ(λ)Φ(λ, ·))

≤
‖σ(λ)(Φ(λ, x) − x)− (1− σ(λ))x‖

1− σ(λ)

≤ σ(λ)
‖Φ(λ, x) − x‖

1− σ(λ)
+ ‖x‖

≤ C + ‖x‖ ,

which is (B4).

The additional assumptions (B2)-(B4) are used to establish convergence as δ → 0.

Condition (B2) is quite natural and requires the denoising effect to vanish in the limit.

Additionally, the convergence requires some form of uniform convergence condition.

Lemma 3.3 shows that assuming uniform convergence on the whole space would be too

strong.
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Lemma 3.3. There exists no sequence (Tk)k∈N of contractions Tk : X → X which

converges uniformly to IdX.

Proof. Assume (Tk)k∈N converge uniformly to IdX and ǫ > 0. Then we can choose

N ∈ N such that ‖Tkx−x‖ < ǫ for k ≥ N and x ∈ X and thus {x | ‖Tkx−x‖ < ǫ} = X.

In particular, there exists a sequence of elements xℓ in this set with ‖xk − xℓ‖ → ∞.

Further, ‖xk − xℓ‖ ≤ ‖Tk(xk) − xk‖ + ‖Φk(xk) − xℓ‖ ≤ ǫ + Lip(Tk)‖xk − xℓ‖. Thus

1 ≤ ǫ/‖xk − xℓ‖ + Lip(Tk) → Lip(Tk). This contradicts the assumption that Tk is a

contraction,

In light of Lemma 3.3, Condition (B3) looks only at bounded subsets of X and, further-

more considers convergence with respect to the weak topology only. For example, we

will show that soft thresholding converges uniformly to Id on bounded sets with respect

to the weak topology but not with respect to the norm topology; see Example 3.7. The

same holds for a scaled version of the soft thresholding operator to make sure that they

are contraction mappings.

Condition (B4) is also some kind of uniform convergence condition. In fact, the point-

wise convergence in (B2) implies that the Lipschitz constants converge to 1; see Lemma

3.4. Thus (B4) means that ‖Φ(λ, x) − x‖ for λ → 0 converges to 0 at least as fast as

Lip(Φ(λ, ·)) converges to 1.

Lemma 3.4. Let (Φk)k∈N be a sequence of contractions Φk : X → X that converge

point-wise to Φ with Lip(Φ) = 1. Then Lip(Φk) → 1.

Proof. By the triangle inequality, we have ‖Φx1 −Φx2‖ ≤ Lip(Φk)‖x1 − x2‖+ ‖Φx1 −

Φkx1‖+ ‖Φkx2−Φx2‖. With the point-wise convergence of (Φk)k∈N this shows that Φ

is Lipschitz continuous with Lip(Φ) ≤ lim infk→∞ Lip(Φk). Therefore,

1 = Lip(Φ) ≤ lim inf
k→∞

Lip(Φk) ≤ lim sup
k→∞

Lip(Φk) ≤ 1

from which we conclude Lip(Φk) → 1.

3.2 Examples

3.2.1 Proximal denoisers

For R ∈ Γ0(X) consider minimizers of the Tikhonov functional D(·, yδ) + λR which are

according to Proposition (2.6) equal to PnP fixed points with Φ(λ, ·) = proxsλR. In this

subsection we show that variational regularization actually fits in our framework. Fur-

ther we provide examples where PnP extends variational regularization beyond proximal

denoisers.
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Lemma 3.5. If R ∈ Γ0(X) is a-strongly convex then Φ(λ, ·) = proxsλR is 1/(1 + asλ)-

Lipschitz and satisfies (B1), (B2), (B4).

Proof. Since sλR is asλ-strongly convex, sλ∂R is strongly monotone with constant asλ.

With [4, Prop. 23.13] this shows that proxsλR = (Id+sλ∂R)−1 is Lipschitz-continuous

with constant 1/(1 + asλ). According to [4], proxsλR(x) = x − sλ∂0R(x) + o(sλ) for

x ∈ dom(R) where ∂0R(x) denotes the subgradient with minimal norm. Together with

1−Lip(proxsλR) ≥ asλ/(1+asλ) this gives ‖x−proxsλR x‖ = O(1−Lip(proxsλR)).

Remark 3.6. If R is not strongly convex then proxsλR is still non-expansive. To derive

a contraction from proxsλR one may apply Proposition 3.2. If Φ(λ, ·) = proxsλR satisfies

(B3) and σ(λ) = (1− λ)+, then for all x ∈ dom(R) we have

‖proxsλR(x)− x‖

1− (1− λ)
=

1

λ
‖sλ∂0R(x) + o(λ)‖

≤ s‖∂0R(x)‖+ ‖o(λ)/λ‖ → s‖∂0R(x)‖ as λ → 0 .

Thus ((1− λ)+Φ(λ, ·))λ>0 satisfies (B1)-(B4).

Assumption (B3), for example, is satisfied for soft and hard thresholding as the following

example shows.

Example 3.7 (Thresholding). Consider the hard and soft thresholding operators in

ℓ2(N), H(λ, ·),S(λ, ·) : ℓ2(N) → ℓ2(N), respectively, defined by S(λ, x)i = H(λ, x)i = 0 if

|xi| ≤ λ and

H(λ, x)i = |xi| (3.1)

S(λ, x)i = sign (xi)(|xi| − λ) (3.2)

otherwise. Then (H(λ, ·))λ>0, (S(λ, ·))λ>0 converge uniformly to Id on bounded sets with

respect to the weak topology, but not with respect to the norm topology.

Proof. Let us start with hard thresholding. Without loss of generality assume that

z ∈ ℓ2(N) has non-negative entries ordered in descending order and that B is the closed

centered unit ball. Then 〈H(λ, x)− x, z〉 = −
∑

|xi|≤λ xizi and thus

sup
x∈B

〈H(λ, x)− x, z〉 = sup
x∈Cλ

〈x, z〉 , (3.3)

where Cλ , {x ∈ B | ‖x‖∞ ≤ λ}. Set Cλ is convex and closed and argminx∈Cλ
‖x−z‖2 =

argmaxx∈Cλ
〈x, z〉. The projection theorem thus gives a unique x∗λ maximizing 〈x, z〉 over

12



Cλ. One verifies that x∗λ is given by

∀i ∈ N : (x∗λ)i =







λ i = 0, . . . , n∗
λ

a∗λzi otherwise ,

where a∗λ is such hat ‖x∗λ‖ = 1 and n∗
λ ∈ N is the smallest natural number with ‖x∗λ‖∞ ≤

λ. We have n∗
λ + 1 ≤ 1/λ2, n∗

λ → ∞ as λ → 0 and

sup
x∈Cλ

〈x, z〉 =

n∗

λ
∑

i=0

λzi + a∗λ

∞
∑

i=n∗

λ
+1

z2i ≤
1

√

n∗
λ + 1

n∗

λ
∑

i=0

|zi|+ a∗λ

∞
∑

i=n∗

λ
+1

|zi|
2 . (3.4)

Let (ek)k∈N with (ek)i = 1 for k = i and 0 otherwise be the standard basis of ℓ2(N),

then sk , (k+1)−1/2
∑k

i=0 ei → 0 weakly and thus 1/
√

n∗
λ + 1

∑n∗

λ

i=0|zi| = 〈sk, |z|〉 → 0.

With (3.3) and (3.4) we get supx∈B〈H(λ, x)− x, z〉 → 0.

Because supx∈B〈S(λ, x) − x, z〉 = supx∈Cλ
〈x, z〉 the above proof applies to soft thresh-

olding, too. Finally,

sup
x∈B

‖S(λ, x) − x‖ = sup
x∈B

‖H(λ, x)− x‖ = sup
x∈Cλ

‖x‖ = 1

and therefore both operators do not uniformly converge on bounded sets in the norm

topology.

Soft thresholding is the proximal operator of the ℓ1-norm. Thus, according to Exam-

ple 3.7 and Remark 3.6 the scaled thresholding operations

∀λ > 0: Φλ , (1− λ)+S(λ, ·)

satisfy (B1)-(B4) and thus form an admissible family of denoisers.

3.2.2 Beyond proximal denoisers

Not all denoisers are of the proximal type. According to a theorem of Moreau [15],

Φ : X → X is proximal if and only if it is non-expansive and the subgradient of a convex

functional. If Φ is linear, then Φ is proximal if and only if it is self-adjoint and ‖Φ‖ ≤ 1.

Let us provide simple examples satisfying (B1)-(B4).

Example 3.8 (Filter methods). Let U : X → ℓ2(N) be unitary and consider the diag-

onal operators Mλ : ℓ
2(N) → ℓ2(N) defined by (Mλ(x))i = mλ,ixi with bounded mλ,i.

Obviously Φ(λ, ·) = UMλU
∗ is linear and bounded. Moreover

• Φ(λ, ·) self-adjoint ⇔ ∀i : mλ,i ∈ R.
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• Φ(λ, ·) positive ⇔ ∀i : mλ,i > 0.

• Φ(λ, ·) contraction ⇔ supλ|mλ,i| < 1.

By Moreau’s theorem, Φ(λ, ·) is proximal if and only if mλ,i ∈ [0, 1]. If in addition

mλ,i ∈ (0, 1 − ǫ] for some ǫ ∈ (0, 1) then Φ(λ, ·) is proximal and contractive.

Linear proximal mappings have to be self-adjoint and positive and it easy to construct lin-

ear contractions of the form ULλU
∗ which are not proximal. For example, Lλ : ℓ

2(N) →

ℓ2(N) defined by (Lλ(x))i = (1 − 2λ)xi + λxi−1 is a contraction but not self-adjoint.

Therefore Φ(λ, ·) = ULλU
∗ is a contraction but not proximal.

Consider the discrete convolution operator K : ℓ2(Z) → ℓ2(Z) with kernel k ∈ ℓ1(Z)

defined by

Kx(n) = (k ∗ x)(n) ,
∑

m∈Z

k(m)x(n −m) . (3.5)

Write (Fk)(z) ,
∑

m∈Z k(m)z−m for z ∈ S
1 for the Fourier transform of k. Then by

Plancherel’s theorem, ‖K‖ = ‖Fk‖∞. In particular, K is bounded if and only if Fk is

bounded. If k is not symmetric then K is not self-adjoint and therefore not proximal.

As specific example for a family of non-proximal convolutions that satisfy (B1)-(B4) is

presented in the following Example 3.9.

Example 3.9 (Causal denoising). Consider a family of discrete convolutions Kλ of the

form (3.5) with kernels and associated Fourier transforms

kλ(m) = (1− e−1/λ)e−m(λ+1)/λ 1m≥0 , (3.6)

(Fkλ)(z) =
z(1− e−1/λ)

z − e−1/(1+λ)
. (3.7)

For z ∈ ℓ2(Z) and bounded B ⊆ ℓ2(Z) one verifies:

• Lip(Kλ) = ‖Kλ‖ = ‖Fkλ‖∞ < 1.

• ‖kλ ∗ x− x‖ ≤ ‖1−Fkλ‖∞‖x‖.

• supx∈B|〈kλ ∗ x− x, z〉| ≤ ‖1−Fkλ‖∞‖z‖ supx∈B‖x‖.

• ‖1−Fkλ‖∞ → 0 as α → 0.

This gives (B1)-(B3). Further, with

‖1 −Fkλ‖∞
1− ‖Fkλ‖∞

=
1 + e

1 + e(1+λ)/λ
·
e(1+λ)/λ − 1

e− 1
→

e+ 1

e− 1

we also obtain (B4).
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3.3 Stability

As first theoretical question we answer the stability. In fact we will give a quantitative

stability estimate.

Theorem 3.10 (Stability estimate). Consider (2.1) with (A1), (A2), (A4) and let

Φ(λ, ·) be contractive. Then for all y1, y2 ∈ Y we have

‖PnP(λ, y1)− PnP(λ, y2)‖ ≤
γ Lip(Φ(λ, ·))

1− Lip(Φ(λ, ·))
sup
x∈X

‖∇xD(x, y1)−∇xD(x, y2)‖ . (3.8)

Proof. The following proof uses ideas from [16]. Fix λ > 0, let y1, y2 ∈ Y and set

Ti , Φ(λ, ·) ◦ (IdX −s∇xD(·, yi)) for i = 1, 2. Then Ti is a contraction with Lip(Ti) ≤

Lip(Φ(λ, ·)). Write xi = fix(Ti) = PnP(λ, yi). Then

‖x1 − x2‖ = ‖T1x1 −T2x2‖

≤ ‖T1x1 −T2x1‖+ ‖T2x1 −T2x2‖

≤ ‖T1x1 −T2x1‖+ Lip(T2)‖x1 − x2‖ .

From the definitions of T1,T2 we derive ‖T1x1 − T2x1‖ ≤ Lip(Φ(λ, ·))‖∇xD(x, y1) −

∇xD(x, y2)‖. Together with the last displayed equation this gives (3.8).

Theorem A is a corollary of Theorem 3.10 that we formulate for the more general

Problem (2.1).

Corollary 3.11 (Stability of PnP). Consider Problem (2.1) with (A1), (A2), (A4) and

let Φ(λ, ·) be contractive. Then PnP(λ, ·) is strongly continuous.

Proof. Let y, yk ∈ Y with ‖yk − y‖ → 0 as k → ∞. According to the equicontinuity of

(∇xD(x, ·),

sup
x∈X

‖∇xD(x, y)−∇xD(x, yn)‖ → 0 as n → ∞ .

Thus ‖PnP(λ, yk)− PnP(λ, y)‖ → 0 by Theorem 3.10.

For the least squares functional DLS(x, y) = ‖Ax− y‖2/2, (3.8) becomes

‖PnP(λ, y1)− PnP(λ, y2)‖ ≤
γ‖A‖Lip(Φ(λ, ·))

1− Lip(Φ(λ, ·))
‖y1 − y2‖ ,

which is a linear stability estimate which tends to infinity as λ → 0. Further note that

if IdX−s∇xD(·, y) would be a contraction then following Theorem 3.10 one shows that

argminxD(x, y) = 0 has a unique and stable solution. This implies that in the ill-posed

case, IdX−s∇xD(·, y) is no contraction.

15



3.4 Convergence

To establish convergence we start with two Lemmas.

Lemma 3.12. Let T : X → X be non-expansive with fixed point a and (Tk)k∈N be a

sequence of contractions on X with fixed points ak. Then

(

a−Tk(a)

1− Lip(Tk)

)

k∈N

bounded ⇒ (fix(Tk))k∈N bounded .

Proof. Let M > 0 with ‖a − Tk(a)‖/(1 − Lip(Tk)) ≤ M . By the triangle inequality,

‖ak − a‖ ≤ Lip(Tk)‖ak − a‖+ ‖Tk(a)− a‖ and thus

‖ak − a‖ ≤ Lip(Tk)
n‖ak − a‖+ ‖Tk(a)− a‖

n−1
∑

i=0

Lip(Tk)
i →

‖Ak(a)− a‖

1− Lip(Ak)
≤ M .

Thus (ak)k∈N is bounded by M + ‖a‖.

Lemma 3.13. Let T : X → X be weakly sequentially continuous and let (Tk)k∈N be a

sequence of non-expansive mappings on X with fixed points ak. If (ak)k∈N is contained

in some bounded set B ⊆ X and (Tk)k∈N → T weakly uniformly on B, then the limit of

every weakly convergent subsequence of (ak)k∈N is a fixed point of T.

Proof. Let (aτ(k))k∈N be a weakly convergent subsequence of (ak)k∈N with limit a. Then

〈aτ(k) −T(aτ(k)), z〉 = 〈Tτ(k)(aτ(k))−T(aτ(k)), z〉 ≤ sup
x∈B

〈Tτ(k)(x)−T(x), z〉 .

By the weak uniform convergence of Tk the right hand side tends to 0. Together with

the weak sequential continuity of T we get 〈a −T(a), z〉 ≤ 0. Considering −z in place

of z, we conclude ∀z ∈ X : 〈a−T(a), z〉 = 0 and thus T(a) = a.

We next establish convergence of PnP. Again we formulate and verify the result for the

more general Problem 2.1.

Theorem 3.14 (Convergence). Consider Problem (2.1), let (A1)-(A4) hold and (Φ(λ, ·))λ>0

be an admissible family of denoiser, let y ∈ E, (δk)k∈N ∈ (0,∞)N converge to 0. Then

there exists (λk)k∈N ∈ (0,∞)N converging to 0 such that for all yk ∈ Y with ‖y−yk‖ ≤ δk

the following hold:

(a) (PnP(λk, yk))k∈N has a weakly convergent subsequence.

(b) The limit of every weakly convergent subsequence of (PnP(λk, yk))k∈N is a solution

of argminx D(x, y).
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Proof. Set ηk , supx∈X‖∇xD(x, yk)−∇xD(x, y)‖. By the equicontinuity of (∇xD(x, ·))x∈X,

we have ηk → 0 as k → ∞. Because Lip(Φ(λ, ·)) → 1, there exists a sequence λk > 0

with λk → 0 and Lip(Φ(λk, ·)) ≤ M/(M + ηk) for k sufficiently large and fixed M > 0.

Then, with Φk , Φ(λk, ·),

γ Lip(Φk)

1− Lip(Φk)
sup
x∈X

‖∇xD(x, yk)−∇xD(x, y∗)‖ ≤
M/(M + ηk)

1−M/(M + ηk)
γηk = γM . (3.9)

Let x∗ be a minimizer of D(·, y∗) and write

Tk , Φk ◦ (IdX−s∇xD(·, yk))

T , IdX−s∇xD(·, y∗) .

Then x∗ is a fixed point of T and

‖Tk(x
∗)− x∗‖

= ‖Φk(x
∗ − s∇xD(x∗, yk))− x∗‖

≤ ‖Φk(x
∗ − s∇xD(x∗, yk)−Φk(x

∗)‖+ ‖Φk(x
∗)− x∗‖

≤ γ Lip(Φk)‖∇xD(x∗, yk)‖+ ‖Φk(x
∗)− x∗‖

= γ Lip(Φk)‖∇xD(x∗, yk)−∇xD(x∗, y∗)‖+ ‖Φk(x
∗)− x∗‖

≤ γ Lip(Φk) sup
x∈X

‖∇xD(x, yk)−∇xD(x, y)‖+ ‖Φk(x
∗)− x∗‖.

With (3.9) and (B4) we conclude that (‖Tk(x
∗) − x∗‖/(1 − Lip(Tk))k∈N is bounded.

According to Lemma 3.12, the sequence (xk)k∈N of fixed points ofΦk◦(IdX−s∇xD(·, yk))

is contained in some bounded set B. In particular, (xk)k∈N has a weakly convergent

subsequence.

For any z ∈ X we have

sup
x∈B

〈Tk(x)−T(x), z〉

≤ sup
x∈B

〈Tk(x)−ΦkT(x), z〉 + sup
x∈B

〈ΦkT(x)−T(x), z〉

≤ γ sup
x∈B

‖∇xD(x, yk)−∇xD(x, y)‖‖z‖ + sup
h∈T(B)

〈Φk(h) − h, z〉 .

The latter quantity converges to zero as k → ∞ and therefore (Tk)k∈N converges weakly

uniformly to T = IdX−∇xD(·, y∗) on B. Application of Lemma 3.13 thus shows that

any weakly convergent subsequence of (xk)k∈N is a fixed point of T and thus a minimizer

of D(·, y∗).
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3.5 Characterization of limiting solutions

Variational regularization has the property that it not only converges to any solution

but to an R-minimizing solution of the inverse problem at hand. Theorem C provides

such a characterization for PnP regularization. A more complete statement that we will

verify below reads as follows:

Theorem 3.15 (Limiting solutions of PnP). Consider the situation of Theorem 3.14,

let B ⊆ X be a bounded set with PnP(λk, yk) ∈ B and additionally assume

(C1) D(x, y) = ‖Ax− y‖2/2 for A : X → Y bounded linear.

(C2) ∀x ∈ B ∀λ > 0: Φ(λ, ·)−1(x) is a singleton.

(C3) (Φ(λ, ·)−1 − Id)/α converges weakly uniformly on B to some weakly continuous

H : X → X.

Then any weak accumulation point x∗ of (PnP(λk, yk))k∈N satisfies

A(x∗) = y , (3.10)

H(x∗) ∈ ker(A)⊥ . (3.11)

Proof. Theorem 3.14 states that any accumulation point x∗ of (PnP(λk, yk))k∈N satisfies

A(x∗) = y. In order to show Theorem 3.15 we will verify that these limits additionally

satisfy H(x∗) ∈ ker(A)⊥. Without loss of generality assume that xk , PnP(λk, yk) is

weakly convergent with limit x∗. For z ∈ X set ak(z) , 〈(Φ(λk, ·)
−1(xk) − xk)/λk, z〉.

Then

|ak(z)− 〈H(x∗), z〉|

≤

∣

∣

∣

∣

〈

Φ(λk, ·)
−1(xk)− xk
λk

−H(xk), z

〉∣

∣

∣

∣

+ |〈H(xk)−H(x∗), z〉|

≤ sup
x∈B

∣

∣

∣

∣

〈

Φ(λk, ·)
−1(x)− x

λk
−H(x), z

〉
∣

∣

∣

∣

+ |〈H(xk)−H(x∗), z〉| .

By (C3) and the weak sequentially continuity of H this shows limk→∞ ak(z) = 〈H(x∗), z〉

for all z ∈ X. Further,

Φ(λk, ·)
−1(xk)− xk = (IdX −s∇xD(·, yk))(xk)− xk

= −γA∗(Axk − yk) ∈ im(A∗) = ker(A)⊥ .

Hence, ak(z) = 0 and 〈H(x∗), z〉 = limk→∞ ak(z) = 0 for all z ∈ ker(A). Therefore

H(x∗) ∈ ker(A)⊥.
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Example 3.16 (Relation to R-minimizing solutions). Let R ∈ Γ0(X) be differentiable

and L(y) , {x ∈ X | Ax = y}. Minimizers of R|L(y) are refered to as R-minimizing

solution of Ax = y. The first order optimality condition in this case reads ∇R(x) ∈

ker(A)⊥. In terms of proximity operators,

∇R(x̂) = (prox−1
R − Id)(x̂) =

prox−1
λR − Id

λ
(x∗) .

Thus Theorem 3.15 can be applied with Φ(λ, ·) = proxλR and H = ∇R and one recovers

that accumulation points of (PnP(λk, yk))k∈N are R-minimizing solution of Ax = y.

4 Discussion and outlook

In this work we extended the PnP framework to a convergent regularization method for

solving ill-posed image reconstruction problems. In particular, we showed that if the

noise tends to zero, PnP fixed points converge to exact solutions of argminxD(x, y).

Our results generalize many other regularization techniques, for example, variational

regularization and linear filter methods for compact operators using SVD. Our theory

probably also contains many other cases (such as non-linear filter methods), where the

convergence is barley analyzed. Part of future research is to make use of this general

tool to establish a convergence analysis for non-linear filter methods like [10]. Further

objectives are convergence with respect to the norm-topology and convergence rates.
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etn-cycliquement monotones. Israel Journal of Mathematics, 26:137–150, 1977.

[3] Heinz H Bauschke and Patrick L Combettes. The baillon-haddad theorem revisited.

Journal of Convex Analysis, 17(3&4):781–787, 2010.

[4] Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone

operator theory in Hilbert spaces, volume 408. Springer, 2011.

[5] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for

convex problems with applications to imaging. Journal of mathematical imaging

and vision, 40(1):120–145, 2011.

19



[6] Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-

backward splitting. Multiscale modeling & simulation, 4(4):1168–1200, 2005.

[7] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Im-

age denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans-

actions on image processing, 16(8):2080–2095, 2007.

[8] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding

algorithm for linear inverse problems with a sparsity constraint. Communications

on Pure and Applied Mathematics, 57(11):1413–1457, 2004.

[9] Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of in-

verse problems, volume 375. Springer Science & Business Media, 1996.

[10] Jürgen Frikel and Markus Haltmeier. Sparse regularization of inverse problems by

operator-adapted frame thresholding. Trends in Mathematics, pages 163–178, 2020.

[11] Roland Glowinski. On alternating direction methods of multipliers: a historical

perspective. Modeling, simulation and optimization for science and technology,

pages 59–82, 2014.

[12] Housen Li, Johannes Schwab, Stephan Antholzer, and Markus Haltmeier.

Nett: Solving inverse problems with deep neural networks. Inverse Problems,

36(6):065005, 2020.
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