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Abstract

Compressed sensing (CS) is a powerful tool for reducing the amount of data
to be collected while maintaining high spatial resolution. Such techniques work
well in practice and at the same time are supported by solid theory. Standard CS
results assume measurements to be made directly on the targeted signal. In many
practical applications, however, CS information can only be taken from indirect
data h? = Wx? related to the original signal by an additional forward operator. If
inverting the forward operator is ill-posed, then existing CS theory is not applicable.
In this paper, we address this issue and present two joint reconstruction approaches,
namely relaxed `1 co-regularization and strict `1 co-regularization, for CS from
indirect data. As main results, we derive error estimates for recovering x? and h?.
In particular, we derive a linear convergence rate in the norm for the latter. To
obtain these results, solutions are required to satisfy a source condition and the
CS measurement operator is required to satisfy a restricted injectivity condition.
We further show that these conditions are not only sufficient but even necessary to
obtain linear convergence.

Keywords: Compressed sensing from indirect data, joint recovery, inverse prob-
lems, regularization, convergence rate, sparse recovery

1

ar
X

iv
:2

20
1.

00
33

8v
2 

 [
cs

.I
T

] 
 1

6 
M

ay
 2

02
2



1 Introduction

Compressed sensing (CS) allows to significantly reduce the amount of measurements
while keeping high spatial resolution [4, 7, 9]. In mathematical terms, CS requires
recovering a targeted signal x? ∈ X from data yδ = Mx? + zδ. Here M : X → Y is
the CS measurement operator, X, Y are Hilbert spaces and zδ ∈ Y is the unknown
data perturbation with ‖zδ‖ ≤ δ. CS theory shows that even when the measurement
operator is severely under-determinated one can derive linear error estimates ‖xδ−x?‖ =

O(δ) for the CS reconstruction xδ. Such results can be derived uniformly for all sparse
x? ∈ X assuming the restricted isometry property (RIP) requiring that ‖Mx1−Mx2‖ �
‖x1 − x2‖ for sufficiently sparse elements [5]. The RIP is known to be satisfied with
high probability for a wide range of random matrices [1]. Under a restricted injecticity
condition, related results for elements satisfying a range condition are derived in [11, 12].
In [10] a strong form of the source condition has been shown to be sufficient and necessary
for the uniqueness of `1 minimization. In [12] it is shown that the RIP implies the source
condition and the restricted injectivity for all sufficiently sparse elements.

1.1 Problem formulation

In many applications, CS measurements can only be made on indirect data h? = Wx?

instead of the targeted signal x? ∈ X, where W : X→ H is the forward operator coming
from a specific application at hand. For example, in computed tomography, the forward
operator is the Radon transform, and in microscopy, the forward operator is a convolution
operator. The problem of recovering x? ∈ X from CS measurements of indirect data
becomes

Recover x? from yδ = AWx? + zδ , (1.1)

where A : H → Y is the CS measurement operator. In this paper we study the stable
solution of (1.1).

The naive reconstruction approach is a single-step approach to consider (1.1) as standard
CS problem with the composite measurement operator M = AW. However, CS recovery
conditions (such as the RIP) are not expected to hold for the composite operator AW
due to the ill-posedness of the operator W. As an alternative one may use a two-
step approach where one first solves the CS problem of recovering Wx? and afterwards
inverts the operator equation of the inverse problem. Apart from the additional effort,
both recovery problems need to be regularized and the risk of error propagation is high.
Moreover, recovering h? ∈ H from sparsity alone suffers from increased non-uniqueness
if ran(W) ( H.

2



1.2 Proposed `1 co-regularization

In order to overcome the drawbacks of the single-step and the two-step approach, we
introduce two joint reconstruction methods for solving (1.1) using a weighted `1 norm
‖ · ‖1,κ (defined in (2.1)) addressing the CS part and variational regularization with an
additional penalty R for addressing the inverse problem part. More precisely, we study
the following two regularization approaches.

(a) Strict `1 co-regularization: Here we construct a regularized solution pair
(xδα, h

δ
α) with hδα = Wxδα by minimizing

Aα,yδ(x) :=
1

2
‖AWx− yδ‖2 + α

(
R(x) + ‖Wx‖1,κ

)
, (1.2)

where α > 0 is a regularization parameter. This is equivalent to minimizing ‖Ah−
yδ‖2/2 + α(R(x) + ‖h‖1,κ) under the strict constraint h = Wx.

(b) Relaxed `1 co-regularization: Here we relax the constraint h = Wx by
adding a penalty and construct a regularized solution (xδα, h

δ
α) by minimizing

Bα,yδ(x, h) :=
1

2
‖Wx− h‖2 +

1

2
‖Ah− yδ‖2 + α

(
R(x) + ‖h‖1,κ

)
. (1.3)

The relaxed version in particular allows some defect between Wxδα and hδα.

Under standard assumptions, both the strict and the relaxed version provide convergent
regularization methods [18].

1.3 Main results

As main results of this paper, under the parameter choice α � δ, we derive the linear
convergence rates (see Theorems 2.8, 2.7)

DRξ (xδα, x?) = O(δ) as δ → 0

‖hδα −Wx?‖ = O(δ) as δ → 0 ,

where DRξ is the Bregman distance with respect to R and ξ (see Definition 2.1) for strict
as well as for relaxed `1 co-regularization. In order to archive these results, we assume
a restricted injectivity condition for A and source conditions for x? and Wx?. These
above error estimates are optimal in the sense that they cannot be improved even in the
cases where A = Id, which corresponds to an inverse problem only, or the case W = Id

where (1.1) is a standard CS problem on direct data.

As further main result we derive converse results, showing that the source condition and
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the restricted injectivity condition are also necessary to obtain linear convergence rates
(see Theorem 3.4).

We note that our results and analysis closely follow [11, 12], where the source condition
and restricted injectivity are shown to be necessary and sufficient for linear convergence of
`1-regularization for CS on direct data. In that context, one considers CS as a particular
instance of an inverse problem under a sparsity prior using variational regularization
with an `1-penalty (that is, `1-regularization). Error estimates in the norm distance
for `1-regularization based on the source condition have been first derived in [14] and
strengthened in [11]. In the finite dimensional setting, the source condition (under a
different name) for `1-regularization has been used previously in [10]. For some more
recent development of `1-regularization and source conditions see [8].

Further note that for the direct CS problem where W = Id is the identity operator and
if we take the regularizer R = ‖ · ‖2/2, then the strict `1 co-regularization reduces to
the well known elastic net regression model [19]. Closely following the work [11], error
estimates for elastic net regularization have been derived in [13]. Finally, we note that
another interesting line of research in the context of `1 co-regularization would be the
derivation of error estimates under the RIP. While we expect this to be possible, such
an analysis is beyond the scope of this work.

2 Linear convergence rates

Throughout this paper X,Y and H denote separable Hilbert spaces with inner product
〈 · , · 〉 and norm ‖ · ‖. Moreover we make the following assumptions.

Assumption A.

(A.1) W : X→ H is linear and bounded.

(A.2) A : H→ Y is linear and bounded.

(A.3) R : X→ [0,∞] is proper, convex and wlsc.

(A.4) Λ is a countable index set.

(A.5) (φλ)λ∈Λ ∈ HΛ is an orthonormal basis (ONB) for H.

(A.6) (κλ)λ∈Λ ∈ [a,∞)Λ for some a > 0.

(A.7) ∃x ∈ X : R(x) +
∑

λ∈Λ κλ |〈φλ,Wx〉| <∞.

Recall that R is wlsc (weakly lower semi-continuous) if lim infk→∞R(xk) ≥ R(x) for all
(xk)k∈N ∈ XN weakly converging to x ∈ X. We write ran(W) := {Wx | x ∈ X} for the
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range of W and
supp(h) := {λ ∈ Λ | 〈φλ, h〉 6= 0}

for the support of h ∈ H with respect to (φλ)λ∈Λ. A signal h ∈ H is sparse if |supp(h)| <
∞. The weighted `1-norm ‖ · ‖1,κ : H→ [0,∞] with weights (κλ)λ∈Λ is defined by

‖h‖1,κ :=
∑
λ∈Λ

κλ |〈φλ, h〉| . (2.1)

We have dom(‖ · ‖1,κ) = {h ∈ H |
∑

λ∈Λ κλ |〈φλ, h〉| <∞}. For a finite subset of indices
Ω ⊆ Λ, we write

HΩ := span{φλ | λ ∈ Ω} (2.2)

iΩ : HΩ → H : h 7→ h (2.3)

AΩ := A ◦ iΩ : HΩ → Y (2.4)

πΩ : H→ HΩ : h 7→
∑
λ∈Ω

〈φλ, x〉φλ . (2.5)

Because (φλ)λ∈Λ ⊆ H is an ONB, every h ∈ H has the basis representation h =∑
λ∈Λ〈φλ, h〉φλ. Finally, ‖A‖ denotes the standard operator norm.

2.1 Auxiliary estimates

One main ingredient for our results are error estimates for general variational regular-
ization in terms of the Bregman distance. Recall that ξ ∈ X is called subgradient of a
functional Q : X→ [0,∞] at x? ∈ X if

∀x ∈ X : Q(x) ≥ Q(x?) + 〈ξ, x− x?〉 .

The set of all subgradients is called the subdifferential of Q at x? and denoted by ∂Q(x?).

Definition 2.1 (Bregman distance). Given Q : X → [0,∞] and ξ ∈ ∂Q(x?), the Breg-
man distance between x?, x ∈ X with respect to Q and ξ is defined by

DQξ (x, x?) := Q(x)−Q(x?)− 〈ξ, x− x?〉 . (2.6)

The Bregman distance is a valuable tool for deriving error estimates for variational
regularization. Specifically, for our purpose we use the following convergence rates result.

Lemma 2.2 (Variational regularization). Let M : X → Y be bounded and linear, let
Q : X→ [0,∞] be proper, convex and wlsc and let (x?, y?) ∈ X×Y satisfy Mx? = y? and
M∗η ∈ ∂Q(x?) for some η ∈ Y. Then for all δ, α > 0, yδ ∈ Y with ‖yδ − y?‖ ≤ δ and
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xδα ∈ argmin{‖Mx− yδ‖2/2 + αQ(x)} we have

‖Mxδα − yδ‖ ≤ δ + 2α‖η‖ (2.7)

DQM∗η(x
δ
α, x?) ≤ (δ + α‖η‖)2/(2α) . (2.8)

Proof. Lemma 2.2 has been derived in [12, Lemma 3.5]. Note that error estimates for
variational regularization in the Bregman distance have first been derived in [3].

For our purpose we will apply Lemma 2.2 where Q is a combination formed by R
and ‖ · ‖1,κ. We will use that the subdifferential of ‖ · ‖1,κ at h? consists of all η =∑

λ∈Λ ηλφλ ∈ H withηλ = κλ sign(〈φλ, h?〉) for λ ∈ supp(h?)

ηλ ∈ [−κλ, κλ] for λ /∈ supp(h?) .

Since the family (ηλ)λ∈Λ is square summable, ηλ = ±κλ can be obtained for only finitely
many λ and therefore ∂‖h?‖1,κ is nonempty if and only if h? is sparse.

Remark 2.3 (Weighted `1-norm). For η =
∑

λ∈Λ ηλφλ ∈ ∂‖h?‖1,κ define

Ω[η] := {λ ∈ Λ: |ηλ| = κλ} (2.9)

m[η] := min{κλ − |ηλ| : λ /∈ Ω[η]}. (2.10)

Then Ω[η] is finite and as (ηλ)λ∈Λ converges to zero, m[η] is well-defined with m[η] > 0.
Because ‖ · ‖1,κ is positively homogeneous it holds ‖h?‖1 = 〈η, h?〉. Thus, for h ∈ H,

D‖ · ‖1,κη (h, h?) = ‖h‖1,κ − 〈η, h〉

=
∑
λ∈Λ

(κλ |〈φλ, h〉| − ηλ〈φλ, h〉)

≥
∑
λ∈Λ

(κλ − |ηλ|) |〈φλ, h〉|

≥ m[η]
∑
λ/∈Ω[η]

|〈φλ, h〉| . (2.11)

Estimate (2.11) implies that if D‖ · ‖1,κη (hδα, h?) linearly converge to 0, then so does∑
λ/∈Ω[η]

∣∣〈φλ, hδα〉∣∣.
Lemma 2.4. Let Ω ⊆ Λ be finite, AΩ : HΩ → Y injective and h? ∈ HΩ. Then, for all
h ∈ H,

‖h− h?‖ ≤ ‖A−1
Ω ‖‖Ah−Ah?‖+ (1 + ‖A−1

Ω ‖‖A‖)
∑
λ/∈Ω

|〈φλ, h〉| . (2.12)
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Proof. BecauseHΩ is finite dimensional andAΩ is injective, the inverseA−1
Ω : ran(AΩ)→

HΩ is well defined and bounded. Consequently,

‖h− h?‖ ≤ ‖πΩh− h?‖+ ‖πΛ\Ωh‖

≤ ‖A−1
Ω ‖‖AΩ(πΩh− h?)‖+ ‖πΛ\Ωh‖

≤ ‖A−1
Ω ‖‖A(h− h?)−AπΛ\Ωh‖+ ‖πΛ\Ωh‖

≤ ‖A−1
Ω ‖‖Ah−Ah?‖+ (1 + ‖A−1

Ω ‖‖A‖)‖πΛ\Ωh‖ .

Bounding the `2-norm by the `1-norm yields (2.12).

Lemma 2.5. Let h? ∈ H be sparse, η ∈ ∂‖h?‖1,κ and assume that AΩ[η] : HΩ[η] → Y is
injective. Then, for h ∈ H,

‖h− h?‖ ≤ ‖A−1
Ω[η]‖‖Ah−Ah?‖+

1 + ‖A−1
Ω[η]‖‖A‖
m[η]

D‖ · ‖1,κη (h, h?) . (2.13)

Proof. Follows form (2.12), (2.11).

2.2 Relaxed `1 co-regularization

First we derive linear rates for the relaxed model Bα,yδ . These results will be derived
under the following condition.

Condition 1.

(1.1) (x?, h?, y?) ∈ X×H× Y with Wx? = h?, Ah? = y?.

(1.2) ∃u ∈ H : W∗u ∈ ∂R(x?)

(1.3) ∃v ∈ Y : A∗v − u ∈ ∂‖h?‖1,κ

(1.4) AΩ[A∗v−u] is injective.

Conditions (1.2), (1.3) are source conditions very commonly assumed in regularization
theory. From (1.3) it follows that h? is sparse and contained in HΩ[A∗v−u]. Condition
(1.4) is the restricted injectivity condition.

Remark 2.6 (Product formulation). We introduce the operator M : X × H → H × Y
and the functional Q : X×H→ [0,∞],

M(x, h) := (Wx− h,Ah) (2.14)

Q(x, h) := R(x) + ‖h‖1,κ . (2.15)
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Using these notions, one can rewrite the relaxed co-regularization functional Bα,yδ as

Bα,yδ(x, h) =
1

2
‖M(x, h)− (0, yδ)‖2 + αQ(x, h).

Because W and A are linear and bounded, M is linear and bounded, too. Moreover,
since R and ‖ · ‖1,κ are proper, convex and wlsc, Q has these properties, too. The
subdifferential ∂Q(x?, h?) is given by ∂Q(x?, h?) = ∂R(x?) × ∂‖h?‖1,κ. The Bregman
distance with respect to ξ = (ξ1, ξ2) is given by

DQ(ξ1,ξ2)((x, h), (x?, h?)) = DRξ1(x− x?) +D‖·‖1,κξ2
(h− h?) . (2.16)

(1.2), (1.3) can be written as M∗(u, v) ∈ ∂Q(x?, h?).

Here comes our main estimate for the relaxed model.

Theorem 2.7 (Relaxed `1 co-regularization). Let Condition 1 hold and consider the
parameter choice α = Cδ for C > 0. Then for all yδ ∈ Y with ‖yδ − y?‖ ≤ δ and all
(xδα, h

δ
α) ∈ argminBα,yδ we have

DRW∗u(xδα, x?) ≤ c(u,v)δ, (2.17)

‖hδα − h?‖ ≤ d(u,v)δ , (2.18)

where

c(u,v) := (1 + C‖(u, v)‖)2/(2C)

d(u,v) := 2‖A−1
Ω[A∗v−u]‖(1 + C‖(u, v)‖) +

1 + ‖A−1
Ω[A∗v−u]‖‖A‖
m[η]

c(u,v).

Proof. According to (1.3), η := A∗v−u ∈ ∂‖h?‖1,κ, which implies that Ω[η] is finite and
h? ∈ HΩ[η]. With (1.4) and Lemma 2.5 we therefore get

‖hδα − h?‖ ≤ ‖A−1
Ω[η]‖‖Ah

δ
α − y?‖+

(1 + ‖A−1
Ω[η]‖‖A‖)
m[η]

D‖ · ‖1,κη (hδα, h?) . (2.19)

Using the product formulation as in Remark 2.6, according to (1.2), (1.3) the source
condition M∗(u, v) ∈ ∂Q(x?, h?) holds. By Lemma 2.2 and the choice α = Cδ we obtain

‖M(xδα, h
δ
α)− (0, yδ)‖ ≤ (1 + 2C‖(u, v)‖) δ

DQM∗(u,v)

(
(xδα, h

δ
α), (x?, h?)

)
≤ (1 + C‖(u, v)‖)2/(2C) δ .

Using (2.14), (2.15), (2.16) we obtain

‖Ahδα − yδ‖ ≤ (1 + 2C‖(u, v)‖) δ
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‖Wxδα − hδα‖ ≤ (1 + 2C‖(u, v)‖) δ

D‖ · ‖1,κη (hδα, h?) ≤ (1 + C‖(u, v)‖)2 δ/(2C)

DRW∗u(xδα, x?) ≤ (1 + C‖(u, v)‖)2 δ/(2C) .

Combining this with (2.19) completes the proof.

If R is totally convex, then convergence in the Bregman distance implies convergence in
the norm [18, Lemma 3.31]. For example, for the standard penalty R = ‖ · ‖2/2 from
Theorem 2.7 one deduces the rate ‖xδα − x?‖ = O(

√
δ).

2.3 Strict `1 co-regularization

Next we analyze the strict approach (1.2). We derive linear convergence rates under the
following condition.

Condition 2.

(2.1) (x?, y?) ∈ X× Y satisfies AWx? = y?.

(2.2) ∃ν ∈ Y : W∗A∗ν ∈ ∂(R+ ∂‖W( · )‖1,κ)(x?)

(2.3) ∃ξ ∈ ∂R(x?) ∃η ∈ ∂‖ · ‖1(Wx?) : W∗A∗ν = ξ + W∗η

(2.4) AΩ[η] is injective.

Condition (2.2) is a source condition for the forward operator WA and the regularization
functional R + ∂‖W( · )‖1,κ. Condition (2.3) assumes the splitting of the subgradient
W∗A∗ν = ξ + W∗η into subgradients ξ ∈ ∂R(x?) and W∗η ∈ ∂‖W( · )‖1(x?). The
assumption (2.4) is the restricted injectivity.

Theorem 2.8 (Strict `1 co-regularization). Let Condition 2 hold and consider the pa-
rameter choice α = Cδ for C > 0. Then for ‖yδ − y?‖ ≤ δ and xδα ∈ argminAα,yδ we
have

DRξ (xδα, x?) ≤ c(ν,η)δ (2.20)

‖Wxδα −Wx?‖ ≤ d(ν,η)δ , (2.21)

with the constants

c(ν,η) := (1 + C‖ν‖)2/(2C)

d(ν,η) := 2‖A−1
Ω[η]‖(1 + C‖ν‖) +

1 + ‖A−1
Ω[η]‖‖A‖
m[η]

c(ν,η) .
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Proof. Condition 2 implies that Ω[η] finite and Wx? ∈ HΩ[η]. From Lemma 2.5 we
obtain

‖Wxδα−Wx?‖ ≤ ‖A−1
Ω[η]‖‖AWxδα−y?‖+

(1 + ‖A−1
Ω[η]‖‖A‖)
m[η]

D‖ · ‖1η (Wxδα,Wx?). (2.22)

According to (2.2) and Lemma 2.2 applied with M = AW and Q = R+ ‖W( · )‖1,κ we
obtain

‖AWxδα − yδ‖ ≤ (1 + 2C‖ν‖) δ (2.23)

DQW∗A∗ν

(
xδα, x?

)
≤ (1 + C‖ν‖)2/(2C) δ. (2.24)

From (2.2) we obtain DQW∗A∗ν = D‖ · ‖1η (W( · ),W( · )) + DRξ . Together with (2.22),
(2.23), (2.23) this show the claim.

3 Necessary Conditions

In this section we show that the source condition and restricted injectivity are not only
sufficient but also necessary for linear convergence of relaxed `1 co-regularization. In the
following we restrict ourselves to the `1-norm

‖ · ‖1 := ‖ · ‖1,1 =
∑
λ∈Λ

|〈φλ, · 〉| .

We denote by M and Q the product operator and regularizer defined in (2.14), (2.15).
We call (x?, h?) a Q-minimizing solution of M(x, h) = (0, y?) if x? ∈ argmin{Q(x) |
M(x, h) = (0, y?)}. In this section we fix the following list of assumptions which is
slightly stronger than Assumption A.

Assumption B.

(B.1) W : X→ H is linear and bounded with dense range.

(B.2) A : H→ Y is linear and bounded.

(B.3) R : H→ [0,∞] is proper, strictly convex and wlsc.

(B.4) Λ is countable index set.

(B.5) (φλ)λ∈Λ ⊆ H is an ONB of H.

(B.6) ∀λ ∈ Λ: φλ ∈ ran(W).

(B.7) ∃x ∈ X : R(x) + ‖Wx‖1 <∞.
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(B.8) R is Gateaux differentiable at x? if (x?, h?) is the unique Q-minimizing solution
of M(x, h) = (0, y?).

Under Assumption B, the equation M(x, h) = (0, y?) has a unique Q-minimizing solu-
tion.

Condition 3.

(3.1) (x?, h?, y?) ∈ X×H× Y with Ah? = y?, Wx? = h?.

(3.2) ∃u ∈ H : W∗u ∈ ∂R(x?)

(3.3) ∃v ∈ Y : A∗v − u ∈ ∂‖h?‖1

(3.4) ∀λ /∈ supp(h?) : |〈φλ,A∗v − u〉| < 1

(3.5) Asupp[h?] is injective.

3.1 Auxiliary results

Condition 3 is clearly stronger than Condition 1. Below we will show that these con-
ditions are actually equivalent. For that purpose we start with several lemmas. These
results are in the spirit of [12] where necessary conditions for standard `1 minimization
have been derived.

Lemma 3.1. Assume that (x?, h?) ∈ X × H is the unique Q-minimizing solution of
M(x, h) = (0, y?), let u ∈ H satisfy W∗u = ∂R(x?) and assume that h? is sparse. Then:

(a) The restricted mapping Asupp(h?) is injective.

(b) For every finite set Ω1 with supp(h?) ∩ Ω1 = ∅ there exists θ ∈ Y such that

∀λ ∈ supp(h?) : 〈φλ,A∗θ − u〉 = sign(〈φλ, h?〉)

∀λ ∈ Ω1 : |〈φλ,A∗θ − u〉| < 1 .

Proof. (a): Denote Ω := supp(h?). After possibly replacing some basis vectors by −φλ,
we may assume without loss of generality that sign(〈φλ, h?〉) = 1 for λ ∈ Ω. Since
(x?, h?) is the unique Q-minimizing solution of M(x, h) = (0, y?), it follows that

Q(x?, h?) < Q(x? + tx, h? + tWx)

for all t 6= 0 and all x ∈ X with w := Wx ∈ ker(A) \ {0}. Because Ω is finite, the
mapping

t 7→ ‖h? + tw‖1 =
∑
λ∈Ω

|〈φλ, h?〉+ t〈φλ, w〉|+ |t|
∑
λ/∈Ω

|〈φλ, w〉|

11



is piecewise linear. Taking the one-sided directional derivative of Q with respect to t, we
have

0 < lim
t↓0

Q(x? + tx, h? + tw)−Q(x?, h?)

t

= lim
t↓0

‖h? + tw‖1 − ‖h?‖1
t

+ lim
t↓0

R(x? + tx)−R(x?)

t

=
∑
λ∈Ω

〈φλ, w〉+
∑
λ/∈Ω

|〈φλ, w〉|+ 〈W∗u, x〉. (3.1)

For the last equality we used that 〈φλ, h?〉 = 1 for all λ ∈ Ω, that R is Gateaux
differentiable and that W∗u = ∂R(x?). Inserting −(x,w) instead of (x,w) in (3.1)
we deduce ∑

λ/∈Ω

|〈φλ, w〉| >
∣∣∣∑
λ∈Ω

〈φλ, w〉+ 〈u,w〉
∣∣∣ (3.2)

for all w ∈ (ker(A) ∩ ran(W)) \ {0}. In particular,

∀w ∈ (ker(A) ∩ ran(W)) \ {0} :
∑
λ/∈Ω

|〈φλ, w〉| > 0 (3.3)

and consequentially ker(A) ∩ ran(W) ∩HΩ = {0}. Because φλ ∈ ran(W) for all λ ∈ Λ

and Ω is finite, we have HΩ ⊆ ran(W). Therefore ker(A)∩HΩ = {0} which verifies that
AΩ is injective.

(b): Let Ω1 ⊆ Λ be finite with Ω ∩Ω1 = ∅. Inequality (3.2) and the finiteness of Ω ∪Ω1

imply the existence of a constant µ ∈ (0, 1) such that, for w ∈ ker(A) ∩HΩ∪Ω1 ,

µ
∑
λ∈Ω1

|〈φλ, w〉| ≥
∣∣∣∑
λ∈Ω

〈φλ, w〉+ 〈u,w〉
∣∣∣ . (3.4)

Assume for the moment ξ ∈ ran(A∗Ω∪Ω1
). Then ξ = A∗Ω∪Ω1

θ for some θ ∈ Y. Due to
(B.5), πΩ is an orthogonal projection and the adjoint of the embedding iΩ. The identity
πΩ∪Ω1 ◦A∗ = (A ◦ iΩ∪Ω1)∗ = A∗Ω∪Ω1

implies that

∀λ ∈ Ω ∪ Ω1 : 〈φλ, ξ〉 = 〈φλ,A∗Ω∪Ω1
θ〉 = 〈φλ,A∗θ〉 .

By assumption, HΩ∪Ω1 is finite dimensional and therefore ran(A∗Ω∪Ω1
) = ker(AΩ∪Ω1)⊥ ⊆

HΩ∪Ω1 , where ( · )⊥ denotes the orthogonal complement in HΩ∪Ω1 . Consequently we have
to show the existence of ξ ∈ (ker(AΩ∪Ω1)⊥ ⊆ HΩ∪Ω1 with

〈φλ, ξ〉 = 1 + uλ ∀λ ∈ Ω,

〈φλ, ξ〉 ∈ (uλ − 1, uλ + 1) ∀λ ∈ Ω1,
(3.5)

where uλ := 〈φλ, u〉.
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Define the element z ∈ HΩ∪Ω1 by 〈φλ, z〉 = 1 +uλ for λ ∈ Ω and 〈φλ, z〉 = uλ for λ ∈ Ω1.
If z ∈ (ker(A))⊥, then we choose ξ := z and (3.5) is fulfilled. If, on the other hand,
z /∈ (ker(A))⊥, then dim(ker(AΩ∪Ω1)) =: s ≥ 1 and there exists a basis (w(1), . . . , w(s))

of ker(AΩ∪Ω1) such that

1 = 〈z, w(i)〉

=
∑
λ∈Ω

(1 + uλ)〈φλ, w(i)〉+
∑
λ∈Ω1

uλ〈φλ, w(i)〉

=
∑
λ∈Ω

〈φλ, w(i)〉+
∑

λ∈Ω∪Ω1

uλ〈φλ, w(i)〉+
∑

λ/∈Ω∪Ω1

uλ〈φλ, w(i)〉

=
∑
λ∈Ω

〈φλ, w(i)〉+ 〈u,w(i)〉 ∀i ∈ {1, . . . , s}

(3.6)

Consider now the constrained minimization problem on HΩ1

max
λ∈Ω1

∣∣〈φλ, z′〉∣∣→ min

subject to 〈z′, w(i)〉 = −1 for i ∈ {1, . . . , s}.
(3.7)

Because of the equality 1 = 〈z, w(i)〉, the admissible vectors z′ in (3.7) are precisely
those for which ξ := z + z′ ∈ (ker(AΩ∪Ω1))⊥. Thus, the task of finding ξ satisfying (3.5)
reduces to showing that the value of (3.7) is strictly smaller that 1. Note that the dual
of the convex function z′ 7→ maxλ∈Ω1 |〈φλ, z′〉| is the function

max
Ω1

3 z′ 7→

0 if
∑

λ∈Ω1
|〈φλ, z′〉| ≤ 1

+∞ if
∑

λ∈Ω1
|〈φλ, z′〉| > 1.

(3.8)

Recalling that 〈z′, w(i)〉 =
∑

λ∈Ω1
〈φλ, z′〉φλw(i), it follows that the dual problem to (3.7)

is the following constrained problem on Rs:

S(p) := −
s∑
i=1

pi → min

subject to
∑
λ∈Ω1

∣∣∣ s∑
i=1

pi〈φλ, w(i)〉
∣∣∣ ≤ 1 .

(3.9)

From (3.6) we obtain that

∑
λ∈Ω

s∑
i=1

pi〈φλ, w(i)〉+

s∑
i=1

pi〈u,w(i)〉 =

s∑
i=1

pi = −S(p)

for every p ∈ Rs. Taking w =
∑s

i=1 piw
(i) ∈ ker(A) ∩ HΩ∪Ω1 , inequality (3.4) therefore
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implies that for every p ∈ Rs there exist µ ∈ (0, 1) such that

µ
∑
λ∈Ω1

∣∣∣ s∑
i=1

pi〈φλ, w(i)〉
∣∣∣

≥
∣∣∣∑
λ∈Ω

s∑
i=1

pi〈φλ, w(i)〉+
s∑
i=1

pi〈u,w(i)〉
∣∣∣

=
∣∣∣ s∑
i=1

pi

∣∣∣ = |S(p)| .

From (3.9) it follows that |S(p)| ≤ µ for every admissible vector p ∈ Rs for (3.9). Thus
the value of S(p) in (3.9) is greater than or equal to −µ. Since the value of the primal
problem (3.7) is the negative of the dual problem (3.9), this shows that the value of (3.7)
is at most µ. As µ ∈ (0, 1), this proves that the value of (3.7) is strictly smaller than 1

and, as we have shown above, this proves assertion (3.5).

Lemma 3.2. Assume that (x?, h?) ∈ X × H is the unique Q-minimizing solution of
M(x, h) = (0, y?) and suppose W∗u ∈ ∂R(x?), A∗v−u ∈ ∂‖h?‖1 for some (u, v) ∈ H×Y.
Then (x?, h?) satisfies Condition 3.

Proof. The restricted injectivity condition (3.5) follows from Lemma 3.1. Conditions
(3.1), (3.2) are satisfied according to assumption. Define now

Ω1 := Ω[A∗v − u] \ supp(h?)

= {λ ∈ Λ \ supp(h?) | |〈φλ,A∗v − u〉| = 1}.

Because (〈φλ,A∗v − u〉)λ∈Λ ⊆ `2(Λ), the set Ω1 is finite. Let θ ∈ Y be as in Lemma
3.1 (b) and set

‖θ‖∞ := sup{|〈φλ,A∗θ − u〉| | λ ∈ Λ}

a := (1−m[A∗v − u])/(2‖θ‖∞)

v̂ := (1− a)v + aθ .

Note that a ∈ (0, 1/2]. Then the following hold:

• If λ ∈ supp(h?), then

〈φλ,A∗v̂ − u〉 = (1− a)〈φλ,A∗v − u〉+ a〈φλ,A∗θ − u〉 = sign(〈φλ, h?〉).

• If λ ∈ Ω1, then

|〈φλ,A∗v̂ − u〉| ≤ (1− a) |〈φλ,A∗v − u〉|+ a |〈φλ,A∗θ − u〉| < (1− a) + a = 1.
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• If λ ∈ Λ \ (supp(h?) ∪ Ω1), then

|〈φλ,A∗v̂ − u〉|

≤ (1− a)m[A∗v − u] + a‖θ‖∞
≤ m[A∗v − u] + (1−m[A∗v − u])/2

= (1 +m[A∗v − u])/2 < 1.

Consequently (u, v̂) satisfies (3.3), (3.4).

Lemma 3.3. Let (δk)k∈N ∈ (0,∞)N converge to 0, (yk)k∈N ∈ YN satisfy ‖yk − y?‖ ≤ δk
and xk ∈ argminBα,yδ with αk ≥ Cδk for C > 0. Then ‖xk−x?‖ → 0 and ‖Mxk−yk‖ =

O(δk) as k →∞ imply ran(M∗) ∩ ∂Q(x?) 6= ∅.

Proof. See [12, Lemma 4.1]. The proof given there also applies to our situation.

3.2 Main result

The following theorem in the main results of this section and shows that the source
condition and restricted injectivity are in fact necessary for linear convergence.

Theorem 3.4 (Converse results). Let (x?, h?, y?) ∈ X × H ∈ Y satisfy Ah? = y? and
Wx? = h? and let Assumption 3 hold. Then the following statements are equivalent:

(i) (x?, h?, y?) satisfies Condition 3.

(ii) (x?, h?, y?) satisfies Condition 1.

(iii) ∃ξ ∈ ∂R(x?) ∀C > 0 ∃c1, c2 > 0: For α = Cδ, ‖yδ − y?‖ ≤ δ, and (xδα, h
δ
α) ∈

argminBα,yδ we have

DRξ (xδα, x?) ≤ c1δ (3.10)

‖hδα − h?‖ ≤ c2δ . (3.11)

(iv) (x?, h?) is the unique Q-minimizing solution of M(x, h) = (0, y?) and ∀C > 0

∃c3, c4 > 0 with

‖Ahδα − y?‖ ≤ c3δ (3.12)

‖Wxδα − hδα‖ ≤ c4δ (3.13)

for ‖y − y?‖ ≤ δ, α = Cδ, (xδα, h
δ
α) ∈ argminBα,yδ .
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Proof. Item (i) obviously implies Item (ii). The implication (ii) ⇒ (iii) has been shown
in Theorem 2.7. The rate in (iii) implies that h? is the second component of every Q-
minimizing solution of M(x, h) = (0, y?). As R is strictly convex, (3.10) implies that
(x?, h?) is the unique Q-minimizing solution of M(x, h) = (0, y?). The rate in (3.12)
follows trivially from (3.11), since A is linear and bounded. To prove (3.13) we choose
u ∈ H with ∂R(x?) = W∗u and proceed similar as in the proof of Lemma 2.2. Because
(xδα, h

δ
α) ∈ argminBα,yδ ,

‖Wxδα − hδα‖2 + ‖Ahδα − yδ‖2 + 2αR(xδα) + 2α‖hδα‖1
≤ ‖h? − hδα‖2 + ‖Ahδα − yδ‖2 + 2αR(x?) + 2α‖hδα‖1

and therefore
‖Wxδα − hδα‖2 ≤ (c2δ)

2 + 2α(R(x?)−R(xδα)) .

By the definition of the Bregman distance

R(x?)−R(xδα)

≤ −DRW∗u(xδα, x?)− 〈u,Wxδα − h?〉

≤ −DRW∗u(xδα, x?) + ‖u‖‖Wxδα − h?‖

≤ −DRW∗u(xδα, x?) + ‖u‖‖Wxδα − hδα‖+ ‖u‖c2δ.

Since the Bregman distance is nonnegative, it follows

0 ≥ ‖Wxδα − hδα‖2 − 2α‖u‖‖Wxδα − hδα‖ − 2α‖u‖c2δ − (c2δ)
2

=
(
‖Wxδα − hδα‖+ c2δ

)
·
(
‖Wxδα − hδα‖ − 2α‖u‖ − c2δ

)
and hence ‖Wxδα − hδα‖ ≤ (2C‖u‖+ c2)δ.

Now let (iv) hold and ‖y − yk‖ ≤ δk, δk → 0. Choose αk = Cδk and (xk, hk) ∈
argminBαk,yk . The uniqueness of (x?, h?) implies ‖(xk, hk) − (x?, h?)‖ → 0 as k → ∞,
see [11, Prop. 7]. Moreover,

‖(Wxk − hk,Ahk − yk)‖ ≤ ‖Wxδα − hk‖+ ‖Ahk − yk‖ ≤ (c4 + c3 + 1)δk .

Lemma 3.3 implies ran(M∗) ∩ ∂R(x?, h?) 6= ∅, which means that there exists (u, v) ∈
H × Y such that W∗u ∈ ∂R(x?) and A∗v − u ∈ ∂‖h?‖1. Proposition 3.2 finally shows
that Condition 3 holds, which concludes the proof.
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3.3 Numerical example

We consider recovering a function from CS measurements of its primitive. The aim of this
elementary example is to point out possible implementation of the two proposed models
and supporting the linear error estimates. Detailed comparison with other methods and
figuring out limitations of each method is subject of future research.

Figure 1: Top: x? (left) and Wx? (right). Middle: Reconstruction using relaxed
(left) and strict (right) `1 co-regularization. Bottom: ‖x? − xδα‖2/2 (left) and
‖h? − hδα‖ (right) as a functions of noise level δ.

The discrete operator W : RN → RN is taken as a discretization of the integration
operator L2[0, 1] → L2[0, 1] : f 7→

∫ t
0 f . The CS measurement matrix A : Rm×N is

taken as random Bernoulli matrix with entries 0, 1. We apply strict and relaxed `1 co-
regularization withR = ‖ · ‖2/2, (φλ)λ∈Λ as Daubechies wavelet ONB with two vanishing
moments and κλ = 1. For minimizing the relaxed `1 co-regularization functional we apply
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the Douglas-Rachford algorithm [6, Algorithm 4.2] and for strict `1 co-regularization we
apply the ADMM algorithm [6, Algorithm 6.4] applied to the constraint formulation
argminx,h{‖AWx− yδ‖2/2 + α‖x‖2/2 + α‖h‖1 |Wx = h}.

Results are shown in Figure 1. The top row depicts the targeted signal x? ∈ RN (left)
for which Wx? is sparsely represented by (φλ)λ∈Λ (right). The middle row shows re-
constructions using the strict and the relaxed co-sparse regularization from noisy data
‖y − y?‖ ≤ 10−5. The bottom row plots DRx?(x

δ
α, x?) and ‖hδα −Wx?‖ as functions

of the noise level. Note that for R = ‖ · ‖2/2 the Bregman distance is given by
DRx?(x

δ
α, x?) = ‖xδα−x?‖2/2. Both error plots show a linear convergence rate supporting

Theorems 2.7, 2.8, 3.4.

4 Conclusion

While the theory of CS on direct data is well developed, this by far not the case when
compressed measurements are made on indirect data. For that purpose, in this paper
we study CS from indirect data written as composite problem yδ = AWx?+zδ where A
models the CS measurement operator and W the forward model generating indirect data
and depending on the application at hand. For signal reconstruction we have proposed
two novel reconstruction methods, named relaxed and strict `1 co-regularization, for
jointly estimating x and h? = Ax. Note that the main conceptual difference between
the proposed method over standard CS is that we use the `1 penalty for indirect data
Wx? instead of x? together with another penalty for x? accounting for the inversion of
A, and jointly recovering both unknowns.

As main results for both reconstruction models we derive linear error estimates under
source conditions and restricted injectivity (see Theorems 2.8, 2.7). Moreover, conditions
have been shown to be even necessary to obtain such results (see Theorem 3.4). Our
results have been illustrated on a simple numerical example for combined CS and numer-
ical differentiation. In future work further detailed numerical investigations are in order
comparing our models with standard CS approaches in practical important applications
demonstrating strengths and limitations of different methods. Potential applications
include magnetic resonance imaging [2, 15] or photoacoustic tomography [17, 16].
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