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Abstract

In this paper, we consider the problem of feature reconstruction from incomplete
x-ray CT data. Such problems occurs, e.g., as a result of dose reduction in the context
medical imaging. Since image reconstruction from incomplete data is a severely ill-
posed problem, the reconstructed images may suffer from characteristic artefacts
or missing features, and significantly complicate subsequent image processing tasks
(e.g., edge detection or segmentation). In this paper, we introduce a novel framework
for the robust reconstruction of convolutional image features directly from CT data,
without the need of computing a reconstruction firs. Within our framework we use
non-linear (variational) regularization methods that can be adapted to a variety of
feature reconstruction tasks and to several limited data situations . In our numerical
experiments, we consider several instances of edge reconstructions from angularly
undersampled data and show that our approach is able to reliably reconstruct feature
maps in this case.
keywords Computed tomography; Radon transform; reconstruction, limited data;
sparse data, feature reconstruction, edge detection.

1 Introduction

Computed tomography (CT) has established itself as one of the standard diagnostic tools
in medical imaging. However, the relatively high radiation dose that is used to produce
high resolution CT images (and that patients are exposed to) has become one of the major
clinical concerns [33, 2, 24, 30]. The reduction of the radiation exposure of a patient while
ensuring the diagnostic image quality constitutes one of the main challenges in CT. Beside
patient safety, also the reduction of scanning times and costs constitute important aspects
of dose reduction, which is often achieved by reducing the x-ray energy level (leading to
higher noise levels in the data) or by reducing the number of collected CT data (leading
to incomplete data), cf. [33].
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In this work, we particularly consider incomplete data situations, e.g., that arise in
a sparse or limited view setup, where CT data is collected only with respect to a small
number of x-rays directions or within a small angular range. The intentional reduction
of the angular sampling rate leads to an under-determined and severely ill-posed image
reconstruction problem, c.f. [23]. As a consequence, the reconstructed image quality
can be substantially degraded, e.g., by artefacts or missing features [12], and complicate
subsequent image processing tasks (such as edge detection or segmentation) that are often
employed within a CAD-pipeline (computer aided diagnosis). Therefore, the development
of robust feature detection algorithms for CT that ensure the diagnostic image quality
is an important and very challenging task. In this paper, we introduce a framework for
feature reconstruction directly from incomplete tomographic data, which is in contrast to
the classical 2-step approach where reconstruction and feature detection are performed in
two separate steps.

Incomplete tomographic data

In this article, we consider the parallel beam geometry and use the 2D Radon transform
Rf : S1 × R → R as a model for the (full) CT data generation process, where S1 denotes
the unit sphere in R2 and f : R2 → R is a function representing the sought tomographic
image (CT scan). Here, the value Rf(θ, s) represents one x-ray measurement over a line
in R2 that is parametrized by the normal vector θ ∈ S1 and the signed distance from the
origin s ∈ R. In what follows, we consider incomplete data situations where the Radon
data are available only for a small number of directions, given by Θ := {θ1, . . . , θm}.
We denote the angularly sampled tomographic Radon data by RΘf := (Rf)|Θ×R. In this
context, the (semi-discrete) CT data RΘf will be called incomplete if the Radon transform
is insufficiently sampled with respect to the directional variable. Prominent instances of
incomplete data situations are: sparse angle setup, where the directions in Θ are sparsely
distributed over the full angular range [0, π]; limited view setup, where Θ covers only
small part of the full angular range [0, π]. Precise mathematical criteria of (in-) sufficient
sampling can be derived from the Shannon sampling theory. Those criteria are based on
the relation between the number of directions m = |Θ| and the bandwidth of f , cf. [23].
In this work, we will mainly focus on the sparse angle case, with uniformly distributed
directions θ1, . . . , θm on a half-sphere, e.g., directions θk := θ(ϕk) = (cos(ϕk), sin(ϕk))

>

with uniformly distributed angles ϕk ∈ [0, π].

Feature reconstruction in tomography

In the following, we consider image features that can be extracted from a CT scan f ∈
L2(R2) by a convolution with a kernel U ∈ L1(R2). In this context, the notion of a feature
map will refer to the convolution product f ~ U , and the convolution kernel U will be
called feature extraction filter. Examples of feature detection tasks that can be realized
by a convolution include edge detection, image restoration, image enhancement, or texture
filtering [16]. For example, in case of edge detection, the filter U can be chosen as a smooth
approximation of differential operators, e.g., of the Laplacian operator [15]. In our practical
examples, we will mainly focus on edge detection in tomography. However, the proposed
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framework also applies to more general feature extraction tasks.
In many standard imaging setups, image reconstruction and feature extraction are

realized in two separate steps. However, as pointed out in [18], this 2-step approach can
lead to unreliable feature maps since feature extraction algorithms have to account for
inaccuracies that are present in the reconstruction. This is particularly true for the case
of incomplete CT data as those reconstructions may contain artefacts. Hence, combining
these two steps into an approach that computes feature maps directly from CT data can
lead to a significant performance increase, as was already pointed out in [19, 18]. In this
work, we account for this fact and extend the results of [19, 18] to more general setting
and, in particular, to limited data situations.

Main contributions and related work

In this work, we propose a framework to directly reconstruct the feature map U ~ f from
the measured tomographic data. Our approach is based on the forward convolution identity
for the Radon transform, that is R(f ~U) = (Rf)~s (RU), where on the right hand side
the convolution is taken with respect to the second variable of the Radon transform, cf.
[23]. This identity implies that, given (semi-discrete) CT data, the feature map satisfies the
(discretized) equation RΘh = yΘ, where yΘ = RΘf ~s RΘU is the modified (preprocessed)
CT data. Therefore, the sought feature map can be formally computed by applying a
discretized version of the inverse Radon transform to yΘ, i.e., as hΘ = R−1

Θ (yΘ). In case of
full data (sufficient sampling), this can be accurately and efficiently computed by using the
well known filtered backprojection (FBP) algorithm with the filter RΘU . However, if the
CT data is incomplete, this approach would lead to unreliable feature maps since in such
situations the FBP is known to produce inaccurate reconstruction results, cf. [23, 12].

In order to account for data incompleteness, we propose to replace the inverse R−1
Θ by

a suitable regularization method for R−1
Θ that is also able to deal with undersampled data.

More concretely, we propose to reconstruct the (discrete) feature map hΘ by minimizing
the following Tikhonov type functional:

hΘ ∈ arg min
h

1

2
‖RΘh− uΘ ~s yΘ‖2 + r(h) .

This framework offers a flexible way for incorporating a-priori information about the fea-
ture map into the reconstruction and, in this way, to account for the missing data. For
example, from the theory of compressed sensing it is well known that sparsity can help
to overcome the classical Nyquist-Shannon-Whittaker-Kotelnikov paradigm [5]. Hence,
whenever the sought feature map is known to be sparse (e.g., in case of edge detection),
sparse regularization techniques can be easily incorporated into this framework.

Approaches that combine image reconstruction and edge detection have been proposed
for the case of full tomographic data, e.g., in [19, 18]. Although the presented work follows
the spirit of [19, 18], it comes with several novelties and advantages. On a formal level, our
approach is based on the forward convolution identity, in contrast to the dual convolution
identity, given by (R∗u) ~ f = R∗(u ~s Rf), that is employed in in [19, 18]. The latter
requires full (properly sampled) data, since the backprojection operator R∗ integrates over
the full angular range (requiring proper sampling in the angular variable). In contrast, our
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framework is applicable to incomplete Radon data situations, since the forward convolu-
tional identity (used in our approach) can be applied to more general situations. Moreover,
in order to recover the feature map U ~ f , we use non-linear regularization methods that
can be adapted to a variety of situations and incorporate different kinds of prior informa-
tion. From this perspective, our approach also offers more flexibility. A similar approach
was presented in our recent proceedings article [11], where the main focus was on the stable
recovery of the image gradient from CT data and its application to Canny edge detection.
Following the ideas of [19, 18] similar feature detection methods were developed also for
other types of tomography problems, e.g., in [13, 26, 27]. Besides that, we are not aware of
any further results concerning convolutional feature reconstruction from incomplete x-ray
CT data.

Combinations of reconstruction and segmentation have also been presented in the lit-
erature for different types of tomography problems, e.g., in [8, 17, 31, 4, 28, 29, 32]. As a
commonality to our approach, many of those methods are based on the minimization of an
energy functional of the form ‖RΘf − y‖2 + r(f ∗U), incorporating feature maps as prior
information. Important examples include Mumford-Shah like approaches [17, 4, 32, 29]
or the Potts model [31]. Also, geometric approaches for computing segmentation masks
directly from tomographic data were employed in [8].

Outline

In Section 2 we provide some basic facts about the Radon transform, sampling and sparse
recovery. In Section 3 we introduce the proposed feature reconstruction framework and
present several examples of convolutional feature reconstruction filters along with corre-
sponding data filters, mainly focusing on the case of edge detection. Experimental results
will be presented in Section 4. We conclude with a summary and outlook given in Section
5.

2 Materials and Methods

In this section, we recall some basic facts about the 2D Radon transform, including impor-
tant identities and sampling conditions. In particular, we define the sub-sampled Radon
transform that will be used throughout this article. Although, our presentation is restricted
to the 2D case (because this makes the presentations more concise and clear), the presented
concepts can be easily generalized to the d-dimensional setup.

2.1 The Radon transform

Let S(R2) denote the Schwartz space on R2 (space of smooth functions that are rapidly
decaying together with all their derivatives) and S(S1×R) the Schwartz space over S1×R
as the space of all smooth functions that are rapidly decaying together with all their
derivatives in the second component, cf. [23]. We consider the Radon transform as an
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operator between those Schwartz spaces, R : S(R2)→ S(S1 × R), which is defined via

Rf(θ, s) :=

∫ ∞
−∞

f(sθ + tθ⊥)dt, (2.1)

where s ∈ R, θ ∈ S1 and θ⊥ denotes the rotated version of θ by π/2 counterclockwise (in
particular, θ⊥ is a unit vector perpendicular to θ). The value Rf(θ, s) represents one x-ray
measurement along the x-ray path that is given by the line L(θ, s) = {x ∈ R2 : 〈x, θ〉 = s}.
Since L(−θ,−s) = L(θ, s), the following symmetry property holds for the Radon transform,
Rf(−φ,−s) = Rf(θ, s). Hence, it is sufficient to know the values of Radon transform only
on a half sphere, e.g., on the upper half sphere. Such data is therefore considered to be
complete. The dual transform (backprojection operator) is defined as R∗ : S(S1 × R) →
S(R2),

R∗g(x) :=

∫
S1
g(θ, θ · x)dθ. (2.2)

The Radon transform is a well defined linear and injective operator, and several analytic
properties are well-known. One of the most important properties is the so-called Fourier
slice theorem that describes the relation between the Radon and the Fourier transforms.
In order to state this relation, we first recall that the Fourier transform is defined as F :
S(Rd) → S(Rd), Ff(ξ) := (2π)−d/2 =

∫
Rd f(x)e−ix·ξ dx for d ∈ N. Whenever convenient,

we will also use the abbreviated notation f̂(ξ) := Ff(ξ). The Fourier transform is a linear
isomorphism on the Schwartz space S(Rd) and its inverse is given by f̌(x) := F−1f(x) =
(2π)−d/2

∫
R2 f(ξ)eix·ξ dξ. In what follows, we will denote the convolution of two functions

f, g : Rd → R by f ~ g(x) :=
∫
Rd f(x − y)g(y)dy, where d ∈ N. Moreover, for functions

g ∈ S(S1 × R), the Fourier transform Fsg will refer to the 1D-Fourier transform of g
with respect to the second variable. Analogeously, g ~s h will denote the convolution of
g, h : S1 × R→ R with respect to the second variable.

Lemma 2.1 (Properties of the Radon transform).

(R1) Fourier slice theorem: ∀f ∈ S(R2) ∀(θ, s) ∈ S1 × R : FsRf(θ, σ) =
√

2π · Ff(θσ).

(R2) Convolution identity: ∀U, f ∈ S(R2) : R(f ~ U) = Rf ~s RU .

(R3) Dual convolution identity: ∀u ∈ S(S1 × R) ∀f ∈ S(R2) : R∗u~ f = R∗(u~s Rf).

(R4) Intertwining with Derivatives: ∀α ∈ N2 ∀f ∈ S(R2) : R∂αx f = θα∂
|α|
s Rf

(R5) Intertwining with Laplacian: ∀f ∈ S(R2) : R∆xf = ∂2
sRf .

Proof. All identities are derived in [23, Chapter II].

The approach that we are going to present in Section 3 is based on the convolution
identity and can be formulated for arbitrary spatial dimension d ≥ 2. For the sake of
clarity we consider two spatial dimensions d = 2 in this paper. In this case, we will
use the parametrization of S1 given by θ(ϕ) := (cos(ϕ), sin(ϕ))> with ϕ ∈ [0, π). Then
θ⊥(ϕ) = (− sin(ϕ), cos(ϕ)>. For the Radon transform we will (with some abuse of notation)
write

Rf(ϕ, s) := Rf(θ(ϕ), s).
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2.2 Sampling the Radon transform

Since in practice one has to deal with discrete data, we are forced to work with discretized
(sampled) versions of the Radon transform. In this context, questions about proper sam-
pling arise. In order to understand what it means for the CT data to be complete (properly
sampled) or incomplete (improperly sampled), we recall some basic facts from the Shannon
sampling theory for the Radon transform for the case of parallel scanning geometry (see
for example [23, Section III]).

In what follows, we assume that f is compactly supported on the unit disc D ⊆ R2 and
consider sampled CT data Rf(ϕj, sl) with Nϕ ∈ N equispaced angles ϕj in [0, π) and Ns

equispaced values sl in [−1, 1] for the s-variable, i.e.,

(ϕj, s`) =

(
jπ

Nϕ

,
`

Ns

)
for (j, `) ∈ {0, . . . , Nϕ − 1} × {−Ns, . . . , Ns} . (2.3)

For given sampling points (2.3) and a finite dimensional subspace X0 ⊆ S(Rd) we define
the discrete Radon transform as

R: X0 → RNϕ×(2Ns+1) : f 7→ (Rf(θj, s`))j,` . (2.4)

The basic question of classical sampling theory in the context of CT is to find conditions on
the class of images f ∈ X0 and on the sampling points under which the sampled data Rf
uniquely determines the unknown function f . Sampling theory for CT has been studied,
for example, in [7, 9, 10, 22, 25]. While the classical sampling theory (e.g., in the setting
of classical signal processing) works with the class of band-limited functions, the sampling
conditions in the context of CT are typically derived for the class of essentially band-limited
function.

Remark 2.2 (Band-limited and essentially band-limited functions). A function f ∈ L2(R2)
is called b-band-limited if its Fourier transform Ff(ξ) vanishes for ‖ξ‖ > b. A function
f is called essentially b-band-limited if f̂(ξ) is negligible for ‖ξ‖ ≥ b in the sense that
ε0(f, b) :=

∫
‖ξ‖≥b |Ff(ξ)|dξ is sufficiently small, see [23]. One reason for working with es-

sentially band-limited functions in CT is that functions with compact support cannot be
strictly band-limited. However, the quantity ε0(f, b) can become arbitrarily small for func-
tions with compact support.

The bandwidth b is crucial for the correct sampling conditions and the calculation of
appropriate filters. If X0 consists of essentially b-band-limited functions that vanish outside
the unit disc D, then the correct sampling conditions are given by [23]

(Nϕ, Ns) :=
(
dbe, db/πe

)
. (2.5)

Obviously, as the bandwidth b increases, the step sizes π/Nϕ and 1/Ns have to decrease
in order that (2.5) is satisfied. Thus, if the bandwidth b is large, a large number measure-
ments (roughly 2b2/π) have to be collected. As a consequence, for high resolution imaging
the sampling conditions require a large number of measurements. Thus, in practical appli-
cations, high resolution imaging in CT also leads to large scanning times and to high doses
of x-ray exposure. A classical approach for dose reduction consists in reduction of x-ray
measurements. For example, this can be achieved by angular undersampling where Radon
data is collected only for a relatively small number of directions Θ ⊆ {θ0, . . . , θNϕ−1}.
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Definition 2.3 (Sub-sampled Radon transform). Let (Nϕ, Ns) be defied by (2.5) and let
X0 be the set of essentially b-band-limited functions that vanishes outside the unit disc D
(note that in that case the discrete Radon transform defined in (2.4) is correctly sampled).
For Θ ⊆ {θ0, . . . , θNϕ−1} we call

RΘ : X0 → R|Θ|×(2Ns+1) : f 7→ (Rf)|Θ×{−Ns,...,Ns} (2.6)

the sub-sampled discrete Radon transform. We will also use the semi-discrete Radon
transform RΘf := (Rf)|Θ×R, where we only sample in the angular direction but not in the
radial direction.

If we perform actual undersampling, where the number of directions in Θ is much less
than Nϕ, then the linear equation RΘf = yΘ will be is severely under-determined and its
solution requires additional prior information (e.g., sparsity of the feature map).

3 Feature reconstruction from incomplete data

In this section, we present our approach for feature map reconstruction from incomplete
data. For a given bandwidth b, we let X0 denote the set of essentially b-band-limited
functions that vanishes outside D. Furthermore, we assume that the set of directions
{θ0, . . . , θNϕ−1} is chosen according to the sampling conditions (2.5).

Problem 1 (Feature reconstruction task). Let Θ ⊆ {θ0, . . . , θNϕ−1} and let yΘ : Θ×R→ R
be the noisy subsampled (semi-discrete) CT data with ‖RΘf − yΘ‖ ≤ δ, where f ∈ X0 is
the true but unknown image and δ > 0 the known noise level. Given a feature extraction
filter U : R2 → R, our goal is to estimate the feature map U ~ f from the (undersampled)
data yΘ.

Remark 3.1.

1. From a general perspective, the Problem 1 is related to the field of optimal recovery
[21] where the goal is to estimate certain features of an element in a space X0 from
noisy indirect observations.

2. Depending on the particular choice of the filter U , the Problem 1 corresponds to sev-
eral typical tasks in tomography. For example, if U is chosen as an approximation of
the Delta distribution, the Problem 1 is equivalent to the classical image reconstruc-
tion problem. In fact, the filtered backprojection algorithm (FBP) is derived in this
way from the dual convolution identity (R3) for the full data case, cf. [23]. Another
instance of Problem 1 is edge reconstruction from tomographic data yΘ. For example,
this can be achieved by choosing the feature extraction filter U as the Laplacian of an
approximation to the Delta distribution (e.g., Laplacian of Gaussian (LoG)). Then,
the Problem 1 boils down to an approximate recovery of the Laplacian of f , which is
used in practical edge-detection algorithms (e.g., LoG-filter [16, 15]).

3. Traditionally, the solution of Problem 1 is realized via the 2-step approach: First, es-
timate f and, second, apply convolution in order to estimate the feature map U ~ f .

7



This 2-step approach has several disadvantages: Since image reconstruction in CT
is (possibly severely) ill-posed, the fist step might introduce huge errors in the re-
constructed image. Those errors will also be propagated through the second (feature
extraction) step that itself can be ill-posed and even further amplify errors. In order
to reduce the error propagation of the first step, regularization strategies are usually
applied. The choice of a suitable regularization strategy strongly depends on the par-
ticular situation and on the available prior information about the sought object f .
However, the recovery of f requires different prior knowledge than feature extraction.
This dismatch can lead to a substantial loss of performance in the feature detection
step.

4. In order to overcome the limitations mentioned in the remark above, image recon-
struction and edge detection were combined in [18, 19], where explicit formulas for
estimating the edge map have been derived using the method of approximate inverse.
This approach is also based on the dual convolution identity (R3) and is closely re-
lated to the standard filtered backprojection (FBP) algorithm. However, this approach
is not applicable to the case of undersampled data, since [19, 18] employ the dual con-
volutional identity (R3) and calculate the reconstruction filters of the form R∗Θu. In
this calculation, in order to achieve a good approximation of the integral in 2.2, a
properly sampled Radon data is required.

To overcome the limitations mentioned in the last remark above, we derive a novel
framework for feature reconstruction in the next subsection (based on the forward con-
volutional identity (R3)) that does not make use of the continuous backprojection and,
hence, can be applied to more general situations.

3.1 Proposed feature reconstruction

Our proposed framework for solving the feature reconstruction Problem 1 is based on the
forward convolution identity (R2) stated in Lemma 2.1. Because the convolution on the
right-hand side of (R2) acts only on the second variable, the convolution identity is not
affected by the subsampling in the angular direction. Therefore, we have

RΘ(f ~ U) = uΘ ~s RΘf with uΘ := RΘU . (3.1)

Formally, the solution of (3.1) takes the form f ~ U = R−1
Θ (uΘ ~s RΘf). If the data

is properly sampled, this can be accurately and efficiently computed by applying the FBP
algorithm to the filtered CT data yΘ = uΘ ~s RΘf . In this context, the data filter uΘ

needs to be precomputed (from a given feature extraction filter U) in a filter design step.
However, if the data RΘf is not properly sampled, the equations (3.1) are underdetermined
and, in this case, FBP doesn’t produce accurate results, cf. [23, 12]. In order to account for
data incompleteness and stably approximate the feature map f ~ U , a-priori information
about the specific feature kernel U or the feature map f ~ U needs to be integrated into
the reconstruction procedure. As a flexible way for doing this, we propose to approximate
the inverse R−1

Θ by the following variational regularization scheme:

1

2
‖RΘh− uΘ ~s yΘ‖2

2 + r(h)→ min
h∈X0

. (3.2)
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Here yΘ : Θ × R → R denotes the noisy (semi-discrete data) and r : X0 → [0,∞] is a
regularization (penalty) term.

Example 3.2.

1. Image reconstruction: Here, the feature extraction filter U = Uα is chosen as
an approximation to the Delta distribution. For example, as U = gα with

gα(x) =
1

2πα2
exp

(
−‖x‖

2

2α2

)
, α > 0 (3.3)

being the Gaussian kernel. Another way of choosing U for reconstruction purposes
is through ideal low-pass filters Uα, that are defined in the Frequency domain via
FUα = χD(0,α−1), where α > 0, D(0, α−1) ⊂ R2 denotes a ball in R2 with radius 1/α,
and χA is the characteristic function of the set A ⊆ R2. It can be shown that in both
cases Uα ~s f → f as α → 0. These filters and its variants are often used in the
context of the FBP algorithm.

2. Gradient reconstruction: Here U = Uα is chosen as a partial derivative of
an approximation of the Delta distribution. For example, as Uα = (U

(1)
α , U

(2)
α ) with

U
(i)
α := ∂gα

∂xi
, i = 1, 2. In this way, one obtains an approximation of the gradient of f

via
∇xf = (U (1)

α ~ f, U (2)
α ~ f) =: Uα ~ f,

where in the last equation above we applied the convolution ~ componentwise. Such
approximations of the gradient are for example used inside the well-known Canny
edge detection algorithm [6].

3. Laplacian reconstruction: Analogously to the gradient approximation, U is
chosen to be the Laplacian of an approximation to the Delta distribution. A promi-
nent example, is the Laplacian of Gaussian (LoG), i.e., Uα = ∆xgα, also known as
the Marr-Hildreth-Operator. This operator is also used for edge detection, corner
detection and blob detection, cf. [20].

Depending on the problem at hand, there are several different ways of choosing the
regularizer r(h). Prominent examples in the case of image reconstruction include total
variation (TV) or the `1-norm (possibly in the context of some basis of frame expansion).
For the reconstruction of the derivatives (or edges in general), we will use the `1-norm as
regularization term because derivatives of images can be assumed to be sparse and because
the problem (3.2) can be efficiently solved in this case.

3.2 Filter design

The first step in our framework is filter design for (3.2). That is, given a feature extraction
kernel U , we first need to calculate the corresponding filter uΘ = RΘU for the CT data,
cf. (3.1). In our setting, filter design therefore amounts to the evaluation of the Radon
transform of U . In contrast to our approach, the filter design step in [18] consists in the
calculation of a solution of the dual equation U = R∗u, given the feature extraction filter
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U . As discussed above, the latter case requires full data and might be computationally
more involved. From this perspective, filter design required by our approach offers more
flexibility and can be considered somewhat simpler.

We now discuss some of the Examples 3.2 in more detail and calculate the associated
CT data filters uΘ. In particular, we focus on the Gaussian approximations of the Delta
distributions stated in (3.3). In a first step we compute the Radon transform of a Gaussian.

Lemma 3.3. The Radon transform of the Gaussian gα, defined by (3.3), is given by

Rgα(ϕ, s) =
1

α
√

2π
· exp

(
− s2

2α2

)
. (3.4)

Since the Gaussian gα converges to the Delta distribution as α → 0, the smoothed
version fα := f ~ gα constitutes an approximation to f for small values of α. In order
obtain approximations to partial derivatives of f , we note that ∂fα

∂xi
= f ~ ∂gα

∂xi
. Hence,

using the feature extraction filters U
(i)
α := ∂gα

∂xj
, the Problem 1 amounts to reconstructing

partial derivatives of f . Using this observation together with Lemma 3.3 and the property
(R4), we can explicitly calculate data filters used in different edge reconstruction algorithms
(such as Canny or for the Marr-Hildreth-Operator).

Proposition 3.4. Let the Gaussian gα be defined by (3.3).

1. Gradient reconstruction: For the feature extraction filter Ugrad := ∇xgα the

corresponding data filter ugrad = (u
(1)
α , u

(2)
α ) is given by

ugrad(ϕ, s) = RUgrad(ϕ, s) = − s

α3
√

2π
· exp

(
− s2

2α2

)
· θ(ϕ) (3.5)

Note that in (3.5), the notation RUgrad refers to a vector valued function that is
defined by a componentwise application of the Radon transform (cf. Example 3.2,
No. 2).

2. Laplacian reconstruction: For the feature extraction filter Uα := ∆xgα the
corresponding data filter is given by

uLoG(ϕ, s) = RULoG(ϕ, s) =
1

α3
√

2π
· exp

(
− s2

2α2

)
·
(
s2

α2
− 1

)
(3.6)

From Proposition 3.4 we immediately obtain an explicit reconstruction formula for the
approximate computation of the gradient and of the Laplacian of f ∈ S(R2):

∇xfα = R−1(ugrad ~s Rf) bzw. ∆xfα = R−1(uLoG ~s Rf).

Both of the above formulas are of FBP type and can be implemented using the standard
implementations of the FBP algorithm with a modified filter. This approach has the
advantage that only one data filtering step has to performed, followed by the standard
backprojection operation.
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In order to derive FBP-filters for the gradient and Laplacian reconstruction, let us first
note that R−1 = R∗ ◦ Λ, where the operator Λ acts on the second variable and is defined
in the Fourier domain by Fs(Λg)(ϕ, ω) = (4π)−1 · |ω| · (Fsg)(ϕ, ω) for g ∈ S(S1 × R), cf.
[23]. Now, using the relations for the Fourier transform in 1D, F(df/dx)(ω) = i · ω · f̂(ω),
F(d2f/dx2)(ω) = −ω2f̂(ω) and F(f ∗ g) =

√
2π · f̂ · ĝ, together with

Fs(Rgα)(ϕ, s) =
1√
2π
· exp

(
−α

2s2

2

)
, (3.7)

we obtain the following result.

Proposition 3.5. Let the FBP-filters Wgrad = Wgrad(ϕ, s) and WLoG = WLoG(ϕ, s) be
given in the Fourier domain (componentwise) by

FsWgrad(ϕ, ω) =
1

4π
· i · ω · |ω| · exp

(
−−α

2s2

2

)
· θ(ϕ), (3.8)

and

FsWgrad(ϕ, ω) = − 1

4π
· |ω|3 · exp

(
−−α

2s2

2

)
, (3.9)

where ϕ ∈ (0, 2π) and ω ∈ R. Then, for f ∈ S(R2), we have

∇xfα = R∗(Wgrad ~s Rf) and ∆xfα = R∗(WLoG ~s Rf). (3.10)

Since the FBP algorithm is a regularized implementation of R−1 (cf. [23]), a standard
toolbox implementation could be used in practice in order to compute ∇xfα and ∆xf . To
this end, one only needs to use the modified filters for the FBP, provided in (3.8) and
(3.9), instead of the standard FBP filter (such as Ram-Lak). Again, let us emphasize that
the reconstruction formulae (3.10) can only be used in the case of properly sampled CT
data. If the CT data does not satisfy the sampling requirements, e.g., in case of angular
undersampling, this FBP algorithm will produce artifacts which can substantially degrade
the performance of edge detection. In such cases, our framework (3.2) should be used in
combination with a suitable regularization term. In the context of edge reconstruction, we
propose to use `1-regularization in combination with `2-regularization. This approach will
be discussed in the next section.

So far, we constructed data filters for the approximation of the gradient and Laplacian in
the spatial, cf. Proposition 3.4, and derived according FBP filters in the Fourier domain in
Proposition 3.5. In a similar fashion, one can derive various related examples by replacing
the Gaussian by feature kernels whose Radon transform is known analytically. Another way
of obtaining practically relevant data filters (for a wide class of feature filter) is to derive
expressions for the data filters in the Fourier domain (i.e., filter design in the Fourier
domain). In the following, we provide two basic examples for filter design in the Fourier
domain. To this end, we will employ the Fourier slice theorem, cf. Lemma 2.1, (R1).

Remark 3.6.

1. Lowpass Lalpacian: The Laplacian of the ideal lowpass is defined as

Ub = ∆xF
−1(χD(0,b)),
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where b is the bandwidth of Ub. Using the property (R5), we get R(Ub) = ∂2

∂s2
R(F−1(χD(0,b))).

By the Fourier slice theorem, we obtain

Fs(R(Ub))(ϕ, ω) = −ω2χD(0,b)(ω · θ(ϕ)) = −ω2χ[−b,b](ω).

Hence, the associated data filter is given by

ub(ϕ, s) := RUb(ϕ, s) =
∂2

∂s2
F−1
s (χ[−b,b])(s) =

√
2

π
· ∂

2

∂s2

sin(bs)

s

=

√
2

π
·
(

2 sin(bs)

s3
− 2b cos(bs)

s2
− b2 sin(bs)

s

)
(3.11)

Because ub is b-band-limited, the convolution with the filter (3.11) can be discretized
systematically whenever the underlying image is essentially b band-limited. To that
end, assume that the function f has bandwidth b. Then y = Rf has bandwidth b as
well (with respect to the second variable), and therefore the continuous convolution
Rf ~s ub can be exactly computed via discrete convolution. Using discretization (2.3)
and taking s` = π

b
· ` we obtain from (3.11) the discrete filter

ub(ϕ, s`) = −
√

2

π
· b3 ·


1

3
, if ` = 0,

2 · (−1)`

π2`2
if ` 6= 0.

(3.12)

According to one-dimensional Shannon sampling theory, we compute y~s ub via dis-
crete convolution with the filter coefficients given in (3.12).

2. Ram-Lak type filter: Consider the feature extraction filter

Ub,1 = ∆x F−1
[
χD(0,b) · (1− ‖ · ‖)+

]
,

where (1 − ‖ · ‖)+ := max {0, 1− ‖ · ‖}. Note that for b ≥ 1, we have ub,1 = u1,1,
since in this case χD(0,b) · (1 − ‖ · ‖)+ = (1 − ‖ · ‖)+. Hence, we consider the case
b ≤ 1. In a similar fashion as above, we obtain

ub,1 := RUb,1(ϕ, s) =
∂2

∂s2
F−1
s

[
χ[−b,b] · (1− | · |)

]
(s)

=
∂2

∂s2

[
F−1
s [χ[−b,b]](s)− F−1

s [| · | · χ[−b,b]](s)
]
. (3.13)

Evaluating ub,1 at s` = π
b
· `, we get

ub,1(θ, s`) =

√
2

π
· b3 ·



3b− 4

12
if ` = 0

3b− 2

π2`2
if ` is even

−3b− 2

π2`2
+

12b

π4`4
if ` is odd .

(3.14)

Again, we can evaluate y ~s ub,1 via discrete convolution with the filter coefficients
(3.14).
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Finally, let us note that there are several other examples for feature reconstruction
filters for which one can derive explicit formulae of corresponding data filters in a similar
way as we did in this section. For example, in the case of approximation of Gaussian
derivatives of higher order or for band-limited versions of derivatives.

4 Numerical results

In our the numerical experiments, we focus on the reconstruction of edge maps. To that
end, we use our framework (3.2) in combination with feature extraction filters that we have
derived in Proposition 3.4 and in Remark 3.6. Since the gradient and the Laplacian of an
image have relatively large values only around edges and small values elsewhere, we aim
at exploiting this sparsity and, hence, use a linear combination r(h) = µ‖∇h‖2

2 + λ‖h‖1 as
regularizer in (3.2). The resulting minimization problem then reads

1

2
‖RΘh− uΘ ~s yΘ‖2

2 + µ‖∇h‖2
2 + λ‖h‖1 → min

h∈X0

. (4.1)

If µ = 0, this approach reduces to the `1 regularization which is known to favor sparse
solution. If µ 6= 0, the additional H1-term increases smoothness of the recovered edges. In
order to numerically minimize (4.1), we use the fast iterative shrinkage-thresholding algo-
rithm (FISTA) of [1]. Here, we apply the forward step to 1

2
‖RΘh−uΘ~syΘ‖2

2+µ‖∇h‖2
2 and

the backward step to λ‖h‖1. The discrete `p norms are defined by ‖h‖p = (
∑N

i,j=1|hij|p)
1
p

and the discrete Radon transform RΘ is computed via the composite trapezoidal rule and
bilinear interpolation. The adjoint Radon transform R∗Θ is implemented as a discrete back-
projection following [23].

4.1 Reconstruction of the Laplacian feature map

We first investigate the feasibility of the proposed approach for recovering the Laplacian
of the initial image. For our first experiment, we use a phantom image, which is defined as
a characteristic function of the union of three discs and has the size N ×N with N = 200,
cf. Figure 4.1a. Since, according to the sampling condition (2.5), full aliasing free angu-
lar sampling requires dπNse = 472 samples in the s-variable, we computed tomographic
data at 2Ns + 1 = 301 equally spaced signed distances s` ∈ [−1.5, 1.5] and at Nϕ = 40
equally spaced directions in [0, π). This data is properly sampled in the s-variable, but
undersampled in the angular variable ϕ, cf. Figure 4.1b.

From this data, we computed the approximate Laplacian reconstruction, shown in Fig-
ure 4.1c, using the standard FBP algorithm in combination with the LoG-filtered data
uLoG ~s yΘ that we computed in a preprocessing step using the LoG data filter from
Proposition 3.4. It can be clearly observed that FBP introduces prominent undersampling
artefacts (streaks), so that many edges in the calculated feature map are not related to the
actual image features. This shows, that the edge maps computed by FBP (from undersam-
pled data) can include unreliable information and even falsify the true edge information
(since artefacts and actual edges superimpose). In a more realistic setup, this could be
even worse, since artefacts may not be that clearly distinguishable from actual edges.

13



Figure 4.2 shows reconstructions of feature maps from noise-free CT data that we
computed using our framework (4.1) for three different choices of feature extraction filters
and for two different sets of regularization parameters. The first row of Figure 4.2 shows
reconstructions with µ = 0 and λ = 0.001 using 1000 iterations of the FISTA algorithm,
whereas the second row shows reconstructions that were computed using an additional H1-
term with λ = µ = 0.001 and using 500 iterations of the FISTA algorithm. In contrast to
the FBP-LoG reconstruction (shown in Figure 4.1c), the undersampling artefacts have been
removed in all cases. As expected, the use of `1-regularization without an additional H1-
smoothing (shown in first row) produces sparser feature maps, as opposed to reconstruction
shown in the second row. However, we also observed, that the iterative reconstruction based
only on the `1-minimization (without the H1-term) sometimes has trouble reconstructing
the object boundaries properly. In fact, we found that a proper reconstruction of boundaries
is quite sensitive to the choice of the `1-regularization parameter. If this parameter is chosen
too large, we observed that the boundaries could be incomplete or even disappear. Since
the `1-regularization parameter controls the sparsity of the reconstructed feature map, this
observation is actually not surprising. By including an additional H1-regularization term,
the reconstruction results become less sensitive to the choice of regularization parameters.

(a) Phantom (b) CT data (c) FBP-LoG reconstruction

Figure 4.1: Reconstruction of the Laplacian feature map using FBP. The
phantom image of size 200 × 200 consisting of a union of three discs (a) and the corre-
sponding angularly undersampled CT data, measured at 40 equispaced angles in [0, π) and
properly sampled in the s-variable with 301 equispaced samples s` ∈ [−1.5, 1.5] (b). Sub-
figure (c) shows the Laplacian of Gaussian (LoG) reconstruction using the standard FBP
algorithm. It can be clearly observed that FBP introduces prominent streaking artefacts
that are due to the angular undersampling.

In order to simulate the real world measurements more realistically, we added noise to
the CT data that we used in the previous experiment. Using this noisy data, we calculated
reconstructions via (4.1) in combination with the Ram-Lak type filter (3.14) using three
different sets of regularization parameters and 1000 iterations of the FISTA algorithm in
each case. The reconstruction using the parameters λ = 0 and µ = 0.001 (i.e., only H1-
regularization was applied) is shown in Figure 4.3a. The reconstruction in Figure 4.3b uses

14



(a) LoG: µ = 0, λ = 0.001 (b) Lowpass:µ = 0, λ = 0.001 (c) Ram-Lak:µ = 0, λ = 0.001

(d) LoG: µ = λ = 0.001 (e) Lowpass: µ = λ = 0.001 (f) Ram-Lak: µ = λ = 0.001

Figure 4.2: Reconstruction of Laplacian feature maps using our framework.
This figure shows reconstructions of feature maps from noise-free CT data that we com-
puted using our framework (4.1) for three different choices of feature extraction filters and
for two different sets of regularization parameters. Here, LoG refers to (3.6), Lowpass
to (3.12), and Ram-Lak to (3.14). The first row shows reconstructions with µ = 0 and
λ = 0.001 using 1000 iterations of the FISTA algorithm, whereas the second row shows
reconstructions that were computed using an additional H1-term with λ = µ = 0.001 and
using 500 iterations of the FISTA algorithm. In contrast to the FBP-LoG reconstruction
(shown in Figure 4.1c), the undersampling artefacts have been removed in all cases.

only `1 regularization, i.e., µ = 0 and λ = 0.001, and the reconstruction in Figure 4.3c
applies both regularization terms with λ = µ = 0.001. In both reconstructions shown in
Figure 4.3b and 4.3c, the recovered features are much more apparent than for pure H1-
regularization. As in the noise-free situation, we observe that the (pure) `1-regularization
might generate discontinuous boundaries, whereas the combined H1-`1-regularization re-
sults in smoother and (seemingly) better represented edges.
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(a) Ram-Lak: µ = 0.001, λ = 0 (b) Ram-Lak: µ = 0, λ = 0.001 (c) Ram-Lak: µ = λ = 0.001

Figure 4.3: Reconstructions of Laplacian feature maps from noisy data. Re-
construction in (a) were calculated using only H1-regularization, in (b) using only `1-
regularization, and in (c) using combined `1 and H1-regularization.

4.2 Edge detection

One main application of our framework for the reconstruction of approximate image gra-
dients or approximate Laplacian feature maps is in edge detection. Clearly, feature maps
that contain less artifacts can be expected to provide more accurate edge maps.

For this experiment, we used a modified phantom image that is shown in Figure 4.4a.
In contrast to the previously used phantom, this image includes also weaker edges that
are more challenging to detect. For this phantom, we generated CT data using the same
sampling scheme as in our first experiment (Section 4.1) and computed the LoG-feature
maps f ~ ULoG using the FBP approach (cf. Figure 4.4b) and using our approach (cf.
Figure 4.4c) with µ = 0, λ = 0.002, and 100 iterations of the FISTA algorithm for (4.1).
Subsequently, we generated corresponding binary edge maps by extracting the zero cross-
ings of these LoG-feature maps (cf. Figure 4.4d and 4.4e) by using the MATLABs edge

functions. Note that this procedure is one of the standard edge detection algorithm, known
as the LoG edge detector, cf. [20]. For both methods, we took standard deviation α = 1.3
for the application of the Gaussian smoothing and threshold t = 0.005 for the detection of
the zero crossings. As can be clearly seen from the results, the edge detection based on our
approach (cf. Figure 4.4d) is able to detect also the weaker edges inside the large disc. In
contrast, edge detection in combination with FBP-LoG featuremap was not able to detect
the edge set correctly due to strong undersampling artefacts.

In our last experiment we present edge detection results for real CT data of a lotus
[3]. Note that similar reconstructions were presented in [11]. The lotus data have been
rebinned and downsampled to 2Ns + 1 = 739 signed distances and Nϕ = 36 directions.
The Gaussian gradient feature map was computed in two ways: First, by applying FBP to
filtered CT data with the data filter (3.5), cf. Figure 4.5b. Second, by using our approach
(3.2) with µ = 0 and λ = 0.01, and by applying 50 iterations of the FISTA algorithm,
cf. Figure 4.5c. The resulting image size is 521 × 521. The standard deviation for the
Gaussian smoothing was chosen as α = 6 and for the Canny edge detection we used the
same lower threshold 0.1 and upper threshold 0.15. In order to calculate binary edge maps
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(a) Modified phantom (b) FBP-LoG (c) LoG: µ = λ = 0.001

(d) FBP-LoG: edge map (e) LoG: edge map

Figure 4.4: LoG edge detection. The modified phantom image (a) includes also weaker
edges that are more challenging to detect. Subfigures (4.4b) and (4.4c) show reconstructions
of the LoG feature maps, that were generated using the FBP algorithm and our approach,
respectively. The corresponding binary edge masks generated by the LoG edge detector
are shown in (4.4d) and (4.4e).

(shown in Figures 4.5e and 4.5f), we used the Canny edge detector (cf. [6]) in combination
with the pointwise magnitude of the Gaussian gradient maps |∇Ugrad ~ f |. Again, it was
observed that the calculation of the Gaussian gradient map using our approach leads to
more reliable edge detection results.

5 Conclusion

In this paper, we proposed a framework for the reconstruction of features maps directly
from incomplete tomographic data, without the need of reconstructing the tomographic
image f first. Here, a features map refers to the convolution U ~ f where U is a given
convolution kernel and f is the underlying object. Starting from the forward convolution
identity for the Radon transform, we introduced a variational model for feature recon-
struction, that is formulated using the discrepancy term ‖RΘh− uΘ ~s yΘ‖2

2 and a general
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(a) FBP reconstruction (b) FBP-grad (c) grad: µ = 0, λ = 0.01

(d) CT data of a lotus (e) FBP-grad: edge map (f) grad: edge map

Figure 4.5: Canny edge detection from the lotus data set. Rebinned CT data
of a lotus root (d) (cf. [3]) and the corresponding FBP reconstruction (a) from 36 evenly
distributed angles in [0, π). Magnitude of the smooth gradient map |∇Ugrad ~f | computed
using the FBP algorithm (b) and using our approach (c). The corresponding edge detection
results using the Canny algorithm are shown in (e) and (f), respectively.

regularizer r(h). In contrast to existing approaches, such as [18, 19], our framework does
not require full data and, due to the variational formulation, also offers a flexible way for
integrating a priori information about the feature map into the reconstruction. In several
numerical experiments, we have illustrated that our method can outperform classical fea-
ture reconstruction schemes, especially, if the CT data is incomplete. Although we mostly
focused on reconstruction of feature maps that are used for edge detetion purposes, our
framework can be adapted for a wide range of problems. A rigorous convergence analysis
of the presented scheme remains an open issue. Another directions of further research
may may include the extension of the proposed approach to non-sparse, non-convolutional
features and generalization to other types of tomography problems. Also, multiple feature
reconstruction (similar to the method [14, 34]) seems to be an interesting future research
direction.
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