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Abstract

Digitalization offers a large number of promising tools for large internal combustion
engines such as condition monitoring or condition-based maintenance. This includes the
status evaluation of key engine components such as cylinder liners, whose inner surfaces are
subject to constant wear due to their movement relative to the pistons. Existing state-of-
the-art methods for quantifying wear require disassembly and cutting of the examined liner
followed by a high-resolution microscopic surface depth measurement that quantitatively
evaluates wear based on bearing load curves (also known as Abbott-Firestone curves).
Such reference methods are destructive, time-consuming and costly. The goal of the
research presented here is to develop nondestructive yet reliable methods for quantifying
the surface condition. A deep-learning framework is proposed that allows computation
of the bearing load curves from reflection RGB images of the liner surface that can be
collected with a wide variety of simple imaging devices, without the need to remove and
destroy the investigated liner. For this purpose, a convolutional neural network is trained
to predict the bearing load curve of the corresponding depth profile from the collected RGB
images, which in turn can be used for further wear evaluation. Training of the network is
performed using a custom-built database containing depth profiles and reflection images
of liner surfaces of large gas engines. The results of the proposed method are visually
examined and quantified considering several probabilistic distance metrics and comparison
of roughness indicators between ground truth and model predictions. The observed success
of the proposed method suggests its great potential for quantitative wear assessment on
engines during service directly on site.
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1 Introduction
Digitalization offers a wide range of promising tools for large internal combustion engines.
While sensors are needed for recording data, networks and other IT infrastructure provide
access and connect the information. From electronic control units of specific engine compo-
nents via the entire engine control system to application software for monitoring, the data is
repeatedly processed and analyzed. Today, original equipment manufacturers or third-party
suppliers are already providing solutions that instantaneously obtain insight into the overall
performance of an engine [1, 2, 3, 4, 5, 6, 7] or the condition of individual key engine components
such as bearings [8], injectors [9] or turbochargers [10]. In addition, with modern data analysis
methods and advanced simulation techniques such as digital twins, there is great potential to
improve condition monitoring systems that were previously based on expert systems only [11].
All these factors, their interrelations as well as the knowledge gain from modern analysis or
simulation techniques give rise to a concept which can be referred to as a "digital engine".

When online condition monitoring systems are given a predictive character, e.g. by using
advanced data analysis methods such as machine learning, there is the potential to increase
the lifetime of an engine, to avoid unwanted downtime due to maintenance and therefore to
reduce the engine’s carbon footprint and its total cost of ownership [12]. Carvalho et al.
[13] and Zhang et al. [14] provide recent reviews about data-driven approaches for predictive
maintenance in general. Both include studies applying traditional machine learning techniques
such as support vector machines or random forests and neural network-based deep learning
approaches, respectively. Lei et al. [15] consider transfer learning techniques in their review
of methods for intelligent fault diagnosis. Although there are many valid machine learning
approaches for implementing a predictive maintenance system in a digital engine, its success
still heavily depends on the quality of the available data and the structure of the learning
system.

1.1 Wear Monitoring of Engine Components
While information on operating parameters, performance and ambient conditions can be evalu-
ated permanently, position-based measurement of the wear of most components during engine
operation is currently not possible. Some online wear monitoring systems focus on indirect
effects of wear, for example by detecting wear debris in the lubricant oil system [16]. In many
situations, however, wear assessment requires disassembly and destruction of the engine com-
ponent to be examined. Therefore, the goal of the research presented here is to use fast yet
reliable and informative methods in combination with advanced machine learning algorithms
to evaluate the wear condition of engine components without the need to remove and destroy
them. Machine learning-based systems acquire their knowledge from high-dimensional raw data
[17]. Recent research shows that in combination with data-driven machine learning techniques,
monitoring systems can build an effective wear prediction model [16]. In addition, machine
learning also provides the opportunity to permanently approximate computationally expensive
wear predicting simulation techniques and to conduct online wear predictions of machinery
parts [18].

2



The aim of this research is to demonstrate the plausibility and advantages of combining
simple measurement methods with advanced machine learning techniques for nondestructive
and fast wear assessment. The main focus of this study lies on the inner surface/wear inspection
of cylinder liners in large gas engines. Nevertheless, it should be emphasized that the proposed
transfer learning framework can be similarly applied to advance the assessment of various other
components in large internal combustion engines.

1.2 Cylinder Liner Wear Assessment
Due to the movement of the piston during the combustion cycle, cylinder liners of internal
combustion engines are subject to constant wear. Wear decreases the volumetric efficiency of
the engine and increases blow-by; oil consumption; power loss and HC, CO, CO2 and NOx-
emissions [19, 20, 21]. In addition, wear impairs the hydrodynamic support of the piston rings
and thus increases the risk of a fatal engine failure [22]. There are multiple on-site and external
methodologies that characterize the surface structure including stylus instruments, white light
interferometry [23], scanning electron microscopes, bore measurements, thin layer activation
[24] and 3D optical confocal measurements [23, 25]. Various methods have been proposed
for cylinder liner wear assessment including component mass losses [26], precise coordinate
measurements [27], volume losses [28, 29] and repeated measurements of component positions
[30].

A common approach in the large engine industry is to evaluate wear by taking spatial
measurements of an unworn and a worn area of the cylinder liner and then to compare the
corresponding bearing load curves (BLC) after height compensation [29, 31, 32, 33]. BLC is
also known as bearing surface curve or Abbott-Firestone curve. These spatial measurements
are performed with an advanced optical device that generates a high-resolution microscopic
surface depth profile that allows for calculation of the corresponding BLC. Since the surfaces
of interest are located on the inside of the cylinder liner and the optical device is mounted at a
fixed measurement station due to its cumbersome size, it is necessary to dismount the cylinder
liner and to cut it into segments containing the respective surface areas. A specific issue with
this method is that the components are destroyed and cannot be re-used after measurement.
Thus a single component cannot be measured again at a later time when it has accumulated
more wear. In addition, handling the sophisticated measurement equipment requires a high
level of technical understanding of roughness assessment and software-specific training on the
measurement device. In summary, the current measurement pipeline is a time- and resource-
intensive process chain, which makes it unsuitable for constant evaluation of production quality
and long-term studies on the wear of cylinder liner components. The proposed liner surface
evaluation method presented in this research does not require removal and destruction of the
examined cylinder liner.

1.3 Modality Transfer Learning
Assessment methods that rely only on a simple handheld optical device have the potential to
enable on-site condition assessment of liners on series engines. The current state-of-the-art
technology integrates optical sensors and especially digital image sensors into comparatively
small and inexpensive devices such as cell phones, compact cameras and handheld microscopes.
These devices are capable of producing a large amount of image data in a time-saving, simple
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and non-invasive manner [34, 35]. The challenge, however, is to make a reliable condition
analysis based on this data, since an RGB modality does not directly describe a depth profile.
This study demonstrates that RGB image data in combination with sophisticated machine
learning methods is sufficient to provide an objective and quantitative assessment of inner
surface wear.

The core of the proposed framework for nondestructive and fast on-site wear assessment is a
data-driven modality transfer model. In modality transfer, observed data of a simpler modality
in terms of acquisition effort is mapped to desired properties of a more complex modality. In
the context of cylinder liner wear assessment, this means that the BLC, which is usually derived
from a surface depth profile, is predicted from a simpler RGB modality. Although the RGB
modality contains no per-pixel depth information, it offers contextual information about the
surface. A neural network is trained from noisy and low-resolved RGB reflection images of
the inner surfaces of gas engine cylinder liners to predict the BLC of the depth profile. To
combine optical measurements with a data-driven prediction methodology, a database is built
from scratch. Reflectance RGB images are acquired via a handheld digital microscope, which
exemplifies the wide range of possible simple handheld optical methods. For corresponding
ground truth data, engine liners are removed and 3D depth profiles of worn and unworn areas
are generated using a confocal microscope. The quantile functions of the depth profile pixel
values represent the desired BLCs.

Based on the database, a convolutional neural network (CNN) is developed and trained to
enable prediction of the BLC of a completely different modality, namely the depth profile, from
an RGB modality. Estimation errors are evaluated via probabilistic metrics (Wasserstein-1 and
Wasserstein-2 distance [36, 37, 38]) and surface roughness indicators (Sk, SMr1, SMr2 [39, 40]).
Once the model is trained, the BLC of a new liner can be predicted from a simple RGB image of
the surface. The proposed methodology for targeted modality transfer promises a tremendous
improvement in terms of time resources, replacement liner costs and measurement costs by
eliminating the need to remove and destroy cylinder liners for measurement with expensive
and sophisticated microscopy equipment.

1.4 Outline
The rest of this article is organized as follows. Section 2 provides background information
on cylinder liners, wear assessment and replacement modalities used in this work. Section 3
presents the proposed transfer learning framework for nondestructive and accelerated wear
assessment. Section 4 contains results and discussions on the proposed BLC prediction pro-
cedure. Section 5 summarizes the main findings of this study and describes important future
research directions. Finally, Appendix A presents data analysis results that highlight correla-
tions between the reflection image and the corresponding BLC.

2 Fundamentals of Cylinder Liner Surface Assessment
This section discusses the importance of the surface properties of the liner and honing structure.
In addition, optical methods for measuring surface texture and surface depth are presented.
The information quality of bearing load curves regarding roughness analysis and wear assess-
ment is described in detail.
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2.1 Liner Surface Machining
Surface finish is considered to be an important factor for oil consumption, piston-ring friction,
wear propensity and blow-by of cylinders [41, 42, 43]. In addition, the cylinder liner sur-
face topography also affects the engine emissions [44, 45]. The desired surface properties are
achieved by a manufacturing process known as honing. In this process, the surface roughness
is machined to a production standard that is usually defined by the design limits of the man-
ufacturer. The surface is formed into a fine plateau structure that simultaneously minimizes
friction and provides oil retention.

α

abrasive stone

v
rot

v
vert

p

Figure 2.1: Illustration of the honing process. By adjusting the rotational velocity vrot and
the vertical velocity vvert as well as the pressure p on the cylinder wall, the honing structure
can be varied to achieve the required honing angle α and surface properties.

Honing of a cylinder surface is performed by rotating a device with abrasive stone inserts and
simultaneously moving the device vertically (cf. Figure 2.1). Plateau honing is a conventional
honing method used for cylinders in the gas engine industry [46]. It is usually implemented in
two or three consecutive steps with either ceramic or diamond cutting stones, where the first
step is pre-roughening with a removal of up to 50 µm and the last step is a finishing process
that removes about 5 µm to obtain a finer surface [47]. Other honing techniques such as spiral-
glide honing, variable-roughness honing, laser structuring, coating and form honing are also
considered surface finish techniques for liner production [48].

2.2 Surface Roughness Characterization
In the field of large engine operation, evaluation of surface roughness and lubrication char-
acteristics of engine cylinder liners can help to determine signs of failure or premature wear.
The bearing load curve is an important tool for assessing surface structure conditions. As
illustrated in Figure 2.2, left, the BLC plots the reduced height value against the percentage
of measurement points above that height. In terms of cylinder liner functionality, the BLC
describes two important parts of the honing structure: the valley part, which specifies the
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oil retention capacity, and the peak part, which specifies debris or asperities of the honing
structure [49]. Depending on the measurement method, either profile or surface parameters
are visualized by the BLC.
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Figure 2.2: Left: BLC of a surface depth measurement. The corresponding surface roughness
indicators Sk, Spk, Svk, SMr1 and SMr2 are derived directly from the BLC depth representation
[39, 40]. Right: Example of the typical observed circular and vertical wear distribution of a
cylinder liner in operation.

Profile values (denoted with an R prefix) are determined using conventional stylus pro-
filometers [23]. These devices measure the surfaces with a needle that traverses a defined
distance and outputs the corresponding BLC. Surface values (denoted with an S prefix) are
determined by using optical methods. Unlike stylus instruments, optical methods are able
to record the entire surface and are also less sensitive to measurement errors. Depending on
whether profile or surface measurements are used, commonly extracted parameters from the
BLC are:

• reduced peak heights Rpk and Spk

• heights of core roughness areas Rk and Sk

• reduced valley heights Rvk and Svk

• material ratios of peaks RMr1 and SMr1

• material ratios of valleys RMr2 and SMr2.

Additional parameters that are often considered are the arithmetical mean deviation and
the maximum height of profile or surface. A definition and detailed information on parameter
calculation are given in ISO 13565-2 (profiles) and ISO 25178-2 (surfaces) and further discussed
in [39, 40].

2.3 Optical Metrology
In this study, optical surface imaging methods based on confocal microscopy are employed as
the reference method. The basic idea is to acquire multiple 2D images at different height levels
of a sample in order to reconstruct the 3D structure of the object. This is achieved by using
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point illuminations that pass through an optical path and pinhole in front of the detector to
eliminate out of focus signals. Therefore, only light in the immediate vicinity of the focal plane
is detected, and as the height level of the focal plane is varied, high depth resolution is achieved
[23]. Figure 3.1 shows in the left column examples for relative depth profiles generated by a
confocal microscope, where darker pixels denote valleys up to a relative depth of 8 µm and
brighter values denote peaks up to a relative height of 4µm. Other than confocal microscopy
but not used for this study, white light interferometry as well as interferometric microscopy
represent other potential optical reference measurement methods with high spatial and depth
resolution [23].

Although surface imaging methods enable the recording of high-resolved depth maps, they
are quite limited for industrial on-site use. For example, they must be isolated from external
influences to avoid any degradation in their reliability caused by vibrations or thermal effects.
In addition, liner components must be removed from the engine and treated with great effort
(cutting, cleaning) to enable measurement with the external stationary devices. A comprehen-
sive literature study indicates that no handheld optical alternative exists that permits use of
these microscopy techniques, which essentially limits their practical utility for on-site surface
measurement.

2.4 Liner Wear Assessment
As described in Section 1.2, the unavoidable wear of cylinder liners alters important surface
properties. As operating time increases, wear can become extremely hazardous at certain local
points and thus the honing no longer provides sufficient lubrication and fatal engine failure is
highly likely to occur [50]. Besides mechanical friction, the honing structure can also wear out
due to intrusion of foreign particles from either oil coking or fuel contamination [51, 52, 53].
These potential occurrences indicate the importance and benefits of condition assessment of
the surface structure at regular intervals.

Comprehensive simulation work at INNIO Jenbacher GmbH & Co OG on gas engines has
established that the greatest wear occurs near the top dead center (TDC). In this region, the
cylinder liner wall temperature is comparatively high due to the thermal impact from com-
bustion. In turn this leads to a low oil viscosity, a thin oil film, and thus to asperity contacts
between the compressed piston ring and the cylinder wall [54]. The continuous movement of
the piston causes a change in the thrust force in the cylinder and also a continuous change
both in the circumferential and in the vertical directions, namely from TDC to the bottom
dead center (BDC). The greatest wear occurs in the liner surface area parallel to the piston
pin axis on the thrust/anti-thrust side of the cylinder, while less wear is observed in the area
perpendicular to the pin axis (cf. Figure 2.2, right). Due to the peak firing pressure in the
cylinder, an additional contact pressure arises between the piston ring and the liner, which
further increases wear at the liner areas near the TDC.

In general, standard roughness indicators (arithmetic mean deviation and maximum height
of profile) are considered insufficient for accurate liner surface wear analysis, and therefore
surface height characterization of the BLC according to ISO 25178-2 is preferred. The ISO
defines the exact procedure for determining BLC parameters that characterize height (peaks,
core area, valleys and material ratios), which can be used for the subsequent wear analysis.
This again emphasizes the benefit of an efficient BLC prediction method.
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3. Wear calculation at 50%

Figure 2.3: Visualization of the wear calculation: In the left plot, the worn/top BLC (orange)
is vertically compensated to map the valley region of the unworn/bottom BLC (blue), where
alignment of corresponding valley regions is shown in the middle plot. The right plot indicates
that the wear is calculated as the difference between the aligned curves at 50% of the bearing
load area.

As an integral part of the liner wear assessment, cylinder liners are cut to obtain segments
with measurement regions at touched (thrust and anti-thrust) and untouched areas regarding
contact with the piston and piston rings. Each segment is then measured with an optical
device to obtain corresponding depth images from which the BLCs are calculated based on the
empirical distribution of the depth values. Subsequently, the BLCs of worn (top, touched) and
unworn (bottom, untouched) areas are adjusted in respect of height at a certain significant
point or region of the curve. There are several common criteria for the height compensation of
the two curves [29]. The vertical shift of the worn BLC to match the valley region of the unworn
BLC as shown in Figure 2.3 is considered a reliable method for assessing wear. The prevailing
assumption is that the valleys of the surfaces are not worn by the movement of the piston,
thus allowing an estimation of the wear between the worn and unworn regions. An appropriate
value for the vertical shift is found automatically by minimizing a distance function evaluated
on both curves in the valley region; in some cases, this can also be determined visually.

After the valleys of the unworn and worn BLCs are matched, wear is quantified by taking
the difference in height at the core roughness of both surfaces (cf. Figure 2.3, right). The 50%
mark of the bearing load area is often considered as quantification position. In order to obtain
a more reliable assessment of wear, several measurements are taken of both the worn and
unworn areas of the targeted cylinder liner. Since measurement artifacts caused by material
chipping or pitting in the honing structure could distort the BLC and indicate excessive wear,
a more robust estimation of the wear is achieved by averaging the wear calculations on these
multiple measurements.

3 Methodology
This section presents the proposed method for nondestructive and fast wear assessment of
cylinder liners based on surrogate image acquisition methods and transfer learning. A modality
transfer approach is provided to derive BLC information from measurement data of a surrogate
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modality that can be applied without full disassembly and destruction of engine components
and without use of highly expensive and unportable scanners at sites of existing series engines.

3.1 Optical Surrogate Modalities
Existing wear analysis techniques require a complex workflow to generate high-resolution depth
measurements. Optical reflection images are used in the modality transfer approach proposed
here. The specific surrogate image modalities in this work are described below.

Fixed confocal device outputs: As visualized in Figure 3.1, the Alicona InfiniteFocus
confocal microscope [55] used in this work provides the user with a depth image as well as with
a high-resolved RGB reflection image of the same measurement area. This gives access to a
reflection RGB image of exactly the same regions that were used to calculate the corresponding
BLCs. Because the same invasive liner acquisition as the depth modality is required to deter-
mine this reflection modality, its practicality is limited. However, it is ideal as a verification
concept for transferring reflection images into a BLC of the corresponding depth image.

Handheld device outputs: Of greater practical relevance is the second optical approach, in
which a Mic-Fi Wi-Fi microscope [56] with a length of 135mm captures RGB reflection images
in SXGA format (1280× 1024 pixels) at up to 220 times the magnification. The use of such a
handheld device has the potential to enable inspection of cylinder liners without full disassembly
of the component, which facilitates inner surface imaging of a permanently mounted liner.
Figure 3.2 visualizes images taken with the handheld device. It highlights additional practical
challenges of using this handheld device such as non-uniform light intensities, blurred areas
due to cylinder curvature and the lower resolution compared to the depth profiles.

The later presented transfer learning model is not limited to this specific handheld device,
which is mainly used here because this microscopic camera fits well with the cylinder dimen-
sions. All kinds of handheld devices for RGB image acquistion such as compact cameras,
smartphones, or endoscopes could be used instead.

3.2 BLC Estimation by Modality Transfer
The imaging modality underlying the BLC is a high-resolution nanoscale cylinder liner surface
depth image measured in a spatial domain of approximately 1.9× 1.9mm2 (Figure 3.1, left).
The goal is to replace these depth profile measurements with the simpler modality described
above, which does not contain any information about pixel-wise depth, and to predict the
BLC of the depth profile measurement from this indirect contextual RGB information. In the
following paragraphs, the task is described in detail from a mathematical point of view.

Let A ∈ Rd1×d2 denote the recorded depth image where d1 × d2 denotes the number of
sampling points (pixels). The corresponding BLC is defined as the reversed empirical quantile
function B : (0, 1)→ R of pixel values of the depth image,

B(x) , inf

{
y ∈ R

∣∣∣∣ 1− x ≤ 1

d1 · d2

∑
A

1{ai ≤ y}
}
. (3.1)
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Figure 3.1: Left: Examples for optical
depth measurements of worn and un-
worn 1.9× 1.9mm2 surfaces (top and
bottom, respectively), obtained with an
Alicona InfiniteFocus confocal micro-
scope [55]. Right: Corresponding op-
tical reflection measurements (RGB im-
ages), simultaneously generated by the
same microscope.

Figure 3.2: Examples of RGB measurements with
a handheld optical device, namely a Mic-Fi Wi-Fi
microscope [56], recorded with 80× magnification,
of worn positions of distinct liners. Every measure-
ment covers a region of 5.2× 4.2mm2.

Here the sum runs over all pixels ai in depth image A and 1{z ≤ y} denotes the indicator
function, returning 1 if z ≤ y and 0 otherwise. In fact, the discretized BLC b ∈ RK is consid-
ered, obtained after sampling the left-continuous BLC B in (3.1) at K equidistant sampling
positions. This allows the entire curve to be represented in a one-dimensional vector of size K
in subsequent implementations.

The task consists of predicting BLC b derived from the depth image by processing an RGB
reflection image I ∈ [0, 255]M1×M2×3 of the same object. Here M1 × M2 is the number of
sampling points and 3 the number of color channels. In mathematical terms, the task is to
find a transfer function

N : [0, 255]M1×M2×3 → RK , I 7→ b , (3.2)

that maps the RGB reflection image to the corresponding BLC. The analysis in Appendix A
suggests that RGB reflection images of a cylinder liner surface do indeed provide sufficient
information to distinguish between light and severe wear. This supports the assumption that
RGB reflection images permit the determination of the corresponding BLC of the depth image.
It is worth noting that the prediction of the empirical quantile function of a different modality
can be seen as a novel variant of modality transfer [13, 57, 58, 59, 60, 61], in which low-
dimensional information of a desired measurement modality is synthesized from a simpler data
acquisition technique.
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3.3 Machine Learning Approach
A supervised machine learning approach is proposed to construct a transfer function (3.2)
for predicting BLCs from RGB images. It is composed of the following components. First,
a database is created that contains training data pairs (In, bn) of RGB input images In ∈
[0, 255]M1×M2×3 and corresponding BLC outputs bn ∈ RK for n = 1, . . . , N , where N ∈ N
denotes the number of training data pairs. Second, a class of networks Nθ : [0, 255]M1×M2×3 →
RK is designed, where θ denotes the model parameters and θ 7→ Nθ is referred to as the network
architecture. Third, a loss function ` : RK × RK → [0,∞] is constructed that measures the
deviations between the model outputNθ(I) and the ground truth BLC b. Finally, mathematical
optimization algorithms are used to minimize the empirical risk function

R(θ) , argmin
θ

1

N

N∑
n=1

`
(
Nθ(In), bn

)
. (3.3)

The final trained neural model is given by N = Nθ̂, where θ̂ is determined to be close to a
minimizer of the empirical risk function (3.3). During inference, prediction of the BLC from
an RGB reflection image will simply involve applying the trained neural network.

A variety of efficient optimization algorithms exist for minimizing the risk functional (3.3).
For example, it can be solved with a wide range of stochastic gradient descent implementations
[62, 63, 64]. In this work, (3.3) is minimized using the Adam algorithm (stochastic gradient de-
scent with adaptive learning rates). Adam is an iterative minimization algorithm that updates
the model parameters by reusing all the training data pairs in a cyclic manner. In machine
learning, the number of training cycles is commonly referred to as the number of epochs. Im-
portant task-specific components of the machine learning framework are the generation of the
underlying database as well as the design of the network and the loss function. These elements
are described in detail in the following subsections.

3.4 Database Generation
In the scope of this research project, a database was created from scratch. The examined
objects are ten type 6 gas engines from INNIO Jenbacher GmbH & Co OG. Each engine
consists of 12, 16, 20 or 24 cylinders with a displacement of approximately 6 dm3. The number
of operating hours of the corresponding cylinder liners varies between 2550 h and 60 000 h,
where this number may vary within an engine due to past replacements of individual liners.
The inspection of each liner goes through a time-consuming and resource-intensive logistics
chain, which initially consists of disassembling the liner, removing it from the engine and
marking it. A segment of 45° is cut out of each liner which contains positions parallel to the
piston pin axis (06-h-segment) as described in Figure 3.3. Since these areas are permanently in
contact with the piston and the piston rings, this is where the greatest wear is expected. These
segments are superficially cleaned and the confocal microscope measures three to five different
areas within the TDC (upper reversal point; see Figure 3.3). The results for each measured
area are an RGB image and a depth profile with an associated BLC.

After the depth images are generated, the segments are forwarded to a second distinct
measurement station, where approximately the same areas of the TDC are recorded with the
handheld device using a self-constructed segment holder (Figure 3.4, left) placed in a darkened
room. Due to very fine scaling on micrometer range, it is not possible to measure the exact same
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Figure 3.3: Left: A segment of 45° is cut out of each liner which contains the area parallel to
the piston pin axis where the greatest wear is expected (in this case the 6 h position). Another
segment is cut out at the 3 h position, which is the liner area perpendicular to the piston pin
axis and used for later comparisons to unworn areas. Right: Comparison of worn and unworn
areas. The grayscale on the topographic scans represents the relative depth, i.e. the distance of
the surface from the normalized surface height. The scans of the worn areas show less contrast
due to the abrasions of the peaks. The greatest wear occurs on the wall of the 6 h position
near the top reversal point. The bottom dead center shows marginal surface abrasions on the
wall at the 3 h position.

spatial range of the segment surface as the depth profile with the handheld device. The segment
holding device ensures that the areas of the confocal microscope measurements are embedded
in the corresponding handheld device records (Figure 3.4, right). Therefore, the whole area
from which the empirical quantile function is calculated is also visible in the handheld device
observation. A total amount of 73 liner segments and 3 to 5 measurement areas per segment
yield a total of 271 modality pairs.

Alicona depth 

1940 × 1935 µm2

3167 × 3158

Mic-Fi device

4220 × 4220 µm2

1024 × 1024

Figure 3.4: Left: Measurement station with a self-constructed segment holder. The holding
device enables measurement of comparable positions relative to the confocal microscope. The
camera transfers the recorded measurement via a Wi-Fi connection to mobile work stations.
Right: Depth profiles from the fixed confocal device for BLC calculation are fully contained in
the corresponding handheld microscope measurements.
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3.5 Network Architecture
In this work, deployment of convolutional neural networks is proposed for BLC prediction.
CNNs represent the state of the art for several image processing tasks such as segmentation
[65, 66, 67], image reconstruction [68, 69] or modality transfer [13, 57, 58, 59, 60, 61]. The
main building block of these architectures consists of convolutional layers, where each channel
of the input is convolved with several data adapted kernels (Figure 3.5). For each kernel,
convolution with the layered input followed by application of a nonlinear activation function
results in hidden feature maps representing properties of the input channels on different scales.
To train a CNN, the most informative feature maps are found by fitting convolution kernels to
the given data. The overwhelming success of CNNs has been the hallmark of the last decade of
machine learning in image processing. The parameters θ used in a CNN are mainly composed
of millions of convolution kernel values, which in this work will be adjusted to obtain BLCs
from RGB input.

A variation of a well-known CNN architecture called VGG Net [70] is used in this study. In
the last decade of machine learning, VGG Net architectures have redefined the state of the art in
image classification. The VGG Net enables deep multi-scale feature learning via convolutional
blocks with 3× 3 kernels, which has been successfully employed in several public classification
challenges to date. Its high generalization properties and superior ability to capture image
distribution also suggested the use of the VGG network architecture beyond classification, for
example in segmentation [66, 67] or tomographic image reconstruction [68, 71]. The key idea is
to prune the network in the latent space (encoder output) and to transform the low-scale feature
representations into a vector of length K describing the discretized BLC (cf. Figure 3.6). The
VGG13 network architecture [70] is used, where the univariate output layer is replaced by a
dense layer of size K = 256 representing the discretized BLC prediction. The RGB images are
subsampled by a factor of 2 and propagated through the network, which consists of a total of
19.4× 106 adjustable parameters.

Figure 3.5: Convolution of a three-layered in-
put with two filters. Both filters slide verti-
cally and horizontally over the given input
layers and convolve each input channel with
individual 3× 3 kernels. Summation of the
resulting feature maps of filter 1 and filter 2
yields the first and second output layer, re-
spectively.
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Figure 3.6: Visualization of the proposed
variation of the VGG13 Net [70] for BLC pre-
diction. Every convolution and dense layer is
followed by a ReLU activation function [72].
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3.6 Loss Function Design
In addition to the model architecture and the quality of training data, the choice of the loss
function also has a major impact on the model’s performance. In general, it is desirable to
find a loss function that matches the targeted task best while minimizing a task-dependent
distance measure. Mathematically, a BLC is an empirical quantile function, which in turn is
the inverse function of the empirical cumulative distribution function. Therefore, comparing a
predicted BLC with the corresponding ground truth is equivalent to comparing two probability
distributions.

A commonly considered metric for measuring the closeness of two probability distributions
is the Wasserstein-1 distance [36, 37, 38], which is also called the earth-mover distance. The
Wasserstein-1 distance between two probability distributions P1 and P2 is defined by

W1(P1, P2) , inf
J∈J (P1,P2)

E(x,y)∼J ‖x− y‖ ,

where the infimum is taken over the set of all joint probability distributions that have marginal
distributions P1 and P2. The Wasserstein-1 distance can be interpreted in the setting of op-
timal mass transport. In this setting, one aims to find an optimal transfer plan to transport
one mass distribution into another as cheaply as possible in reference to a given cost function
[73]. Taking a metric as cost function results into the Wasserstein-1 distance. It is important
to note that, contrary to the standard Lp-norms, the Wasserstein distance not only compares
distribution values point-wise but also quantifies how far the distributions have to be moved.
Wasserstein distances have several useful properties and dual representations, which makes
iterative solution of the transport problem computationally feasible [36, 37]. Moreover, given
two one-dimensional probability distributions P1 and P2, the Wasserstein-1 distance simpli-
fies to W1(P1, P2) =

∫ 1

0
|Q1(z) − Q2(z)|dz, where Q1, Q2 denote the corresponding quantile

functions.
Because BLCs are the empirical quantile functions associated with depth profiles, the

Wasserstein-1 distance between ground truth depth distribution and predicted depth distri-
bution corresponds to the component-wise L1-distance between the corresponding discretized
BLCs. A significant property of a BLC, which is also important for subsequent depth valley
alignment (Section 2.4), is its curvature at specific positions. Therefore, to ensure that the
model prediction b̂ and the corresponding ground truth b have nearly the same curvature, the
Wasserstein-1 distance after application of the second order central difference quotient is also
considered during loss minimization. This results in the proposed penalized loss function

`λ1 (b̂, b) ,
1

K

K∑
k=1

∣∣b̂k − bk∣∣+ λ
1

K

K∑
k=1

∣∣∂2b̂k − ∂2bk
∣∣ , (3.4)

where ∂2 denotes the second order central difference quotient and λ ≥ 0 is a regularization
parameter indicating the penalty during training when predicting curves with dissimilar curva-
ture. The final transfer learning model minimizes the empirical risk (3.3) using the penalized
Wasserstein loss (3.4), training data (In, bn) described in Section 3.4 and the architecture
(Nθ)θ∈Θ described in Section 3.5.
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4 Results and Discussion
This section presents the results for supervised BLC prediction from RGB reflection images
using data pairs from the stationary confocal device as well as from the handheld device. To
assess the similarity between BLC prediction b̂ and ground truth b, the Wasserstein-p distance
Wp(b̂, b) ,

(
1/K

∑K
k=1|b̂k − bk|p

)1/p for p ∈ {1, 2} and roughness metrics Sk, SMr1 and SMr2
are evaluated for both devices. Sk core roughness is measured on µm scale, and peak and
valley material ratios SMr1 and SMr2 are given as a percentage. Computation of considered
roughness metrics is quite demanding and requires separate optimization of a linear regression
model for each BLC. More detailed information can be found in [39, 40].

4.1 Results with the Fixed Device
The first reported results in Table 4.1 use as inputs the fixed device reflection RGB images taken
by the confocal microscope simultaneously with the depth profiles. As stated in Section 3.4,
the database consists of 271 reflection images of the fixed device and the corresponding depth
images. To increase the number of training data, nine non-overlapping patches of size 512× 512
pixels are extracted from each reflection image and the BLC of the corresponding depth patch is
generated, where the length of the discretized BLC equals K = 256. This yields 271 · 9 = 2439
available training pairs.

The evaluation is carried out by means of a three-fold cross-validation. More specifically,
the dataset is split into three separate parts of nearly identical size. During training, one
part (evaluation data) is omitted and then used for testing on unseen data while the model is
optimized on the other two parts (training data). The process is repeated three times, each
time omitting another third. Note that there is always a strict separation between the liners.
This means that no liners contribute to the training data and the evaluation data at the same
time. This is employed to mimic use in a practical scenario where the network would also be
applied to liners that the underlying model has never seen during training. While splitting it
is ensured that all folds have a similar liner operating hour distribution.

The risk functional (3.3) is minimized with the Adam algorithm using 40 epochs and an
initial learning rate of 5× 10−5, as this optimizer setting provided a quite stable training
progress in most of the experiments. Training stability is enforced by a learning rate scheduler
that constantly decreases the learning rate. The results of three-fold cross-validation with
(λ > 0) and without (λ = 0) curvature penalty are shown in Table 4.1. Due to considered
three-fold cross-validation, it is possible to predict a BLC for every sample using a model
that has never seen this sample during training. Running this experiment several times with
different values for the curvature penalty parameter λ ∈ {k × 0.05 | k = 0, . . . , 10} has shown
that λ = 0.4 achieves the best improvement in terms of the evaluation metrics. It can be
observed that if the penalty term is employed, there is a significant performance gain in terms
of the unseen liner evaluation metrics for the first two folds. Considering that the quantile
function of an unknown depth profile was predicted from an RGB reflection image, the results
in Table 4.1 are quite satisfactory.

15



Table 4.1: Evaluation results for the fixed
device RGB data observed during three-fold
cross-validation (3 training runs). For all met-
rics, the mean absolute errors between the pre-
dictions on unseen data (of the excluded fold)
and the ground truths are reported (smaller is
better).

Run W1 W2 Sk µm SMr1 SMr2

Without curvature penalization (λ = 0.0)

1 0.103 0.222 0.182 1.229 2.236

2 0.106 0.223 0.192 1.501 3.003

3 0.131 0.270 0.224 1.360 2.682

Avg. 0.113 0.238 0.199 1.363 2.640

With curvature penalization (λ = 0.4)

1 0.095 0.187 0.157 1.537 2.557

2 0.094 0.212 0.147 1.494 2.880

3 0.144 0.308 0.242 1.405 2.958

Avg. 0.111 0.237 0.182 1.478 2.798

Table 4.2: Evaluation results for the handheld
device RGB data observed during three-fold
cross-validation (3 training runs). For all met-
rics, the mean absolute errors between the pre-
dictions on unseen data (of the excluded fold)
and the ground truths are reported (smaller is
better).

Run W1 W2 Sk µm SMr1 SMr2

Without curvature penalization (λ = 0.0)

1 0.104 0.219 0.164 1.070 2.374

2 0.102 0.231 0.156 1.256 2.497

3 0.110 0.237 0.179 1.172 2.876

Avg. 0.105 0.229 0.166 1.166 2.582

With curvature penalization (λ = 0.1)

1 0.103 0.230 0.154 1.026 2.232

2 0.099 0.236 0.155 1.120 2.570

3 0.106 0.231 0.178 1.265 2.836

Avg. 0.103 0.232 0.162 1.137 2.546

4.2 Results with the Handheld Device
The input RGB reflection images cover a spatial area of 4.2× 4.2mm2 with a total of
1024× 1024 pixels and are subsampled by factor 2 (i.e. taking every second pixel) to a total
of 512× 512 pixels. The corresponding depth image covers an area of about 1.9× 1.9mm2

and is fully contained within the range of the reflection image (Figure 3.4, right). The RGB
images show a significant degradation in image quality compared to the fixed device inputs in
terms of inconsistent light intensities and blurred areas due to cylinder curvature (Figure 3.2).
Since the resolution of the input images is comparatively small and there is no one-to-one
correspondence to the given depth images regarding the exact position, it is not feasible to
use patch extractions for data augmentation as in the previous experiment. Instead, the set
of training data is augmented to 271 · 2 = 542 by vertically flipping the reflection image while
the corresponding BLC remains unchanged. Training is performed within only 25 epochs
using Dropout regularization to prevent overfitting [74]. By numerous experiments, the value
3× 10−4 turned out to be the best learning rate in terms of training stability. Furthermore,
the ReLU activation function initially proposed in Figure 3.6 is replaced by the hyperbolic
tangent activation function, which yields better results for the handheld data.

The results of three-fold cross-validation without (λ = 0) and with (λ > 0) curvature
penalization are shown in Table 4.2. The best performing CNN is obtained for λ = 0.1 (cf.
Figures 4.1 and 4.2), where again the set {k × 0.05 | k = 0, . . . , 10} is used for regularization
hyperparameter search. For this model, the mean absolute difference between the ground truth
Sk values and the model predictions is 0.162 µm, which is only 17.5% of the average ground
truth Sk value 0.925 µm. For the SMr1 values, which denote the material ratios of the peak
regions, the observed mean absolute difference is 1.14 percent points, and for the SMr2 values,
which denote the material ratios of the valley regions, the observed mean absolute difference
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is 2.55 percent points. Note that the evaluation results of the handheld device are even better
than the results in Section 4.1. This is remarkable, since images acquired with the handheld
device create additional practical challenges such as different light intensities and artifacts
(cf. Figures 3.1 and 3.2). However, this observation could be explained by the fact that the
handheld device data covers a broader measurement range than the fixed device data.
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Figure 4.1: The subplots show exemplary BLC predictions using penalized Wasserstein loss
for samples that have not been used during model training. Each subplot contains the ground
truth (blue dashed line), BLC prediction of the model (orange solid line) and Wasserstein-1
and Wasserstein-2 metrics as well as the Sk value of the model output and the ground truth,
respectively.
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Figure 4.2: Quantitative evaluation for the proposed model is conducted on a fine discretization
of the bearing load area. Each interval on the horizontal axis covers 5% of the bearing load
area and the corresponding boxplot diagrams represent the mean absolute error between model
predictions and ground truths in this area on µm scale. The predictions are always generated
on unseen samples via three-fold cross-validation, i.e. for each prediction a model is used where
corresponding fold has been excluded during training.
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While Figure 4.1 visualizes exemplary BLC predictions on unseen data of the proposed
model, Figure 4.2 provides for all test folds a quantitative evaluation based on the bearing
load position. Prediction errors are quite satisfying in the core roughness area and slightly
increase near the peak area (interval [0%, 5%)). Large prediction errors can be found in the
valley region (interval [85%, 100%]) as these errors are mainly caused by high variations of the
training BLC values in this load area. In addition, dependency between model performance
and the amount of accumulated operating hours of the tested liner is investigated in Figure
4.4. Although no significant correlation between the boxplot diagrams of the targeted metrics
(Wasserstein-1 distance and Sk errors) and the lifetime of the examined liner can be observed,
it is obvious that for both metrics the distance of the outliers (small circles) to the box itself
(and the whiskers) increases with the amount of accumulated operating hours.

The BLC predictions shown in Figures 4.1 and 4.2 demonstrate a reasonable approximation
of the true BLC, which represents the underlying depth profile of the surface. Since the
collection of paired data for supervised training is a very time-consuming and laborious process
in this application, the size of the proposed data set is rather modest. Nevertheless, it was
possible to generate modality pairs of a representative quantity of cylinders with a wide variety
of operating hours, and to build a novel machine learning model on this database for reliable
depth representation learning. Unwanted consequences caused by small data sets in machine
learning like overfitting or unrepresentative training data are almost entirely avoided by use of
regularization techniques, which successfully led to visual satisfying BLC predictions on unseen
evaluation data. The predicted BLCs provide quite satisfactory core roughness approximations
but unreliable material fraction indicators, which are very sensitive to curve values in the
peak and valley regions (Figure 2.2). This is further analyzed in Figure 4.3, where roughness
indicators extracted from BLC predictions are plotted against their corresponding ground
truths. However, this does not come as a surprising result, as all models have been optimized
for accurate BLCs via minimization of the (penalized) Wasserstein-1 distance but are not
optimized regarding quantification of roughness indicators. Future work will aim to tailor
predictions to roughness indicators and actual wear values.
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Figure 4.3: Roughness indicators Sk, SMr1 and SMr2 are extracted from the BLC predictions
of each fold and plotted against their ground truths. Perfect prediction of these indicators
corresponds to points lying on the diagonal in each case.
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Figure 4.4: The dependency between the accumulated operating hours of a liner and the per-
formance of the model on the unseen folds is visualized in a boxplot diagram. The performance
of the model is assessed via the Wasserstein-1 distance (left) and the Sk errors (right) between
model predictions and corresponding ground truths.

5 Conclusion
Current engine liner evaluation protocols use sophisticated depth measurements that require
disassembly and destruction of the engine components under investigation. This research
proposes the use of simpler acquired reflection images in combination with CNNs to predict
the BLC of a high-resolution depth measurement. For this purpose, a multiscale architecture
is proposed together with a penalized version of the Wasserstein-1 distance as a suitable loss
function for BLC prediction. The visual quality of the predicted BLC confirms the plausibility
of using surrogate modalities in combination with advanced data-driven models. Furthermore,
the current models are able to give coarse approximations of the core roughness parameters
(Sk) but are not yet able to provide reliable estimates for the material ratio indicators (SMr1,
SMr2). In addition, several regularization experiments were required to stabilize model training
and thus compensate for the rather small amount of available training data. There are several
directions in which to improve model performance in future research. First, more modality
pairs will be acquired to further strengthen generalizability and performance of the proposed
method. While the goal of this research project to date has been to predict a one-dimensional
representation of the corresponding depth modality, the aim for the future is to generate
reliable depth profiles from RGB images without paired data. Finally, the loss function will be
updated by differentiable implementations of these quantitative measures in order to obtain
reliable roughness information and wear values from predicted curves.
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A Correlation Analysis between Reflection Images and
Wear

The following section investigates correlations and patterns in the data set between the RGB
images and the observed localization (TDC/BDC), highlighting the potential of transfer predic-
tion. To this end, three well explored and commonly used approaches in unsupervised learning
are used: principal component analysis [75, 76], k-means clustering [72, 77] and Gaussian mix-
ture clustering [72]. Before the results of targeted analysis are presented, these methods are
discussed briefly.

A.1 Methods
Principal component analysis (PCA) is a powerful technique that beneficially changes the basis
on which the data is represented. In the first step, PCA determines the best fitting line with
respect to the data, i.e. it finds a line in the high-dimensional data space that minimizes
averaged squared distances to all data points. As a result, the orthogonal projections of the
data onto this line explain most of the variance in the original data space and thus the line is
referred to as the first principal component. In the next step, the PCA algorithm searches for
another best fit line that is perpendicular to the first line. The second principal component is
thus the line perpendicular to the first principal component that explains most of the remaining
variance. These steps are then continued following the same procedure until the desired number
of principal components has been reached. Since the first few principal components explain
more of the variance in the original data than the later ones in most applications, calculation
of the first few principal components is often sufficient to obtain reasonable representations in
lower dimensional space.

In essence, k-means clustering is a cost minimization algorithm. The cost function is defined
over the parameterized set of all possible cluster assignments of data samples x1, . . . , xn. The
cost function for k-means algorithm is defined as

∑k
i=1

∑
x∈Ci

d(x, ci), where Ci denotes the
cluster with centroid ci for i = 1, . . . , k and d a distance measure, e.g. the Euclidean distance.
The number of considered clusters k is fixed to fit the task. Since the aim is to minimize
the above cost function, the k-means clustering algorithm has been proposed. This algorithm
consists of application of the following steps:

1. Initial centroids c1, . . . , ck are randomly generated within the data domain.

2. Clusters C1, . . . , Ck are created by associating every data point with its nearest centroid
with respect to a predefined distance measure, usually the Euclidean distance.

3. The new centroid of each cluster Ci is calculated as the mid-point of the data samples
within Ci.

4. Steps 2 and 3 are repeated until a convergence criterion is reached.

It has been shown that k-means clustering does not increase the value of the cost function
during iteration [72]. In exceptional cases, it is possible that the cost value remains constant.
Nevertheless, the k-means algorithm is still widely used as it is easy to implement and performs
nicely for a wide range of problems [77].

A Gaussian mixture (GM) is a function that consists of a superposition of several
Gaussian kernels, each defined by a (multivariate) center and a corresponding covari-
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ance matrix. In the one-dimensional case, the Gaussian kernel takes the form g(x) =(
2πσ2

)−1/2
exp

(
− (x− µ)2 /

(
2σ2
))

, where µ denotes the center and σ2 the variance. In
comparison to the k-means algorithm, the GM algorithm does not conduct a strict cluster
assignment. Instead, a soft assignment for each data sample is determined, i.e. a probability is
calculated that the sample belongs to a certain cluster. Final labeling is achieved by assigning
each data sample to the cluster with the highest probability. It has been shown that the GM
algorithm converges to a local maximum of the likelihood function [78]. The GM algorithm is
given by the following iterative process:

1. Initial Gaussian centers µ1, . . . , µk and corresponding covariance matrices are randomly
generated.

2. For each data sample xn, the probability P (xn | i) that the sample belongs to the i-th
cluster is calculated.

3. The posterior probability P (i | xn) for the i-th cluster and data sample xn is determined
deploying Bayes’ formula [79].

4. The posteriors are used to update the corresponding means and covariance matrices.
5. Steps 2, 3 and 4 are repeated until a convergence criterion is reached.

A.2 Unsupervised Analysis

Figure A.1: Exemplary patches taken from
TDC (left) and BDC (right) images and cor-
responding grayscale histograms (below).

Figure A.2: Flowchart for correlation anal-
ysis.

The goal of the following liner surface analysis is to detect patterns in the data set. In this
approach, input consists of patches of RGB records from the confocal microscope generated
in parallel to the depth maps (Figure 3.1, right). These images have a high resolution (∼
3160× 3160 pixels) and represent a nearly square area with a spatial range of 1.9× 1.9mm2.
These images are used for the data analysis and prepared in a preprocessing pipeline to save
computational resources and to ensure data set enhancement. The target is to investigate if
RGB images are sufficient for differentiating between worn and unworn surface measurements.
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During preprocessing, the RGB images are converted to grayscale and divided into smaller
subsampled patches of 150× 150 pixels. The grayscaled patches and corresponding histogram
representations (Figure A.1) undergo analysis. Evidently, the TDC (worn) histogram is more
centered, which is due to the fact that as the amount of operating hours increases, the peaks
of the honing structure steadily abrade. Therefore, peak regions of patches taken near the bot-
tom dead center are more distinct. The PCA algorithm projects patches and histograms into a
lower-dimensional space, where GM clustering and k-means clustering methods are employed
to investigate how the TDC (worn) and BDC (unworn) measurements can be separated. Both
clustering algorithms are not deployed on original data but on the first two principal compo-
nents. The entire preprocessing pipeline and calculation steps are illustrated in Figure A.2.

A.3 Correlations

Figure A.3: Visualization of image patches and
histograms projected to two-dimensional space.
The axes represent the first two principal com-
ponents.

Clus. 1 T 1 B 2 T 2 B 3 T 3 B

Image patches

1 86 334 0 293 394 50

2 314 66 400 107 6 350

Histogram representations

1 399 8 400 96 399 59

2 1 392 0 304 1 341

Table A.1: Correlations between clustering
and position of measurements (T for TDC,
B for BDC) for liners 1, 2 and 3.

This subsection presents the results of the correlation analysis between RGB images and
corresponding measurement positions. There are two basic measurement locations for each
liner, one near the TDC and one near the BDC. While the area near the TDC should show
signs of wear, the areas at the BDC position were expected to be minimally affected by wear.
The data is taken from a INNIO Jenbacher GmbH & Co OG gas engine, where altogether three
liners with a displacement of approximately 6 dm3 and about 7000 operating hours each have
been considered. In the following, the three liners are referred to as liner 1, liner 2 and liner
3. Image patches and histograms are projected into a two-dimensional space via PCA (Figure
A.3). Qualitatively inspected, Figure A.3 suggests that histogram representations of TDC and
BDC can be more efficiently separated by a well fitted parabola.

Due to the different structures of spatial image patches and histogram representations,
the k-means clustering algorithm and the GM algorithm are chosen to detect clusters for
image and histogram data, respectively. GM is computationally more expensive than k-means
clustering and in this study both perform similarly on spatial images. Histograms provide
a coarse approximation of the underlying pixel distribution of the preprocessed image data.
In order to reduce the numerical complexity, the whole range of values (here rescaled to the
interval [0, 1]) is divided into a non-overlapping series of bins, where the height of each bin
represents the amount of pixel values within the given range of the bin. The number of
bins is taken as 40, since a higher amount of bins (and therefore a better approximation to
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pixel distribution) did not significantly change correlations between clusters and measurement
positions.

The clustering results are shown in Table A.1 and indicate correlations between the amount
of accumulated wear and the unsupervised detected separation into clusters of the RGB modal-
ity. A significantly better correlation is detected for liner 1. If optical patches of liner 1 are
used, two clusters of data can be distinguished where 152 patches do not correlate with their
measurement position. In contrast, use of the histogram representation combined with the
GM algorithm yields a cluster assignment where only nine samples do not correlate with the
corresponding measurement position. This successfully concludes the unsupervised analysis,
suggesting that a RGB modality contains hidden structure features which are automatically
detected to separate surface measurement into corresponding measured positions TDC (worn)
and BDC (unworn).

A.4 Classification
The sufficient capability of the RGB modality to separate between worn and unworn surfaces
in an unsupervised manner enhances the idea to develop a classifier on this issue. A supervised
approach targets the functional relationship between input and corresponding output. For
targeted classification, the input consists of RGB records from the confocal microscope, and
corresponding output is a label denoting the measurement position. To be more exact, the
classifier takes as input RGB patches I ∈ [0, 255]M1×M2×3, where M1 ×M2 is the number of
sampling points (pixels), and estimates the corresponding measurement position, chosen from
the label set {BDC,TDC}.

The afore-mentioned classifier is taken as a convolutional neural network, a basic intro-
duction to which is given in Section 3.5. In general, there are many known architectures for
classification tasks to choose from, for example VGG [70], ResNet [80] and Xception [81] ar-
chitectures. These have all been evaluated on the ImageNet database [82, 83], a large-scale
benchmark database for image recognition consisting of over 1.4× 107 images. All these archi-
tectures share the property of small 3× 3 convolution kernels, which results in fast computation
of the hidden feature maps (cf. Figure 3.5). This study has used the VGG16 network [70] since
it is the most shallow one and yields promising results on the targeted classification task.

As thoroughly discussed in Section 3.6, the choice of the loss functional is critical to the
optimization of neural networks. Since this problem consists of two classes (BDC = 0, TDC
= 1), the binary cross-entropy error [72] is an appropriate choice:

`CE(t, t̂) = −t log(t̂)− (1− t) log(1− t̂) , (A.1)

where t ∈ {0, 1} denotes the true label (BDC or TDC), and t̂ ∈ (0, 1) is the probability
of belonging to label 1 (TDC) estimated by the network. Since the two classes (BDC and
TDC) are balanced, the actual performance of the classifier can be assessed by the accuracy
metric. For ground truth labels (t1, . . . , tN ) and corresponding rounded network prediction
probabilities (t̂1, . . . , t̂N ), the accuracy is given by #{t̂n = tn | n = 1, . . . , N}/N , where #
denotes the size of the set. Training pairs (RGB patches and corresponding position labels)
are divided into a training set, on which the chosen network adapts its convolution kernels, and
a validation set, which is used to evaluate classification accuracy after each epoch. Here the
training set is chosen to contain 70% of all data pairs, which leaves 30% for the validation set.
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The split is conducted randomly over all available patches. The sampling dimensions M1,M2

for input RGB patches equal 256.

Figure A.4: Results of the supervised classification on RGB patches and corresponding mea-
surement positions.

The Adam optimizer [64] with an initial learning rate of 1× 10−3 is used to optimize
model weights via a stochastic gradient approach. Furthermore, to speed up minimization
of the considered loss functional, model weights are not initialized randomly but taken from
an equivalent VGG16 network which has already been pretrained on the ImageNet database
[82, 83]. As a consequence, important features such as edges can already be distinguished at
the beginning of the training process, which yields higher classification accuracy in the first
epochs and subsequently faster convergence. The results after 10 epochs of training can be
examined in Figure A.4. The graph on the left visualizes convergence of the loss functional
in Equation (A.1) - while the graph on the right describes the corresponding classification
accuracy. Obviously, the network approach achieves nearly perfect accuracy on the validation
set. The smaller loss of the validation set is caused by regularization techniques used on the
training set, which assists the model to prevent overfitting [72].
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