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Abstract

We present two methods that combine image reconstruction and edge detection

in computed tomography (CT) scans. Our first method is as an extension of the

prominent filtered backprojection algorithm. In our second method we employ `1-

regularization for stable calculation of the gradient. As opposed to the first method,

we show that this approach is able to compensate for undersampled CT data.

1 Introduction

Detection of edges in computed tomography (CT) scans is a challenging task because the

underlying image reconstruction problem is ill-posed and, hence, even small errors in the

x-ray measurements may lead to huge reconstruction errors that have to be compensated

by the edge detection algorithms, cf. [1]. This task becomes even more challenging, when

the CT scans are generated from a small number of x-ray measurements, as it is the case,

e.g., in digital breast tomosynthesis or dental CT, where the x-ray measurements can be

taken only from a small number of views in a limited angular range. In such situations,

classical reconstruction algorithms may generate characteristic reconstruction artifacts (in
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addition to noise amplification) and, thus, substantially degrade the image quality, cf. [2].

Performing edge detection after image reconstruction, can therefore lead to unreliable edge

maps. In this article we present two methods, that allow for a stable reconstruction of edges

directly from CT data and, thus, stabilizes edge detection in CT images. In this work,

we focus on stable reconstruction of the gradient of a CT scan, because it is the main

ingredient in most prominent edge detection algorithms, such as the Canny algorithm, cf.

[3].

In what follows, we model CT scans as functions f : R2 Ñ R and the corresponding

CT data by the Radon transform of f , which is defined as (cf. [1])

Rfpϕ, sq :“

ż

R
fpsθpϕq ` tθKpϕqq dt, (1)

where θpϕq “ pcospϕq, sinpϕqqJ and θKpϕq “ p´ sinpϕq, cospϕqqJ. Here, the value Rfpϕ, sq

represents one x-ray measurement along the x-ray path that is given by the line Lpϕ, sq “
 

sθpϕq ` tθKpϕq : t P R
(

“ tx P R2 : xx, θpϕqy “ su, where ϕ P r0, πq and s P R.

We will present two methods for stable reconstruction of the gradient of the smooth

function fε :“ f ˚ gε,

where

gεpxq :“
1

2πε2
exp

˜

´
‖x‖2

2ε2

¸

, ε ą 0. (2)

First, we derive a method that is of the same type as the famous filtered backprojection

algorithm (FBP). This method follows the spirit of [4] and yields good results whenever

the CT data is well sampled [5]. In our second approach, we employ ideas from compressed

sensing and propose to use sparse regularization for the reconstruction of the image gradi-

ent. We show that this method leads to a more robust edge detection, especially when the

data is not sampled properly.
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2 Materials and methods

2.1 Method 1: An FBP-type approach for calculating the gradi-

ent

In order to calculate the smoothed partial derivatives derivatives

Bfε
Bxj

“
B

Bxj
pf ˚ gεq “ f ˚

Bgε
Bxj

, (3)

directly form CT data, we use the well-known relations between the Radon transform,

convolutions and derivatives (cf. [1]) and obtain the following result.

Lemma 2.1 Let the Gaussian gε be defined by (2). Then, we have for j P t1, 2u:

R
„

f ˚
Bgε
Bxj



pϕ, sq “ rRf ˚s Gε,js pϕ, sq, (4)

where ˚s denotes the convolution with respect to the second variable s, and

Gε,jpϕ, sq :“ ´
θjpϕq

ε3
?

2π
¨ s ¨ exp

ˆ

´
s2

2ε2

˙

(5)

with pϕ, sq P r0, πq ˆ R and θ1pϕq :“ cospϕq, θ2pϕq :“ sinpϕq.

Lemma 2.1 shows that the partial derivatives (3) can be obtained by applying the

inverse Radon transform R´1 to the preprocessed data (4), i.e.,

Bfε
Bxj

“ R´1
rRf ˚s Gε,js . (6)

Since the FBP algorithm is a regularized implementation of R´1 (cf. [1]), a standard

toolbox implementation could be used in practice to obtain ∇fε.

Since the inverse Radon transform is given by R´1 “ B ˝ P , where P is a filtering

(convolution) operator and B is the so-called backprojection operator (cf. [1]), the filtering

by P can be combined with the filtering in (6). In this way, we obtain a reconstruction

formula of FBP-type for the derivatives (6), that is stated in the following theorem.

Theorem 2.2 Let Wε,j be the function of two variables pϕ, sq which is defined in the
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Fourier domain by

xWε,jpϕ, ωq :“
1

4π
¨ θjpϕq ¨ i ¨ ω ¨ |ω| ¨ exp

ˆ

´ε2ω2

2

˙

, (7)

where xWε,j denotes the 1D-Fourier transform of Wε,j with respect to the s-variable and

i P C is the imaginary unit. Then,

Bfε
Bxj

“ BpRf ˚sWε,jq, (8)

where B is the backprojection operator for the Radon transform (cf. [1]).

The proof of Theorem 2.2 follows from (4) together with the convolution theorem for

the Fourier transform and Theorem II.2.1 in [1]. It shows that the derivatives (3) can be

calculated using a FBP-algorithm with angle-dependent filters that are given by (7).

Remark 2.3 The accuracy of the presented method (given by (6) and (8)) will strongly

depend on the sampling of the Radon transform, cf. [1]. If the CT data does not satisfy

the sampling requirements, e.g., when the angles are sampled rather sparsely, the algorithm

will produce artifacts which can substantially degrade the performance of edge detection.

2.2 Method 2: Gradient calculation using `1-regularization

In order to account for the negative effects of (possible) undersampling of CT data, we

propose to replace R´1 in (6) by a regularization method for R´1 that is able to deal with

undersampled data. From the theory of compressed sensing it is well known that sparsity

can help to overcome the classical Shannon sampling paradigm, [6]. As we are interested

in recovering gradients of images, which only have large values around edges, we aim at

enforcing sparsity of image gradients. Thus, we calculate the derivatives (3) approximately

via (cf. [6]):

f
pjq
λ,ε “ arg min

f
‖Rf ´ y ˚Gε,j‖22 ` λ ‖f‖1 , (9)

where λ ą 0 is regularization parameter. Note that in (9) the bold face symbols denote

the discretized versions of the corresponding continuous objects.
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3 Results

We implemented the methods 1 and 2 in Matlab and tested them on the x-ray CT data of

a lotus root, cf. [7]. In our experiments we converted the fan-beam data to a parallel-beam

data using Matlab function fan2para and downsampled this data in order to simulate

angular undersampling. Thereby, we used 738 equispaced samples in the s-variable and 36

evenly distributed angles in r0, πq. For our implementations, we used the Matlab functions

radon and iradon as numerical realizations of the Radon transform, the inverse Radon

transform and the backprojection operator. For the minimization of the `1-functional (9),

we implemented the iterative soft thresholding algorithm, cf. [8].

The CT data and the corresponding FBP reconstruction are shown in Fig. 1(a) and

1(d). It can be clearly observed that the FBP reconstruction contains many undersampling

artifacts (streaks) that could complicate the detection of edges in that image. Hence, we

calculated the gradient directly from CT data using the methods 1 and 2, where we chose

the parameters based on visual inspection of edge detection results. These are given in the

caption of Fig. 1.

In Fig. 1(b) and 1(e) one can see that the Gaussian smoothing cannot compensate for

the undersampling artifacts and, thus, many edges in the edge map are not coming from

actual image features. However, the `1-regularization successfully reduces the number of

artifacts and detects the edges more reliably, as can be seen in Fig. 1(c) and 1(f). In other

experiments we also observed that the method 2 outperforms the method 1 whenever the

CT data was not sampled properly. For dense angular sampling, we found that both

methods produce similar edge detection results.

4 Discussion

We presented two methods for calculating the gradient of a CT scan directly from CT data.

As our first method, we introduced is a variant of the filtered backprojection algorithm and

explained two different ways for its implementation. As our second approach, we introduced

a sparsity based gradient recovery from CT data and showed in numerical experiments that

this method is able to account for data undersampling and to provide more reliable edge
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(a) CT data (b) Method 1: |∇fε|, ε “ 3 (c) Method 2: |∇fε|, ε “ 6,
λ “ 0.01

(d) FBP reconstruction (e) Method1: edge map
(Canny)

(f) Method 2: edge map
(Canny)

Figure 1: Rebinned CT data of a lotus root (a) and the corresponding FBP reconstruc-
tion (d) from an angular range given by r0, πq and 36 evenly distributed an-
gles, cf. [7]. The magnitude of the gradient |∇fε|, in (b) and (c), and the cor-
responding edge detection results using the Canny algorithm, see (e) and (f).

detection results. Moreover, the second approach provides more flexibility and can be more

easily applied to different scanning geometries.
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