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Abstract

Medical image processing has been highlighted as an area where deep learning-based models
have the greatest potential. However, in the medical field in particular, problems of data
availability and privacy are hampering research progress and thus rapid implementation in
clinical routine. The generation of synthetic data not only ensures privacy, but also allows
to draw new patients with specific characteristics, enabling the development of data-driven
models on a much larger scale. This work demonstrates that three-dimensional generative
adversarial networks (GANs) can be efficiently trained to generate high-resolution medical
volumes with finely detailed voxel-based architectures. In addition, GAN inversion is success-
fully implemented for the three-dimensional setting and used for extensive research on model
interpretability and applications such as image morphing, attribute editing and style mix-
ing. The results are comprehensively validated on a database of three-dimensional HR-pQCT
instances representing the bone micro-architecture of the distal radius.

Keywords:
bone micro architecture, medical image synthesis, generative adversarial network, StyleGAN,
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1. Introduction

The adoption of Deep Learning (DL) into the broad field of medical imaging is an ongoing and
remarkable success story. From decision support systems in radiology [1], over segmentation
algorithms for complex organ and tumour regions [2, 3] to applications for image enhancement
and super-resolution [4], the use of learning-based techniques has led to many advances with
great potential for future applications. Such applications require the availability of large
amounts of training data to ensure a sufficient range of population variability and thus to
increase the reliability of the developed models [5]. When it comes to development of medical
applications, the availability of sufficient data in the relevant modalities is often limited. In
addition, sharing medical data with other institutions or even between different hospitals is
a major challenge for legal and privacy reasons [6]. These limitations make it challenging to
integrate existing modern methods into routine clinical practice.
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1.1. Generative modeling
A promising approach to overcome above mentioned challenges is the synthetic generation of
realistic targeted data samples. This not only ensures patient privacy, but also allows new
types of images with specific characteristics to be synthesised on demand, enabling medical
research on a much larger scale. Within the field of generative modelling, the advent of
generative adversarial networks (GANs) in 2014 can be seen as a major catalyst [7, 8]. GANs
have significantly advanced a wide range of life science applications [5, 9] as well as other areas
within medical imaging, including modality transfer [10, 11] and image segmentation [12].
Generative models approximate the probability density function underlying the available data
and can thus produce realistic representations of examples that differ from those in the train-
ing data [13]. GANs have achieved remarkable improvements in the quality of natural images
[14, 15], and also allow for good control of output diversity and resolution. In addition, the
introduction of GAN inversion techniques has allowed a variety of new possibilities beyond syn-
thesis, such as attribute manipulation, image transitions, and style mixing, to name a few [16].

A major challenge in using generative models for medical applications is the dimensionality
of the data. Existing GANs are mainly built and tested on large data sets of two-dimensional
images, such as the CelebA-HQ data set (30k face portraits) [14] or LSUN (10 scene and 20
object categories with at least 125k images in each category) [17]. Key research in medical
imaging, however, is often carried out on three-dimensional data (3D volumes). Compared to
two-dimensional data (2D images), this allows a more precise interpretation of the objects of
interest by exploiting their 3D structure and information. The number of voxels is typically
much higher than the number of pixels in the two-dimensional counterparts, and processing
3D networks becomes a major challenge. In addition, the lack of large amounts of patient
data further limits the applicability of state-of-the-art generative 2D models to the 3D case.

1.2. Case example: 3D Bone Image Synthesis
An example highlighting the need for 3D generative models is the analysis of bone micro-
architecture structure. High-resolution peripheral quantitative computed tomography
(HR-pQCT) is a 3D medical imaging technique capable of examining in vivo microscopic
bone structures in the extremities. Since its introduction in 2005 [18], its use in clinical
research into bone-related pathologies has grown rapidly due to the unprecedented resolution
of the images [19]. With 3 µSv to 5µSv effective radiation dose per scan, HR-pQCT is also
beneficial to patients compared to conventional (diagnostic) bone imaging techniques such
as dual-energy X-ray absorptiometry (DXA), while providing significantly more valuable
information about overall bone quality [20].

Despite the clear advantages, the current use of HR-pQCT still remains confined to research
applications. Major obstacles to its adoption into clinical diagnostic routine are the time-
consuming segmentation process [21, 22] and the large number of interdependent parameters
generated by bone morphometric analysis [20]. Both issues have been addressed by the use
of machine learning as detailed in recent publications [20, 22]. However, to our knowledge,
all existing large cohorts of patient data have been recruited for the study of bone-related
pathologies (see [23] as an example). This limits researchers attempting to train and verify
their models with HR-pQCT volumes of bones from young, non-pathological patients to small
data sets consisting of structures from only a few individuals.
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Figure 1: HR-pQCT bone samples of real patients with isotropic voxel size 60.7 µm. Volumes are cropped to
a region of interest (ROI) with varying number of voxels for each scan.

1.3. Main contributions
The results of this work provide a pathway to overcome such limitations by generating
arbitrary amounts of 3D volumes with a tailored set of relevant properties. It bridges the gap
between recent advances in two-dimensional generative modelling and their implementation
for high-resolution 3D medical volumes. To this end, the techniques of progressive growing
(ProGAN) [14] and style-based generation (StyleGAN) [15] are extended to the 3D case.
The GAN model and the entire training algorithm are developed from scratch in PyTorch
(https://pytorch.org/).

Our approach is implemented on a modest sample set of 404 bone volumes obtained through
HR-pQCT. The result is a powerful high-resolution bone image synthesis model of surprisingly
good quality and diversity. Specifically, 64 synthetic instances are assessed by two CT imaging
experts. In addition, advanced visual assessment metrics taken from computer vision are
implemented and compared to the expert assessment of the generated bone images. This can
be used as an expert-driven indicator of how a computer best mirrors human visual perception.

To gain a more detailed understanding of the structure of the 3D model, the latent codes of
the model are examined in further detail. Specific attributes of the data and the corresponding
latent inputs are used to learn directions in latent space that describe these attributes well. In
addition, GAN inversion techniques and latent code manipulation are explored to synthesise
customised high-dimensional medical images for attribute-driven data augmentation. The
results are supported by a large number of visualisations in the results section, which also
includes links to demonstration videos of the proposed analysis of 3D generative models. To
ensure reproducibility, exact details on the optimisation process and the network architectures
are summarised in the supplementary material. An extensive literature search revealed that
this is the first work on generating highly detailed bone micro-architecture in 3D. Furthermore,
this is the only work to date that investigates latent space properties and automated realism
assessment in 3D medical applications.
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2. Background

2.1. Generative Adversarial Networks
In basic terms, a generative adversarial model learns a link function between a low-dimensional
latent distribution and a high-dimensional data distribution. The GAN architecture [7] is
composed of a generator function G : Z → X and an adversarial counterpart f : X →
[0, 1]. The elements of latent space Z are commonly assumed to follow a standard normal
distribution, i.e., the generator takes a sample z ∈ Z, z ∼ N (0, 1) and maps it to image
space X . The generative function G is approximated by a neural network, by adaptation
of its parameters so that the output distribution of G assimilates the distribution of the
given training set. Simultaneously, the adversarial function f is optimized to distinguish
between generated and real instances. In a two-player min-max game, generator parameters
are updated to fool a steadily improving discriminator [10]. Already the initial versions of
GANs raised significant interest in the computer vision community, but proved to be unstable
due to the problem of the vanishing gradients and mode collapse. Improving the optimization
objective of the generative and adversarial function yielded highly successful modifications of
the simple two-player game, like Least-Squares-GAN [24], Spectral-Normalization-GAN [25]
or Wasserstein-GAN (WGAN) [26, 27]. Especially the WGAN approach had a crucial impact
on training controllability and substantially shaped GAN development. Instead of classifying
if a sample is real (f ≈ 1) or has been drawn by a neural network (f ≈ 0), Wasserstein GANs
use a new adversarial critic f : X → R to approximate the distance between the real and the
generator distribution.

2.2. High-Resolution Synthesis
The desire to draw synthetic images in higher resolutions led to introduction of progressive
GAN (ProGAN) [14], which uses a growing strategy for the network training process. The
core concept is to start with low resolution for both generative and adversarial functions
and then add new layers as training progresses, modelling fine high-frequency details [16].
ProGAN improved both the optimization speed and the stability, facilitating image generation
at a resolution of 10242 pixels. Controlling the style of synthetic images became increasingly
important and has been successfully assessed by style-based GAN (StyleGAN) [28]. The model
manipulates mean and variance per channel after each convolution in the generative function
to control the style of the output effectively and, similar to ProGAN, enables generation up to
a scale of 10242 pixels. Improvement of perceptual quality was achieved in StyleGAN2 [15] by
including weight demodulation, path length regularization and network architecture redesign.
Embedding adaptive discriminator augmentation in StyleGAN2-Ada [29] yielded reasonable
training of style-based generators also on limited data sets. Latest progress has been made
in StyleGAN3 [30] that proposed a new architecture to tackle aliasing effects during image
transition.

2.3. GAN Inversion
ProGAN and StyleGAN enable a meaningful link between image space and a corresponding
latent and style vectors, respectively. Beside the unconditioned generation of images, these
models may also be used for semantic manipulation and effective augmentation of existing
data. GAN inversion aims to invert a given instance from data space back into its latent
or style representation, so that the image can be reconstructed from the inverted code by
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the pretrained generative function. GAN inversion plays a critical role in bridging the real
and synthetic data domains, leading to significant advances in this fairly young research area
[16, 31, 32, 33]. So far, the rapidly-growing set of solutions for GAN inversion has been divided
into three sub-areas.
Learning-based inversion is characterized by the use of an additional encoding neural network
which predicts the latent code from an existing image such that the GAN-based reconstructed
counterpart resembles the original. Optimization-based methods directly minimize a pixel-wise
reconstruction loss to find a corresponding latent code for an existing image. The minimization
objective is commonly solved by gradient descent method. Both techniques lead to a quality-to-
time trade-off [16] – learning-based methods are generally associated with quality degradation
of the reconstruction, while optimization-based methods are time-consuming and strongly
depend on the initial value for the minimization algorithm. Therefore, hybrid methods are
the most widely adopted methods to date, using an encoder-based latent code as the starting
value for the subsequent optimization process.

2.4. GANs in Medical Imaging
GAN synthesis and inversion has already been adopted by the medical community, where
existing methods for inversion and manipulation are used in specific domains like computed
tomography (CT) or magnetic resonance imaging (MRI). In [34], the idea of domain-specific
GAN inversion [33] is incorporated to synthesize mammograms constrained on shape and
texture for psychophysical analysis on larger scale. In [5] a StyleGAN is trained on both,
CT and MRI instances, and it is shown how specific attributes can be targeted in the latent
space, enabling powerful methods for guided manipulation and modality transfer. While the
previously mentioned works only use 2D slices, [35] targets entire stacks of images, using a 3D-
StyleGAN to synthesize MRI images. Although this work demonstrates StyleGAN adoption to
3D data, the authors limit data dimension to 643 voxels – a size that is rarely sufficient in real-
life medical studies. Furthermore, no analysis on latent code interpretation and manipulation
has been made.
Most closely related to our study is the hierarchical amortized GAN (HA-GAN) proposed in
[36]. A hierarchical structure is implemented that simultaneously generates a low-resolution
version of the 3D dataset and a randomly selected sub-volume of the high-resolution counter-
part. In terms of 3D synthesis at high resolution, this work achieves tremendous performance.
However, the semantic meanings of the latent space are explored exemplary by implementing
two additional regression problems. Furthermore, the authors of HA-GAN do not emphasise
advanced feature extraction to model the realism of the generated samples. These aspects
clearly distinguish HA-GAN from the study presented here.

3. Methods

In the present work, two methods for volumetric synthesis are considered: 3D progressive
growing GAN (3D-ProGAN) and 3D style-based GAN (3D-StyleGAN). These methods are
described in section 3.2 and applied to a data set described in section 3.1. A short glance on
the used visual validation metrics is given section 3.3. Section 3.4 includes some important
details on model training and section 3.5 describes the GAN inversion process.
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3.1. Data Acquisition and Preprocessing
The data set used for experimentation was obtained from a study on bone health and
fracture healing conducted by the Medical University of Innsbruck in collaboration with
the department for trauma surgery at the University Hospital of Innsbruck. Subjects were
recruited from patients admitted to the emergency outpatient unit due to a fracture of the
distal radius. In the course of the study, the fractured and non-fractured radii were scanned
at six time points within one year. The non-fractured radii were scanned according to a fixed
distance protocol (see [19] for details), approximately 10mm from the distal end of the bone.
The intervals were at date of admission as well as after one week, three weeks, three months,
six months and 12 months – resulting in six distinct volumes per patient. Only volumes from
the non-fractured site were used from 98 patients, 515 3D volumes for the data set in total. A
fifth of the volumes was removed before training due to issues with scanning quality, reducing
the volume count further to 404 (cf. section 3.3).

Figure 2: Preprocessing. From left to right: The sample
is cropped or padded to a constant size of 168×576×448
voxels. The mirrored volume is used as padding. The
samples are considered with regard to the discrete co-
sine basis. Clipping the basis coefficients to range
[−1000, 1000] yields the noise volume. The padded re-
gions are replaced by the corresponding noise volume.

A strong variation of measured voxels be-
tween the individual measurements makes
the data processing a non-trivial task. While
168 axial slices (≈ 10mm) were obtained
for every sample, the extent in vertical
and horizontal direction ranges between
[397, 663] and [278, 529] voxels, respectively.
The processing pipeline consists of multiple
steps and is shown in Figure 2. Each sample
is cropped or padded to a constant size
of 168 × 576 × 448 voxels. The mirrored
image is used as padding, as conventional
zero padding is not appropriate in this case
due to the high levels of background noise.

The samples are considered with regard to the discrete cosine basis. Clipping the basis
coefficients to range [−1000, 1000] yields the noise images. The padded regions are replaced
by the corresponding noise image to avoid reflections of the bone itself at the edges. Due to
restricted hardware resources, patient data is sub-sampled by factor 2.

Following the described pre-processing pipeline, training data is transformed to a unique shape
of 84 × 288 × 224 with constant voxel spacing. To further enlarge the dataset, each scan is
divided into four overlapping slice stacks of size 32× 288× 224. This is followed by rotations
and zoom-in operations using angles in [−10, 10] and zoom factors in [1, 1.15], both uniformly
chosen at random. Using the augmentation pipeline described above, nearly 6800 training
instances are obtained from the 404 volumes considered.

3.2. Architecture
3D Progressive Growing GAN:
The generator G : Z → X maps from latent space to image space. To be more precise, a
normally distributed latent vector z ∈ Z ⊂ R512, z ∼ N (⃗0, Id) is sampled and forwarded to
a dense layer and a reshape layer with output size [c · 8, d1/32, d2/32, d3/32], where c denotes
the channel size of the method and d1, d2, d3 the spatial size of the training data. This is
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followed by nearest-neighbor upsampling and a block of consecutive 3D convolutional layers.
The generator is now called to reside on stage 1. A repeated application of the same block
(upsampling and convolutional block) yields the stage 2 output. In total the block is applied
5 times, yielding a final output resolution of [c, d1, d2, d3] at stage 5 (see Figure 3). In stages
3 to 5 the feature maps are decreased by factor 2, yielding channel size c at the last stage.
Layers shown in blue denote 3D convolution with channel size 1 to transfer learned features
to the image domain.

Stage 5
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Stage 1 . . . . . . . . . . . . . . . . . . . .  . . .
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Figure 3: Exemplary visualization of the progressive growing strategy for synthesis of 3D bone HR-pQCT data.

The smooth transition strategy of [14] is applied. As shown in Figure 3, the critic also operates
in different stage modes, where the final critic at stage 5 consists of five strided convolutional
layers with increasing channel size and a final output convolutional layer of channel size 1 (cf.
PatchGAN [37]). Layers shown in orange denote 3D convolution with channel size c to link
the image domain with the feature space.

3D Style-based GAN:
For style-based generation, the generative function can be described by the composition
G = G̃ ◦ Φ : Z → X . Similar to 3D-ProGAN, a normally distributed vector z ∈ Z ⊂ R512 is
sampled and then mapped by a mapping network Φ : N (⃗0, Id) → W to a learned intermediate
latent space W ⊂ R512 which more faithfully reflects the training data distribution compared
to standard normal distribution [31]. The latent code w = Φ(z) is converted to 15 different
style codes by learned affine transformations. Incorporating the progressive GAN described
previously, these 15 style vectors are fed to the generator G̃ : W → X using weight demodu-
lation [28], three styles at each stage. After each convolution layer, a noise map is sampled
of same spatial size, scaled by a single learnable parameter and added to each feature map.
The critic network for the style-based generator remains unchanged compared to 3D-ProGAN.
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For both methods, a video-demonstration of the progressive growing strategy can be viewed
online:

• https://www.youtube.com/watch?v=Dicd6cEaZp8 (3D-ProGAN)

• https://www.youtube.com/watch?v=TbKN0CPWvHE (3D-StyleGAN)

3.3. Validation
In order to quantitatively evaluate perceptual quality of intermediate training samples and final
results, Frechét Inception Distance (FID) [38] is measured between the distributions of real
and synthesized data. FID relies on features extracted from original and synthesized instances,
where the feature extractor plays an essential role and should be chosen appropriately for the
task. This study considers three feature extractors:

1. The originally proposed FID relies on the Inception v3 classification network that was
pre-trained on 2D images from ImageNet [39], so this measure is not directly applicable
to 3D data. Therefore, from each scan, two axial slices at random positions are selected
and used for FID validation. This measure is denoted by FIDinc.

2. Similar to HA-GAN [36], a 3D ResNet model pre-trained on 3D medical images [40]
is deployed to collect features of the 3D volumes directly. This version is denoted by
FIDres.

3. Each scan of the 98 patients was evaluated directly after measurement by a medical
expert for motion artefacts and given a visual grading score (VGS) score between 1
(best) and 5 (worst), as described by Sode et al. [41] and reiterated by Whittier et al.
[19]. Using this rating, a 3D ResNet classifier has been trained. FID using features by
the VGS classifier are denoted with FIDvgs. Images with a score of 4 or 5 were excluded
from GAN training, to avoid the network replicating motion artefacts.

The FID has been shown to reflect human opinion of perceptual quality quite well. However,
the FID may also increase when the perceptual quality is sufficiently good but the synthesis
variance is decreasing. Therefore, two additional indicators for synthesis quality are added
– precision and recall [42]. Precision quantifies the percentage of generated images that are
similar to training data (sufficient perceptual quality) while recall models the percentage of
training data that can be recreated by the generator (coverage of the real data distribution).
For precision and recall evaluation, only features extracted by the 3D medical ResNet model
are considered.

FID, precision and recall scores compare the distributions of two data sets. Thousands of in-
stances are sampled from both distributions and corresponding features are used to calculate
the scores. Since these are quantitative measures, assessing the plausibility of a single gener-
ated sample automatically is not possible and requires human intervention. To evaluate the
proposed bone synthesis with regard to the measure of realism for single instances, a realism
score [42] is adopted. More precisely, the degree of realism increases the closer the features
of a generated sample are to the manifold formed by the features of the real training data,
and decreases otherwise. Similar to FID calculation, three different methods are considered
for feature extraction, yielding three different realism scores: rinc, rres and rvgs. All three
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feature extraction methods are compared with the subjective assessment of two human ex-
perts on HR-pQCT imaging to determine the realism score that most closely matches human
perception.

3.4. Training
Similar to [14], Wasserstein loss with a two-sided gradient penalty [26] is deployed to train
both the generator and the critic in parallel. Let PX denote the data distribution of bone
images, G a generator in {3D-ProGAN, 3D-StyleGAN} and f : X → R the corresponding
critic. Then

ℓcritic = Ex∼PX
z∼N (0,Id)

[
f(G(z))− f(x) + p1 · ((∥∇x̃f(x̃)∥2 − 1))2 + p2 · f(x)2

]
(1)

ℓgenerator = Ez∼N (0,Id) [−f (G(z))] , (2)

where p1 and p2 denote the influence of the gradient and drift penalty, respectively. Note that
x̃ denotes arbitrary transition between real and generated domain [26]. The Adam optimizer
is used to minimize both objectives in (1) and (2). Optimal architecture and optimizer con-
figurations can be found in Appendix A and Appendix B, respectively. Approximately 10%
from the available training data in 3.1 was excluded for early detection of critic overfitting
during the training process.

3.5. GAN Inversion
In order to investigate properties and directions in the latent space, an encoder is built to
generate latent codes from existing images, i.e., inverting the generator that has been trained
in 3D-ProGAN and 3D-StyleGAN. The encoder has the reversed structure of the generator
(cf. Table A.2). Pixel feature normalization is removed and for 3D-StyleGAN inversion, two
fully connected layers with leaky ReLU activation are added at the bottom of the encoder.
Using a pre-trained generator G and the corresponding adversarial critic f , the optimization
of the encoder E : X → R512 closely follows [31].

For 3D-ProGAN a hybrid approach is used, i.e., an initial guess for the latent code is obtained
by propagation through the learned encoder while refinement of the given code is enabled by
a subsequent minimization task. Let fL−1 denote the penultimate convolution layer of the
adversarial critic f . Three loss terms for distortion (dist), perceptual similarity (perc) and
latent code plausibility (latent) are defined as follows:

ℓdist(x,E) =
0.5

#voxel

#voxel∑
p

(
xp −G (E(x))p

)2
, (3)

ℓperc(x,E) =
0.5

#features

#features∑
q

(
fL−1(x)q − fL−1 (G(E(x)))q

)2
, (4)

ℓlatent(x,E) =
1

1024

512∑
r=1

(E(x)r)
2 . (5)
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The risk functional for the encoder E and the optimization objective that yields the optimal
latent code zopt(x̂) for a given image x̂ ∈ X are defined as:

ℓencoder = Ex∼PX

[
ℓdist(x,E) + ℓperc(x,E) + ℓlatent(x,E)

]
, (6)

zopt(x̂) = argmin
z∈R512

[
1

#vox
∥x̂−G (z)∥22 +

1

#feat
∥fL−1(x̂)− fL−1 (G(z))∥22 +

1

512
∥z∥22

]
. (7)

During encoder training, the loss functional in (6) is minimized using Adam algorithm with
hyper-parameters (α, β1, β2) = (3 × 10−3, 0.5, 0.9). For the optimization in (7), the Adam
algorithm is again used for 100 updates with a learning rate equal to 7× 10−3.

For 3D-StyleGAN a similar hybrid approach is considered with a modified functional for
latent code plausibility. For style-based generation, the latent codes are not assumed to follow
a multivariate normal distribution but the sampled vectors are mapped to a learned latent
space W by the mapping Φ : N (⃗0, Id) → W and then forwarded to image space by generator
G̃ : W → X . Therefore, given a real image, the retrieved latent code should also reside in the
learned latent space. Analogous to [31], a latent discriminator DW : R512 → [0, 1] is trained to
distinguish between latent codes constructed by the encoder (fake codes) and by the mapping
Φ (real codes). The loss functional for latent code plausibility is adapted as follows:

ℓW(x,E) = − 1

512

512∑
r=1

log (DW (E(x))) . (8)

In the case of style-based bone synthesis, the risk functional for the encoder E and the opti-
mization objective that yields the optimal latent code zopt(x̂) are defined as:

ℓencoder = Ex∼PX

[
5 · ℓdist(x,E) + ℓperc(x,E) + 0.04 · ℓW(x,E)

]
, (9)

wopt(x̂) = argmin
w∈R512

[
1

#feat

∥∥∥fL−1(x̂)− fL−1

(
G̃(w)

)∥∥∥2
2

]
. (10)

Technical details and parameters for (9) and (10) are the same as for 3D-ProGAN.

4. Results & Discussion

4.1. Image Quality
During training, data quality of synthesized instances is assessed after every 1000 generator
updates via FID, precision and recall (cf. 3.3). Results are represented from stage five with
final data resolution 32 × 288 × 224. The truncation trick [14, 28] is deployed in Figure 4.
For 3D-ProGAN a truncated normal distribution with truncation level 1.8 is considered for
sampling the latent codes. For 3D-StyleGAN, a latent code w ∈ W is normalised such that
wnorm := w+ψ · (w−w) where w := Ez∼N (⃗0,Id)Φ(z) denotes the average latent code and ψ is
set to 0.8.
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Figure 4: Ten HR-pQCT volumes sampled from the proposed 3D-ProGAN (first row) and 3D-StyleGAN
(second row). Synthesized volumes have spatial size of 32× 288× 224.

Table 1: Quantitative results for different hyper-parameter settings. Con-
sidered hyper-parameters are truncation level (tr), channel size of the critic
(cc), channel size of the generator (cg), learning rate (α), number of critic
iterations per generator updates (nc).

tr cc cg α nc FIDinc FIDres FIDvgs prec rec

3D-ProGAN

5 16 20 4 × 10−3 5 23.54 0.044 0.182 0.91 0.91
1.8 16 20 4 × 10−3 5 23.39 0.045 0.233 0.95 0.86

5 12 20 4 × 10−3 5 25.98 0.080 0.333 0.94 0.90
1.8 12 20 4 × 10−3 5 27.05 0.044 0.454 0.96 0.83

5 20 20 3 × 10−3 7 21.59 0.040 0.219 0.95 0.86
1.8 20 20 3 × 10−3 7 23.31 0.259 0.274 0.97 0.82

3D-StyleGAN

1 16 20 4 × 10−3 6 26.29 1.478 0.157 0.94 0.89
0.8 16 20 4 × 10−3 6 28.99 1.343 0.258 0.98 0.78

1 16 16 2 × 10−3 6 25.91 0.198 0.329 0.93 0.86
0.8 16 16 2 × 10−3 6 28.11 0.883 0.571 0.97 0.75

1 16 20 4 × 10−3 5 26.32 0.290 0.151 0.93 0.85
0.8 16 20 4 × 10−3 5 29.07 0.509 0.206 0.96 0.70

Table 1 summarizes the re-
sults for the quantitative val-
idation metrics described in
3.3. For both methods, 3D-
ProGAN and 3D-StyleGAN,
the three most successful
runs with slightly differing
hyper-parameter settings
are considered for valida-
tion. With a FIDinc and
FIDres equal to 21.59 and
0.04, respectively, superior
performance with respect to
those two metrics is achieved
by 3D-ProGAN. In terms of
FIDvgs, 3D-StyleGAN signif-

icantly outperforms 3D-ProGAN. Interestingly, 3D-StyleGAN also yields the highest precision,
while in general higher recall is achieved by 3D-ProGAN. Indeed, comparing second row of
images (as produced by 3D-StyleGAN) with first row (3D-ProGAN) in Figure 4 clearly shows
superiority regarding perceptual quality for 3D-StyleGAN. It is recommended to view the
image enlarged to better observe the high-resolution quality and synthesized high-frequency
details.

It should be noted that the validation metric FIDres exhibits rather high variance, especially for
the 3D-StyleGAN method. Arguably, due to the noise in the training data and consequently
in the generated data, the features extracted by a 3D ResNet pre-trained on medical data [40]
may not be representative. Further samples with varying truncation levels are displayed in
Figures C.9 and C.10 (see Appendix).
During the evaluation process, a graphical user interface was implemented. The use of the
GUI for truncation-triggered data synthesis and download is visualised in short demo videos:
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• https://www.youtube.com/watch?v=K8UbsFTSaqE (3D-ProGAN)

• https://www.youtube.com/watch?v=4VPDUZ3Pbk8 (3D-StyleGAN)

4.2. Image Transition
The previous section demonstrates the ability to successfully generate high-resolution bone
CTs with high diversity. Generation by sampling latent codes can be used to extend data
sets in an unconditioned manner. In this case, the distribution of a given attribute in the
synthesised data is very likely to follow the distribution of the same attribute in the training
set. In this section, a method is proposed for synthesising data with respect to a particular
attribute.
Image transition aims to semantically interpolate two medical samples by propagating a
weighted sum of the corresponding latent codes through a fixed generative function. This is
suitable for investigating the plausibility of the inverted codes – for a good GAN inversion,
the spatial and semantic attributes should vary continuously during the transition from one
inverted code to the other inverted counterpart. If the underlying scans of both codes share
a certain attribute, all generated scans during the transition should also share this attribute.

For investigation, two specific properties of bone HR-pQCT data are targeted – trabecular
bone mineral density (Tb.BMD) and cortical bone mineral density (Ct.BMD). Ct.BMD and
Tb.BMD correspond to the average mineral density (i.e. X-ray beam attenuation) within
the voxel volume of the cortical and trabecular compartments, respectively, and is calculated
directly from the gray-scale image data [19]. These attributes have been shown to be sta-
tistically linked to bone fracture risk [20]. As the training data is comprised of images from
patients who experienced a bone fracture, the distribution of Ct.BMD and Tb.BMD values
in the data set is not normally distributed, exhibiting a slight bias.

Figure 5: First row: samples with weak trabecular bone mineralization (Tb.BMD). Second row: samples with
weak cortical bone mineralization (Ct.BMD). From left to right: x1, x0.251,2 , x

0.5
1,2, x

0.75
1,2 , x2.

Let x1, x2 ∈ X denote two samples from the training set with a small value for Tb.BMD.
The GAN inversion strategy discussed in 3.5 is applied for 3D-ProGAN. According to (7),
this yields z1 := zopt(x1) and z2 := zopt(x2). During transition, the generative function G of
3D-ProGAN is used to generate new samples xα1,2 = G (α · z1 + (1− α) · z2) for α ∈ [0, 1]. In
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Figure 5, the generated results are displayed in the first row. Obviously, the average bone
mineralization in the trabecular compartment is weak for all scans, while a smooth spatial
transition from x1 to x2 can be observed. The second row shows the same procedure repeated
with samples for x1 and x2 exhibiting small Ct.BMD values. The implemented GUI provides
an interactive way to use the image transition to synthesise new data for augmentation. A
demonstration video can be found here:
https://www.youtube.com/watch?v=j6Fh0a4r1Rw.

4.3. Style Mixing
The interpolation between scans discussed above allows for a smooth transition between dif-
ferent shapes while preserving certain attributes. However, it is also possible to fix a certain
property of the first patient (e.g. shape) and mix it with the given style of a second patient
(e.g. trabecular properties). The 3D-StyleGAN allows manipulation of the output of the gen-
erative function by using the style transfer capability of the network, where two latent codes
of the learned latent space W are included in the generation process. As described in 3.2, a
latent code w is converted by learned affine transformations into 15 different style codes, which
are fed into the generative function using weight demodulation. The idea of style mixing is
to feed the style codes based on the source scan and the codes from the target scan to the
generator.
Let s ∈ X and t ∈ X denote the source and target images of real patients, respectively.
Applying the GAN inversion strategy in 3.5 for 3D-StyleGAN yields ws := wopt(s) and
wt := wopt(t), where both inverted codes are forced to reside in W by the latent discriminator
(cf. (8)). 3D-StyleGAN consists of a generator G̃ : W15 → X that takes 15 different
style vectors based on latent input w and feeds them to the convolutional layers by weight
demodulation [28]. Variation of different styles is enabled by using style vectors based on
both, latent source code ws and latent target code wt. Let xas,t denote a generated sample of
3D-StyleGAN that used style vectors of ws for the first a convolution layers and style vectors
of wt for the remaining convolution layers.

Figure 6 shows sample results for this technique. The top-most row shows the same source
image three times, taken from a patient with a comparatively low Ct.BMD value. The second
row displays the target image with a high Ct.BMD value as well as the style mix results x3s,t,
x7s,t and x12s,t. It can be observed that x3s,t yields an interpolation of both shapes and a strong
cortical bone structure. Increasing the numbers of source style vectors to seven in x7s,t yields a
bone with similar shape to the source but with the cortical property of the target. This is an
essential result for this study – it is possible to apply a certain attribute from a target image
to the shape of another source. Only using three style vectors of the target scan in the last
three convolution layers (x12s,t) yields nearly no differences to the source scan.
The third and fourth row of figure 6 show the mix approach repeated for trabecular bone
mineral density. Again, x3s,t shows a transition between both shapes with small Tb.BMD
value, x7s,t yields a copy of the source image with significant changes in the trabecular
structure, and x12s,t is quite similar to the source image.

In conclusion, the use of the proposed 3D-StyleGAN for style mixing appears to be another
reliable tool for editing HR-pQCT attributes. It can be concluded that styles applied to low
resolution convolution layers determine spatial attributes of the bone, while codes applied to
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Figure 6: An illustration of the style combination based on the 3D-StyleGAN approach. For both examples,
the first row denotes the source image (real patient data). The second row contains the target image at the
left most position and style mix results where the style of the source is fed to the generator in the first three
convolutional layers, in the first seven layers and in the first twelve layers (from left to right).

higher resolution layers are responsible for variation in semantic features such as cortical or
trabecular condition.

4.4. Attribute Editing
The previous section demonstrated the impact of the latent representation on different res-
olutions in the generative function. To complete the analysis of the relationship between
latent and image space, the following section examines the interpretability of latent space. In
two-dimensional applications, generative networks have been shown to automatically learn to
represent multiple interpretable attributes in latent space [16, 32, 43]. These works suggest
to identify a semantically meaningful direction n ∈ R512 in order to achieve a manipulation
xedit = G (zopt(x) + αn).
According to an extensive literature research, this is the first study to leverage exploration of
meaningful directions to the 3D case in a unsupervised manner. The approach in [32] is used
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to find the optimal direction n∗:

n∗ = argmax
{n∈R512|nTn=1}

∥An∥22 . (11)

The matrix A denotes either the first linear layer in 3D-ProGAN, or the concatenation of
15 linear layers in 3D-StyleGAN, which convert the latent code into a style code. The term
optimal directions corresponds to a vector that causes large variations after projection by A.
Similar to [32], the top four directions n1, n2, n3, n4 are determined by using the eigenvectors
of ATA associated with the four largest eigenvalues.

Figure 7: 3D-ProGAN results for attribute editing. For each volumetric sample the center axial slice is
visualized. Left: Existing patient x. Middle: Generated samples G1(zopt(x) + αnk), k = 1, 2, 3, 4. Right:
difference G1(zopt(x)+αnk)−x, where red and blue voxels denote positive and negative residuals, respectively.

Figure 7 shows the latent space analysis applied to 3D-ProGAN. A subsequent analysis of the
manipulated images is necessary to understand which property each direction n1, n2, n3, n4
encodes. The first direction n1 shrinks the circumference of the cortical compartment while
leaving semantic properties unchanged (first row). n2 significantly enlarges the cortical com-
partment (second row). The third vector n3 results in a slight rotation of the bone while
n4, complementary to n1, enlarges the circumference of the cortical compartment (third and
fourth row). In all editing operations, the strength of manipulation α equals 4. All four direc-
tions may be used in data augmentation scenarios to increase bone size, change the cortical
thickness or rotate the sample. Interestingly, none of the four latent directions has a crucial
impact on the trabecular properties. These may be varied by the use of eigenvector associated
with smaller eigenvalues.

4.5. Expert Validation
An essential research goal for this work is to investigate computer-based metrics and their
ability to approximate the visual perception of human experts in the field. As already
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thoroughly discussed in 3.3, three realism scores, based on three different feature extraction
methods, are utilized: rinc, rres and rvgs. In contrast to the Frechét Inception Distance,
which measures the distance between distributions quantitatively, these realism scores enable
the evaluation of perceptual quality for a single sample. These metrics are evaluated using 64
synthetic volumetric images generated using the 3D-ProGAN method. These examples were
also evaluated by two CT imaging experts, focusing in particular on image sharpness, valid
image area, artefacts, contours and repetitive patterns in the trabecular structure. Based on
these criteria, a score of 1 to 5 was assigned, with a lower score indicating a better rating.
The results are depicted in Figure 8.
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Figure 8: Comparison between computer-based realism scores and the subjective rating by expert 1 (first row)
and expert 2 (second row) on HR-pQCT images. The horizontal axes denote the expert rating 1-5 while the
vertical axes shows the calculated realism scores. From left to right: rinc, rres, rvgs.

No clear correlation can be found between the expert’s opinion and the realism score based
on the Inception v3 classification network rinc. This is not the case for rres and rvgs. Both
realism scores are able to distinguish between low and high expert rated samples to some
extent. Especially for rres, which was generated using a 3D ResNet model pre-trained on
medical data for feature extraction, the correlation is quite clear for expert 1 and 2. However,
none of the considered realism metrics is able to accurately reflect the subjective opinion of
a human expert. Evaluation of a larger synthetic cohort, involvement of more experts, and a
wider range of feature extraction methods will be part of future research.

5. Conclusion & Future Impact

This work demonstrates that three-dimensional generative models can be successfully trained
to generate high resolution medical images of fine-detailed micro-architectures on voxel ba-
sis. In particular, progressive growing and style-based GAN architectures were shown to be
viable for the synthetic creation of realistic volumetric grey-scale images. Furthermore, GAN
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inversion techniques are used to map measurable image attributes to directions in a low-
dimensional latent space, which allows generated images to be parameterized with regard to
those attributes. Considering style-based generation, it is possible to mix the characteristics
of two source images, creating realistic results which combine selected properties in a con-
trollable manner. Given the modest number of images used in training when compared with
the volumes used for similar (2D) image generator networks, the results are definitely impres-
sive. While tell-tale artefacts in the background noise are easily spotted by human experts,
the overall structure and small-scale details of the generated bones closely follow the natural
patterns. Regarding the naturalism, the variation of the shape outlines is, in general, very
realistic and shows great variability.
Naturally, this work still has some limitations. For one, the implementation of an automated
realism assessment that mimics the perception of human experts mainly depends on an
appropriate feature extraction method. While this study has shown that commonly used
feature extraction models only approximate human perception to a certain extent, appropriate
feature computation still requires further research. While an automated realism score would
be greatly helpful for large batch image generation jobs, it does not impact the overall
usefulness of the generative models. It is also to be noted that the resolution of the generated
images, while already high for the standards of generative models, is still below that of original
HR-pQCT scans. However, this could be overcome by using a hierarchical method that, at
least for the high-resolution stages, generates only a subset of slices instead of the entire image.

Regarding the applications for research, the ability to synthetically generate realistic, param-
eterized medical images from a comparatively small set of originals has great potential for
enabling algorithmic research. The example at hand is particularly useful to illustrate the
possible advantages: as already stated in the introduction, HR-pQCT has well documented
advantages over current gold-standard diagnostic bone imaging modalities (i.e. DXA) with
regard to the resolution and information to be gained from the imaging. Due to current usage
being limited to research applications, obtaining sizeable cohorts of images with a distribution
which reflects the average population, especially in younger age groups, can be challenging.
However, such cohorts are invaluable for the assessment of potential algorithms for diagnostic
and processing applications. While the use of fully synthetic data sets for algorithm train-
ing may pose other risks, there are multiple scenarios where augmentation of sample volumes
with generated data can be a great advantage. For instance, the ability to customize image
attributes may be used to synthesize an optimally distributed test set. The mixing of style-
based properties, on the other hand, may be used as a novel form of data augmentation for
small data sets, with the ability to generate unique images which show a much larger variance
than would be possible with conventional (affine) augmentation techniques. As the ability to
rapidly implement graphical user interfaces enables for easy adoption by non-expert users, the
number of novel uses for image generation techniques can be expected to rise exponentially in
the future.
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Appendix A. Generator Configurations

Table A.2: Generator details for 3D-ProGAN
with method channel size equal 16. For
each layer, information on output channel size
(o.c.s), input layer (in) and corresponding ac-
tivation function (activ.) is provided. Each
convolution layer except out is followed by a
pixelwise feature normalization [14].

type o.c.s. in activ.

d1 Dense 8064 z

r1 Reshape 128 d1

u1 Upsample 128 r1

c11 Conv3× 3× 3 128 u1 swish

c12 Conv3× 3× 3 128 c11 swish

u2 Upsample 128 c12

c21 Conv3× 3× 3 128 u2 swish

c22 Conv3× 3× 3 128 c21 swish

u3 Upsample 128 c22

c31 Conv3× 3× 3 64 u3 swish

c32 Conv3× 3× 3 64 c31 swish

u4 Upsample 128 c32

c41 Conv3× 3× 3 32 u4 swish

c42 Conv3× 3× 3 32 c41 swish

u5 Upsample 128 c42

c51 Conv3× 3× 3 16 u5 swish

c52 Conv3× 3× 3 16 c51 swish

out Conv3× 3× 3 1 c52 sigmoid

Table A.3: Generator details for 3D-StyleGAN with
method channel size equal 16. For each layer, informa-
tion on output channel size (o.c.s), input layer (in) and
corresponding activation function (activ.) is provided.
The input layer cc denotes a constant layer, where the
scale is a learned parameter.

type o.c.s. in activ.

m1 Dense 512 z LReLU

m2 Dense 512 m1 LReLU

...
...

...
...

...

w Dense 128 m5 LReLU

s1 Dense 128 w

s2 Dense 128 w

...
...

...
...

s15 Dense 16 w

c11 Demod3× 3× 3 128 cc, s1

c12 Noise 128 c11 LReLU

up1 Upsample 128 c12

c13 Demod3× 3× 3 128 up1,s2

c14 Noise 128 c13 LReLU

c15 Demod3× 3× 3 128 c14,s3

c16 Noise 128 c15 LReLU

c21 Demod3× 3× 3 128 c16,s4

c22 Noise 128 c21 LReLU

up2 Upsample 128 c22

c23 Demod3× 3× 3 128 up2,s5

c24 Noise 128 c23 LReLU

c25 Demod3× 3× 3 128 c24,s6

c26 Noise 128 c25 LReLU

...
...

...
...

...

c51 Demod3× 3× 3 16 c46, s13

c52 Noise 16 c51 LReLU

up5 Upsample 16 c52

c53 Demod3× 3× 3 128 up5,s14

c54 Noise 16 c53 LReLU

c55 Demod3× 3× 3 128 c54,s15

c56 Noise 16 c55 LReLU

out Conv3× 3× 3 1 c56 sigmoid
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Appendix B. Training Details

The generators in 3D-ProGAN and 3D-StyleGAN have been trained using Adam opti-
mizer with hyper-parameters β1 = 0, β2 = 0.98, ϵ = 1e − 7 and different learning rates
α ∈ {k × 10−3 | k = 2, . . . , 6}. Gradient norm clipping with threshold 2 is applied at each
step. The concept of equalized learning rates are used, thus all convolution and dense layers
are initialized using standard normal distribution. For 3D-StyleGAN, the learning rates of
the latent space mapping network Φ are multiplied by factor 0.02.

The critic networks have been trained using Adam optimizer with hyper-parameters β1 =
0, β2 = 0.98, ϵ = 5e−5 and different learning rates α ∈ {k×10−3 | k = 2, . . . , 6}. One generator
update is followed by nc critic updates, where nc ∈ {5, 6, 7, 8} during the experiments. Training
at stage 1 is continued until the critic has seen 180k samples. Training on stage 2 is conducted
for 360k scans, while transition of the new layers takes place for the first 180k samples. The
procedure is continued until the model reaches final stage 5. Every time a new stage is reached,
the learning rates are multiplied by factor 0.85. The size of the minibatches for stage 1 to 5
equals 24, 24, 12, 6, 3. Training lasts approximately three days on a single NVIDIA A100 40GB
GPU.

Appendix C. Further Visualizations

In the following, more synthetic HR-pQCT instances sampled from both proposed methods,
3D-ProGAN and 3D-StyleGAN, are visualized. Each column represents a different level of
truncation. For both generation methods, greater use of the truncation trick increases image
quality, but at the cost of reduced synthesis diversity.
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Figure C.9: Synthetic HR-pQCT volumes sampled from the proposed 3D-ProGAN approach with varying
parameter for the truncated normal distribution. From left to right column: truncation parameter equals
{2.6, 1.8, 1, 0.2}.
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Figure C.10: Synthetic HR-pQCT volumes sampled from the proposed 3D-StyleGAN approach with varying
truncation levels. From left to right column: ψ = {1, 0.7, 0.4, 0.1}.
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