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Abstract

We study the inverse source problem in photoacoustic tomography (PAT) for
mixed data, which is a weighted linear combination of the acoustic pressure wave
and its normal gradient on an observation surface. We consider the case where the
data is only available on finite time intervals which accounts for real-world usage of
PAT. Extending our previous work, we derive explicit formulas up to a smoothing
integral on convex domains with a smooth boundary, yielding exact reconstruction
for circular or elliptical domains. We also present numerical reconstruction of our
new exact inversion formulas on finite time intervals and compare them with the
reconstructions of our previous formulas for unlimited time wave measurements.

Keywords. Image reconstruction, wave equation, Abel integral equations, inver-
sion formula, photoacoustic computed tomography.

AMS subject classifications: 35R30, 44A12, 35L05, 92C55.

1 Introduction

In recent decades, PAT has attracted considerable attention in biomedical optics. This
imaging method aims at recovering the spatially varying absorption coefficient of an
internal source by measuring the resulting acoustic waves detected outside of the object.
Here, the absorption coefficient is with respect to external electromagnetic radiation.
The acoustic measurements are acquired by so-called ultrasound detectors which lie on
a surface surrounding the imaged object [23, 33, 34, 35, 36]. Such wave phenomena can
be modelled by the n-dimensional wave equation

∂2
t u(x, t) − ∆u(x, t) = 0 for (x, t) ∈ R

n × (0, ∞),

u(x, 0) = f(x) for x ∈ R
n,

(∂tu)(x, 0) = g(x) for x ∈ R
n ,

(1.1)
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where f and g are the initial data and u : Rn × [0, ∞) → R the solution of the wave
equation. In PAT it is assumed that g is the zero function and f has compact support in
some open domain Ω ⊂ R

n. The function f describes the optical absorption coefficient
at different positions whereby various types of the biological tissues can be detected,
including brain tumor and skin melanoma (see, for example, [29, 32, 39]). In PAT, one
is interested to determine this physical quantity by using the measured pressure waves
on the observation surface ∂Ω.

Most analytic reconstruction methods in PAT assume that the measurements cor-
respond to the values of the solution u on ∂Ω × (0, ∞), which is also known as the
Dirichlet trace or Dirichlet data on ∂Ω × (0, ∞). Depending on the measurement
surface ∂Ω, there exist for example explicit inversion formulas for the determination
of f that require only knowledge of u|∂Ω×(0,∞). To name a couple of references,
inversion formulas have been established for bounded smooth surfaces like spheres
[12, 13, 20, 26, 28, 35], ellipses [3, 16, 17, 25, 30, 31] and also for unbounded smooth
surfaces [2, 4, 5, 10, 18, 19, 24, 27, 28, 35] including planar, quadric hypersurfaces and
cylindrical surfaces. In [6, 21, 22, 30], non-smooth and finite open measurement surfaces
have been considered.

As pointed out in [11, 37], for example, the measured data from piezoelectric trans-
ducers is generally a combination of the acoustic field u and its normal gradient (normal
derivative) of u on the observation surface ∂Ω. Theoretical results on the problem of
recovering f from the normal derivative of u (which is also referred to as the Neumann
trace of u) are rather rare in the literature. In [11, 14], an inversion formula for a smooth
function g from the normal gradient of u in (1.1) with initial data (0, g) on spheres in
3D is presented. Recently, in [38] a series formula for spheres and in [7, 8] an exact
inversion formula of back-projection type for ellipsoids in arbitrary dimensions has been
derived.

Accounting for realistic measurements mentioned above, a more general measure-
ment model, which includes both the Dirichlet and Neumann case, is given by the trace
of

ua,b(x, t) := au(x, t) + b∂νu(x, t), (x, t) ∈ ∂Ω × (0, ∞)

on the measurement surface ∂Ω × (0, ∞) for some weights a, b ∈ R. Throughout this
article, we refer to these measurements as mixed data or mixed trace. Recovering the
absorption coefficient from mixed data has previously been studied in [38] for spheres
in arbitrary dimensions and in [7] for circles in two dimensions. Another mathematical
model for piezoelectric sensors is proposed, for example, in [1].

1.1 Inversion from finite time intervals

In this paper, we study the case which finds practical application in real-world PAT.
Specifically, we assume that the measurements are given only on a finite time interval
(0, T ). Moreover, we consider mixed data as an output signal of the transducers. The
problem of recovering the initial data (f, 0) from Dirichlet traces on a finite time interval
has already been discussed in [12], where an inversion formula in dimension two has been
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developed. More precisely, they used an inversion result for recovering the spherical
means with centers lying on a circle in R

2 from its Dirichlet traces by solving an Abel-
type integral equation. Hence, the values of solution of the wave equation for time
points greater than the diameter of the circle can be recovered by knowing only the
values for time points smaller than the diameter. We use a similar approach and derive
relations between spherical means and Dirichlet traces as well as the weighted spherical
means (which will be defined later) and Neumann traces in even dimensions. In case of
odd dimensions, such additional considerations are not necessary, as we will later see.

1.2 Previous work

The subsequent calculations are based on our previous work in [7, 8], where we derived
the reconstruction formulas

f(x) =
1

2
n−2

2 π
n
2

(−1)
n−2

2

∫

∂Ω

∫ ∞

‖x−y‖

(

∂tt
−1
)

n−2
2 ∂νu(y, t)

√

t2 − ‖x − y‖2
dt dσ(y) − KΩf(x), (1.2)

and

f(x) =
1

(2π)
n−1

2

(−1)
n−3

2

∫

∂Ω

(

1

t
∂t

)
n−3

2
(

1

t
∂νu

)

(y, ‖x − y‖) dσ(y) − KΩf(x), (1.3)

over unbounded time intervals for Neumann traces, holding true in even and odd di-
mensions and for smooth functions f ∈ C∞

c (Ω) with compact support in an open convex
domains Ω ⊂ R

n with smooth boundary. For the Dirichlet data case, we make use of
the explicit inversion formula (see [17])

f(x) =
1

2
n−2

2 π
n
2

(−1)
n−2

2 ∇x ·
∫

∂Ω
ν(y)

∫ ∞

‖x−y‖

(

∂tt
−1
)

n−2
2 u(y, t)

√

t2 − ‖x − y‖2
dt dσ(y)+KΩf(x), (1.4)

being valid in even dimensions under the assumptions presented above. For the defini-
tion of the additional term KΩf the reader is referred to [8].

At this point, we remark that KΩf = 0 for circular or elliptical domains [8, 17].
Therefore, in this article whenever an explicit formula for f depends on KΩf , the formula
is exact for circular or elliptical domains.

1.3 Outline

The paper is organized as follows. First, we start with some notations being used
throughout the article. Then, we derive solution formulas for the directional deriva-
tives for the solution of wave equation in even dimensions. In section 2.3, we briefly
discuss Abel integral equations and state the solution formula for the classical Abel in-
tegral equation followed by derivations of specific relations between the spherical mean
transform and the solution of the wave equation as well as the normal derivative of the
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spherical means and Neumann traces. As we will see, both the solution formula for di-
rectional derivatives and the derived results from Abel integral equations are leading to
our main results in section 3, where we derive explicit inversion formulas for Neumann
and Dirichlet traces on convex domains Ω ⊂ R

n with a smooth boundary as well as
for mixed traces on circular domains over finite intervals (0, T ). Our restriction on the
end time is that T has to be greater or equal than the diameter of the domain Ω. Note
that although only knowledge of the measurements on the time interval from zero to
the diameter of Ω are theoretically necessary, the numerical results in section 5 do not
show the same numerical reconstructions for different end times. We will also compare
the numerical results of our new inversion formulas with numerical results of formulas
(1.2) and (1.4) for unbounded time intervals. Section 4 studies the inversion problem in
odd dimensions. The article ends with a short conclusion and remaining lemmas which
have been used in certain parts of the article.

2 Notation and preliminary results

2.1 Notation

Let Ω ⊂ R
n be an open set, x ∈ Ω and f : Ω → R differentiable at x. For a vector

v ∈ R
n we denote by Dvf(x) the directional derivative of f at x along the vector v,

that is, for a sufficient small ε > 0, the derivative of the function

(−ε, ε) → R : t 7→ f(x + tv)

at zero. If Ω is bounded and x ∈ ∂Ω, we also use the notation ∂νf(x) for Dvf(x),
indicating the normal derivative of f at x, where ν : ∂Ω → R

n is the outward unit
normal vector field of Ω. For a function f : Rn × [0, ∞) → R, we also use the notation
Dvf(x, t) and ∂νf(x, t) to denote the directional derivative and normal derivative of f
at (x, t) ∈ R

n × [0, ∞) with respect to the spatial variable. Note that the chain rule
gives

Dvf(x, t) = 〈v, ∇f(x, t)〉 , (x, t) ∈ R
n × [0, ∞), (2.1)

where ∇f(x, t) denotes the gradient of f in the spatial variable.

The spherical mean operator of an integrable function f : Rn → R is defined as

Mf : Rn × [0, ∞) → R : (x, r) 7→ 1

nωn

∫

Sn−1
f(x + ry) dσ(y), (2.2)

where ωn denotes the volume of n-dimensional unit ball and S
n−1 the n−1-dimensional

unit sphere in R
n. Moreover, for brevity we write

Mνf : Rn × [0, ∞) → R : (x, r) 7→ ∂νMf(x, r),

denoting the normal derivative of Mf in the spatial variable or the weighted spherical
mean transform.
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For any function f : (a, c) ∪ (c, b) → R with a < b and c ∈ (a, b), which is integrable
on (a, c − ε) ∪ (c + ε, b) for all 0 < ε < min {c − a, b − c}, we write

p. v.

∫ b

a
f(x) dx := lim

εց0

(

∫ c−ε

a
f(x) dx +

∫ b

c+ε
f(x) dx

)

,

provided the above limit exists. This form of integral is known as the Cauchy principle
value integral.

Lastly, we use P to denote the operator which takes a function g ∈ C∞
c (Bn) with

compact support in the open unit ball in R
n to the restriction of the solution of wave

equation (1.1) with initial data (0, g) on S
n−1 × [0, ∞). Moreover, we use the symbol

N to indicate the operator which maps a function f ∈ C∞
c (Bn) to the restriction of

tn−2Mf on S
n−1 × [0, ∞).

2.2 Solution formulas for the wave equation

As can be observed in [7, 8], the derivation of the inversion formulas for Neumann traces
are largely based on the analytic expression of the solution of the wave equation. For
example, in [9], there is presented the well-known solution formula

u(x, t) =
1

γnωn

[

∂t

(

1

t
∂t

)
n−2

2





∫

Bn
t (x)

f(y)
√

t2 − ‖y − x‖2
dy





+

(

1

t
∂t

)
n−2

2





∫

Bn
t (x)

g(y)
√

t2 − ‖y − x‖2
dy





]

.

(2.3)

for even dimensions n ≥ 2 and f, g ∈ C∞
c (Ω), where B

n
t (x) is the open ball with radius

t and center x in R
n and γn := 2 · 4 · · · (n − 2) · n. Another representation formula is

given by

u(x, t) =
n

γn

[

∂t

(

∫ t

0

r√
t2 − r2

(

1

r
∂r

)
n−2

2 (

rn−2Mf(x, r)
)

dr

)

+

(

∫ t

0

r√
t2 − r2

(

1

r
∂r

)
n−2

2 (

rn−2Mg(x, r)
)

dr

)]

,

(2.4)

(see, for example, [8, Lemma 2.2]). Based on (2.4), we will derive an analytic expression
for the directional derivative of the solution of the wave equation along a vector v ∈ R

n,
being used in section 3. Before that, we present another technical result for the operator
(

1
r ∂r

)k
rn−2 ◦ M, appearing in formula (2.4). Formula (2.3) will be used in section 3.3.

Lemma 2.1. Let n ≥ 2 be an integer and f ∈ C∞
c (Ω). For every k ∈ N and (x, r) ∈

R
n × (0, ∞), we have
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(

1

r
∂r

)k

rn−2Mf(x, r)

=
k
∑

l=0

c
(n)
k,l rn−(2k+1)+l 1

σ(Sn−1)

∫

Sn−1

∑

i∈{1,...,n}l

∂if(x + ry)yi dσ(y),

where ∂i := ∂i1 . . . ∂ik
, yi := yi1 · . . . · yik

and the coefficients are recursively defined

by c
(n)
0,0 := 1, c

(n)
1,0 := n − 2, c

(n)
1,1 := 1, c

(n)

k̃,0
:= c

(n)

k̃−1,0
(n − 2k̃), c

(n)

k̃,k̃
:= 1 and c

(n)

k̃,l
:=

c
(n)

k̃−1,l−1
+ c

(n)

k̃−1,l
(n − 2k̃ + l) for all k̃ ∈ {2, . . . , k} and l ∈ {1, . . . , k̃ − 1}.

Proof. For the proof of this identity, we refer to [8, Lemma 3.4], where a proof of a
similar identity can be found.

Now, we will prove the desired analytic expression for directional derivative of the
solution of the wave equation equation in even dimensions.

Proposition 2.2. Let n ≥ 2 be even, v be a vector R
n, Ω ⊂ R

n an open domain and
f, g ∈ C∞

c (Ω). Moreover, let u : Rn × [0, ∞) → R be the solution of (1.1).

(i) For all (x, t) ∈ R
n × (0, ∞) we have

Dvu(x, t) =
n

γn

[

∂t

(∫ t

0

r√
t2 − r2

(

r−1∂r

)
n−2

2
(

rn−2DvMf(x, r)
)

dr

)

+

(∫ t

0

r√
t2 − r2

(

r−1∂r

)
n−2

2
(

rn−2DvMg(x, r)
)

dr

)

]

.

(2.5)

(ii) For x ∈ ∂Ω and k ∈ N it holds
(

∂tt
−1
)k

Dvu(x, t)

=
n

γn

[

(∫ t

0

r

t
√

t2 − r2

(

∂rr
(

r−1∂r

)
n−2

2
+k

rn−2DvMf(x, r)

)

dr

)

+
(

∂tt
−1
)k
(∫ t

0

r√
t2 − r2

(

r−1∂r

)
n−2

2
(

rn−2DvMg(x, r)
)

dr

)

]

.

(2.6)

Proof. (i) We start with the proof of the first identity. From Lemma 2.1 we see that

∂i

(

1
r ∂r

)
n−2

2 rn−2Mf is a bounded function for 1 ≤ i ≤ n. Therefore, interchanging the

time derivative with the differential operator ∂i, differentiating under the integral sign

and interchanging ∂i with
(

1
r ∂r

)
n−2

2 rn−2Mf yield

∂iu(x, t) =
n

γn

[

∂t

(

∫ t

0

r√
t2 − r2

(

1

r
∂r

)
n−2

2 (

rn−2∂iMf(x, r)
)

dr

)

+

(

∫ t

0

r√
t2 − r2

(

1

r
∂r

)
n−2

2 (

rn−2∂iMg(x, r)
)

dr

)]
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for 1 ≤ i ≤ n. Next, we apply the above relation and (2.1) on Dvu(x, t) to deduce

Dvu(x, t) =
n

γn

n
∑

i=1

vi

[

∂t

(

∫ t

0

r√
t2 − r2

(

1

r
∂r

)
n−2

2 (

rn−2∂iMf(x, r)
)

dr

)

+

(

∫ t

0

r√
t2 − r2

(

1

r
∂r

)
n−2

2 (

rn−2∂iMg(x, r)
)

dr

)]

=
n

γn

[

∂t

(

∫ t

0

r√
t2 − r2

(

1

r
∂r

)
n−2

2

(

rn−2
n
∑

i=1

vi∂iMf(x, r)

)

dr

)

+

(

∫ t

0

r√
t2 − r2

(

1

r
∂r

)
n−2

2

(

rn−2
n
∑

i=1

vi∂iMg(x, r)

)

dr

)]

Finally, using (2.1) inside the integrals again shows the desired identity.

(ii) First, we consider the case k = 1. Applying integration by parts on the first
term on the right-hand side in (2.5) yields the sum of two boundary terms plus the
integral

∫ t

0

√

t2 − r2∂r

(

r−1∂r

)
n−2

2 rn−2DvMf(x, r) dr.

Since f has compact support in Ω and y ∈ ∂Ω, we see from the definition of the

spherical mean operator that
(

r−1∂r
)

n−2
2 rn−2DvMf(x, r) = 0 for sufficient small r > 0.

Therefore, both boundary terms are equal to zero. Then, using Leibniz’s integral rule
implies

(

t−1∂t

)

Dvu(x, t) =

∫ t

0

r√
t2 − r2

(

r−1∂r

)
n−2

2
+1

rn−2DvMf(x, r) dr.

Then, the second identity follows from the integral identity

∂t

∫ t

0

rh(r)√
t2 − r2

dr =
1

t

∫ t

0

r∂rrh(r)√
t2 − r2

dr,

given in [12, Proposition 3.1]. The case k > 1 can be shown by repeating the first
argument k-times and an application of the above integral identity in the last step.

Remark 2.3. Analogous to proof of equation (2.6) in Proposition 2.2, one can show that
the formula

(

∂tt
−1
)k

u(x, t)

=
n

γn

[

(∫ t

0

r

t
√

t2 − r2

(

∂rr
(

r−1∂r

)
n−2

2
+k

rn−2Mf(x, r)

)

dr

)

+
(

∂tt
−1
)k
(∫ t

0

r√
t2 − r2

(

r−1∂r

)
n−2

2
(

rn−2Mg(x, r)
)

dr

)

]

.

(2.7)

for all (x, t) ∈ R
n × (0, ∞) holds.
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2.3 Abel integral equations

Typical Abel integral equations have the form

∫ x

a

u(r)

(x − r)1−α
dr = f(x), (2.8)

where −∞ ≤ a < b ≤ ∞, a < x < b and α ∈ (0, 1). Here, f : (a, b) → R is a given
function and u : (a, b) → R the function to be determined. In [15], it is mentioned that,
for example, if f is absolute continuous, then (2.8) has a unique solution in L1((a, b))
and u is given by the formula

u(r) =
1

Γ(1 − α)Γ(α)

d

dr

∫ r

a

f(x)

(r − x)α
dx, r ∈ (a, b). (2.9)

As we observe from (2.4) and (2.5), the functions

(

1

r
∂r

)
n−2

2

rn−2Mf(x, ·) and

(

1

r
∂r

)
n−2

2

rn−2DvMf(x, ·)

solve a similar integral equation as (2.8) in the time domain for a fixed point x ∈ R
n

and initial data (f, 0). Under the additional assumption x ∈ ∂Ω, we can transform (2.4)
and (2.5) suitably to obtain the following relations.

Proposition 2.4. Let n ≥ 2 be even, x ∈ ∂Ω, v ∈ R
n and u : Rn × [0, ∞) → R the

solution of (1.1) with initial (f, 0). Then, we have for every radius r > 0

(

1

r
∂r

)
n−2

2

rn−2Mf(x, r) =
2γn

πn

∫ r

0

u(x, t)√
r2 − t2

dt (2.10)

and
(

1

r
∂r

)
n−2

2

rn−2DvMf(x, r) =
2γn

πn

∫ r

0

Dvu(x, t)√
r2 − t2

dt. (2.11)

Proof. We give a proof for (2.10). Relation (2.11) can be proved analogously.
First, we apply integration by parts and use the compactness of Mf(x, ·) to obtain

for t > 0

∫ t

0

r√
t2 − r2

(

1

r
∂r

)
n−2

2 (

rn−2Mf(x, r)
)

dr

=

∫ t

0

√

t2 − r2∂r

(

1

r
∂r

)
n−2

2 (

rn−2Mf(x, r)
)

dr.

Hence, the Leibniz-rule for integrals and (2.4) imply

u(x, t) =
n

γn

∫ t

0

t√
t2 − r2

∂r

(

1

r
∂r

)
n−2

2 (

rn−2Mf(x, r)
)

dr,
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and therefore

1√
t

γn

n
u(x,

√
t) =

∫ t

0

1√
t − r′2

√
r′ ∂r

(

1

r
∂r

)
n−2

2 (

rn−2Mf(x, r))
)

∣

∣

∣

∣

∣

r=
√

r′

dr′

by substituting r′ = r2. Now, we make use of formula (2.9) and the relation Γ(1
2) =

√
π

to deduce for r > 0

1

2
√

r′ ∂r

(

1

r
∂r

)
n−2

2 (

rn−2Mf(x, r))
)

∣

∣

∣

∣

∣

r=
√

r′

=
γn

πn

(

d

dr

∫ r

0

u(x,
√

t′)√
t′√r − t′ dt′

)∣

∣

∣

∣

∣

r=
√

r′

.

Next, multiplying both sides with 2
√

r′ and applying the chain rule lead to

∂r

(

1

r
∂r

)
n−2

2

rn−2Mf(x, r) =
γn

πn

d

dr

∫ r2

0

u(x,
√

t′)√
t′

√
r2 − t′ dt′ =

2γn

πn

d

dr

∫ r

0

u(x, t)√
r2 − t2

dt,

where we substituted t with
√

t′ in the last step. Finally, integrating both sides from
zero to r and using the second statement in (2.1), we see that (2.10) holds.

Corollary 2.5. Under the assumptions of Proposition 2.4 we have

(

1

r
∂r

)n−2

rn−2Mf(x, r) =
2γn

πn

∫ r

0

(

∂tt
−1
)

n−2
2 u(x, t)√

r2 − t2
dt (2.12)

and
(

1

r
∂r

)n−2

rn−2DvMf(x, r) =
2γn

πn

∫ r

0

(

∂tt
−1
)

n−2
2 Dvu(x, t)√

r2 − t2
dt. (2.13)

Proof. Again, we only show (2.12). Applying integration by parts on the right-hand
side in (2.10) gives the sum of two boundary terms plus the integral

2γn

πn

∫ r

0

√

r2 − t2t−1u(x, t) dt.

From solution formula (2.3) we see that t−1u(x, t) = 0 for sufficient small t > 0 and
therefore both boundary terms equal zero. Then, using the integral rule of Leibniz
implies

1

r
∂r

(

1

r
∂r

)
n−2

2

rn−2Mf(x, r) =
2γn

πn

∫ r

0

(

∂tt
−1
)

u(x, t)√
r2 − t2

dt.

The remaining claim follows by applying above arguments inductively.

From now on, we assume that Ω ⊂ R
n is a convex domain with smooth boundary

and T ≥ diam(Ω) := sup {‖x − y‖ | x, y ∈ Ω}. Furthermore, for the rest of this article
we denote by u : Rn × [0, ∞) → R the solution of the wave equation with initial data
(f, 0), for a given function f ∈ C∞

c (Ω).
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3 Inversion on finite time intervals in even dimensions

In this section we present our main results for the even-dimensional case. The following
theorems are based on the relations given in Proposition 2.2, 2.4 and the reconstruction
formulas derived from them in Theorem 3.6 for inverting the weighted spherical mean
transform. We will also see that explicit inversion formulas depend on a measureable
kernel kT : (0, T )2 → R, which is independent of the spatial dimension n ≥ 2.

3.1 Inversion from Neumann data on finite time intervals

The first theorem presents an explicit inversion formula for determining the initial data
of the wave equation from Neumann traces on the bounded manifold ∂Ω × (0, T ).

Theorem 3.1. Let n ≥ 2 be an even number, f ∈ C∞
c (Ω) be a smooth function with

compact support in Ω and kT : (0, T )2 → R be the kernel function defined by kT (r1, r2) :=
2

π
√

|r2
1−r2

2| k̃T (r1, r2) for r1 6= r2, where

k̃T (r1, r2) :=















1
2 log

(√
T 2−r2

2−
√

r2
1−r2

2√
T 2−r2

2+
√

r2
1−r2

2

)

, r1 > r2,

arctan

(√
T 2−r2

1√
r2

2−r2
1

)

, r1 < r2,

and kT (r1, r2) := 0 for r1 = r2. Then, for every x ∈ Ω we have

f(x) =
2(−1)

n−2
2

ωnγn

∫

∂Ω

∫ T

0
kT (‖x − y‖ , t)

(

∂tt
−1
)

n−2
2 ∂νu(y, t) dt dσ(y)

− KΩf(x),

(3.1)

where ωn denotes the volume of the n-dimensional unit ball and γn = 2 · 4 · · · (n − 2) · n.

The following two identities, which are explicit inversion formulas for the weighted
spherical mean transform, are essential for the derivation of our reconstruction formula
in Theorem 3.1.

Theorem 3.2. For f ∈ C∞
c (Ω) and x ∈ Ω, the relations

f(x) =
2n(−1)

n−1
2

ωnγ2
n

∫

∂Ω

∫ T

0

(

∂rr
(

r−1∂r

)n−2
rn−2Mνf(y, r)

) log
(

r+‖x−y‖
|r−‖x−y‖|

)

2 ‖x − y‖ dr dσ(y)

− KΩf(x)
(3.2)

and

f(x) =
2n(−1)

n−2
2

ωnγ2
n

∫

∂Ω
p. v.

∫ T

0

r
(

r−1∂r
)n−2

rn−2Mνf(y, r)

r2 − ‖x − y‖2 dr dσ(y)

− KΩf(x).

(3.3)

in even dimensions hold.
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Proof. (i) Inserting relation (2.6) into to the reconstruction formula (1.2) lead to

f(x) =
2n

γ2
nωn

(−1)
n−2

2

∫

∂Ω

∫ ∞

‖x−y‖

∫ t

0

r∂rr
(

r−1∂r
)n−2

rn−2Mνf(y, r)

t
√

t2 − ‖x − y‖2
√

t2 − r2
dr dt dσ(y)

− KΩf(x).

(3.4)

Since ‖x − y‖ < t and 0 < r < min {T, t} for (t, r) ∈ (0, ∞)2 if and only if 0 < r < T
and max {r, ‖x − y‖} < t, we obtain from Fubini’s theorem

∫

∂Ω

∫ ∞

‖x−y‖

∫ r

0

∣

∣

∣r∂rr
(

r−1∂r
)n−2

rn−2Mνf(y, r)
∣

∣

∣

t
√

t2 − ‖x − y‖2
√

t2 − r2
dr dt dσ(y)

=

∫

∂Ω

∫ T

0

∫ ∞

max{‖x−y‖,r}

∣

∣

∣r∂rr
(

r−1∂r
)n−2

rn−2Mνf(y, r)
∣

∣

∣

t
√

t2 − ‖x − y‖2
√

t2 − r2
dt dr dσ(y)

≤ C

∫

∂Ω

∫ T

0

∫ ∞

max{‖x−y‖,r}

r

t
√

t2 − ‖x − y‖2
√

t2 − r2
dt dr dσ(y),

where C := sup
{∣

∣

∣∂rr
(

r−1∂r
)n−2

rn−2Mνf(y, r)
∣

∣

∣

∣

∣

∣ (y, r) ∈ ∂Ω × (0, T )
}

. Next, from

Lemma A.1 we see that the above triple integral equals

∫

∂Ω

∫ T

0

1

2 ‖x − y‖ log

(

r + ‖x − y‖
|r − ‖x − y‖|

)

dr dσ(y).

Then, the monotonicity and rules of the logarithmic-function yield the boundedness
of the above triple integral. Hence, the application of Fubini’s theorem on the triple
integral in (3.4) and the same calculations as before yield the first identity.

(ii) Treating the inner integral in the principle value sense, applying integration

by parts and using that r
(

r−1∂r
)n−2

rn−2Mνf(y, ·) has compact support in (0, T ) for
y ∈ ∂Ω, we observe that the inner integral on right-hand side in (3.2) is equal to the
limit of

r
(

r−1∂r
)n−2

rn−2Mνf(y, r)

2c
log

(

r + c

ε

)

∣

∣

∣

∣

∣

r=c−ε

− r
(

r−1∂r
)n−2

rn−2Mνf(y, r)

2c
log

(

r + c

ε

)

∣

∣

∣

∣

∣

r=c+ε

+

∫

(0,T )\(c−ε,c+ε)

r
(

r−1∂r
)n−2

rn−2Mνf(y, r)

r2 − c2
dr

as ε ց 0, where we set for brevity c := ‖x − y‖. Expanding the logarithm and applying
the mean value theorem, the boundary term can be estimated by the sum of the two
terms on right-hand side in
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1

2c

∣

∣

∣

∣

∣

r
(

r−1∂r

)n−2
rn−2Mνf(y, r) log(r + c)

∣

∣

∣

∣

r=c−ε

− r
(

r−1∂r

)n−2
rn−2Mνf(y, r) log(r + c)

∣

∣

∣

∣

r=c+ε

∣

∣

∣

∣

∣

≤ ε

c
sup

r∈[c−δ,c+δ]

∣

∣

∣

∣

∂rr
(

r−1∂r

)n−2
rn−2Mνf(y, r) log(r + c)

∣

∣

∣

∣

and

|log(ε)|
2c

∣

∣

∣

∣

∣

r
(

r−1∂r

)n−2
rn−2Mνf(y, r)

∣

∣

∣

∣

r=c−ε
− r

(

r−1∂r

)n−2
rn−2Mνf(y, r)

∣

∣

∣

∣

r=c+ε

∣

∣

∣

∣

∣

≤ |ε log(ε)|
c

sup
r∈[c−δ,c+δ]

∣

∣

∣

∣

∂rr
(

r−1∂r

)n−2
rn−2Mνf(y, r)

∣

∣

∣

∣

,

for sufficient small δ > 0. Hence, letting ε ց 0 shows that the limit of the boundary
terms equals zero and therefore, Equation (3.3) holds.

Proof of Theorem 3.1. For better readability, we divide the proof into several parts.

(i) Inserting relation (2.13) into the inner integral on the right-hand side in (3.3),
using the definition of the integral in the principle value sense and applying Fubini’s
theorem lead to

2γn

πn
lim
εց0

∫

(0,T )\(c−ε,c+ε)

∫ r

0

r
(

∂tt
−1
)

n−2
2 ∂νu(y, t)

(r2 − c2)
√

r2 − t2
dt dr

=
2γn

πn
lim
εց0

(

∫ c−ε

0

∫

Iε,t

r
(

∂tt
−1
)

n−2
2 ∂νu(y, t)

(r2 − c2)
√

r2 − t2
dr dt

+

∫ c

c−ε

∫ T

c+ε

r
(

∂tt
−1
)

n−2
2 ∂νu(y, t)

(r2 − c2)
√

r2 − t2
dr dt

+

∫ T

c

∫ T

max{t,c+ε}

r
(

∂tt
−1
)

n−2
2 ∂νu(y, t)

(r2 − c2)
√

r2 − t2
dr dt

)

,

where we used the abbreviations c := ‖x − y‖ and Iε,t := (t, c − ε] ∪ [c + ε, T ) for fixed
y ∈ ∂Ω.

(ii) In the next step, we compute above inner integrals seperately. The first inner
integral can be split up into two integrals which, by Lemma A.2, can be evaluated to

f1,ε(t) :=

∫ c−ε

t

r

(r2 − c2)
√

r2 − t2
dr =

1

2
√

c2 − t2
log

(√
c2 − t2 −

√

(c − ε)2 − t2

√
c2 − t2 +

√

(c − ε)2 − t2

)

and
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f2,ε(t) :=

∫ T

c+ε

r

(r2 − c2)
√

r2 − t2
dr

=
1

2
√

c2 − t2
log

(√
T 2 − t2 −

√
c2 − t2

√
T 2 − t2 +

√
c2 − t2

√

(c + ε)2 − t2 +
√

c2 − t2

√

(c + ε)2 − t2 −
√

c2 − t2

)

.

Again by Lemma A.2, we see that the second inner integral also corresponds to

f3,ε(t) :=
1

2
√

c2 − t2
log

(√
T 2 − t2 −

√
c2 − t2

√
T 2 − t2 +

√
c2 − t2

√

(c + ε)2 − t2 +
√

c2 − t2

√

(c + ε)2 − t2 −
√

c2 − t2

)

,

whereas the last inner integral is equal to

f4,ε(t) :=
1√

t2 − c2



arctan

(√
T 2 − c2

√
t2 − c2

)

− arctan





√

max {t, c + ε}2 − c2

√
t2 − c2







 .

(iii) In the last step of the proof, we show

lim
εց0

∫ c−ε

0
(f1,ε(t) + f2,ε(t))

(

∂tt
−1
)

n−2
2 ∂νu(y, t) dt

=

∫ c

0
log

(√
T 2 − t2 −

√
c2 − t2

√
T 2 − t2 +

√
c2 − t2

)

(

∂tt
−1
)

n−2
2 ∂νu(y, t)

2
√

c2 − t2
dt,

lim
εց0

∫ c

c−ε
f3,ε(t)

(

∂tt
−1
)

n−2
2 ∂νu(y, t) dt = 0

and

lim
εց0

∫ T

c
f4,ε(t)

(

∂tt
−1
)

n−2
2 ∂νu(y, t) dt

=

∫ T

c
arctan

(√
T 2 − c2

√
t2 − c2

)

(

∂tt
−1
)

n−2
2 ∂νu(y, t)√

t2 − c2
dt,

which yield the claimed identity.

First, we write

f1,ε(t) + f2,ε(t) =
1

2
√

c2 − t2

[

log

(√
T 2 − t2 −

√
c2 − t2

√
T 2 − t2 +

√
c2 − t2

)

+ log

(√
c2 − t2 −

√

(c − ε)2 − t2

√
c2 − t2 +

√

(c − ε)2 − t2

√

(c + ε)2 − t2 +
√

c2 − t2

√

(c + ε)2 − t2 −
√

c2 − t2

)]

.

Then, from Lemma A.3 we have
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∫ c−ε

0
|f1,ε(t) + f2,ε(t)|

∣

∣

∣

∣

(

∂tt
−1
)

n−2
2 ∂νu(y, t)

∣

∣

∣

∣

dt

≤ C1

∫ c

0

1

2
√

c2 − t2

(∣

∣

∣

∣

∣

log

(√
T 2 − t2 −

√
c2 − t2

√
T 2 − t2 +

√
c2 − t2

)∣

∣

∣

∣

∣

+ log(6 +
√

2)

)

dt,

where C1 := sup

{∣

∣

∣

∣

(

∂tt
−1
)

n−2
2 ∂νu(y, t)

∣

∣

∣

∣

∣

∣

∣

∣

t ∈ (0, ∞)

}

. Hence, Lebesgue’s theorem and

the second statement in Lemma A.2 show the first identity.
The second limit can be seen to vanish by expanding the logarithm similarly and using
the estimate

∫ c

c−ε
|f3,ε(t)|

∣

∣

∣

∣

(

∂tt
−1
)

n−2
2 ∂νu(y, t)

∣

∣

∣

∣

dt ≤ C1(C2 + log(6 +
√

2))

∫ c

c−ε

1

2
√

c2 − t2
dt

=
C1(C2 + log(6 +

√
2))

2c

(

π

2
− arcsin

(

c − ε

c

))

,

where C2 := sup
{∣

∣

∣log
(√

T 2−t2−
√

c2−t2√
T 2−t2+

√
c2−t2

)∣

∣

∣

∣

∣

∣ t ∈ [0, c]
}

.

Finally, since arctan is bounded by π/2, applying Lebesgue’s theorem again on the third
limit yield the final statement.

3.2 Inversion from Dirichlet data on finite time intervals

Now, we consider the inverse problem for Dirichlet data u on ∂Ω × (0, T ). By using
the back-projection formula for the spherical mean operator in [17] and the ideas for
Neumann traces from the previous subsection, we deduce the following result.

Theorem 3.3. Let n ≥ 2 be an even number, f ∈ C∞
c (Ω) be a smooth function with

compact support in Ω and kT : (0, T )2 → R be the kernel function as defined in Theorem
3.1. Then, for every x ∈ Ω we have

f(x) =
2(−1)

n−2
2

ωnγn
∇x ·

∫

∂Ω
ν(y)

∫ T

0
kT (‖x − y‖ , t)

(

∂tt
−1
)

n−2
2 u(y, t) dt dσ(y)

+ KΩf(x),

(3.5)

where ωn denotes the volume of the n-dimensional unit ball and γn = 2 · 4 · · · (n − 2) · n.

Proof. In [17], it has been shown that

f(x) =
2n(−1)

n−2
2

ωnγ2
n

∇x ·
∫

∂Ω
ν(y) p. v.

∫ diam(Ω)

0

r
(

r−1∂r
)n−2

rn−2Mf(y, r)

r2 − ‖x − y‖2 dr dσ(y)

+ KΩf(x).

As we observe in the above formula, the inner integral has the same form to that one in
(3.3). Thus, by inserting (2.12) into the above equation and using the same arguments
as in the proof of Theorem 3.1, we immediately obtain (3.5).
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3.3 Inversion from mixed data on finite time intervals

In this section, we consider the problem of determining the initial data of the wave
equation from measurements of the type ua,b on the boundary of open balls B

n
ρ (z) with

radius ρ > 0 and center z ∈ R
n. The main result is as follows.

Theorem 3.4. Let n ≥ 2 be an even number, B
n
ρ (z) ⊂ R

n the open ball with radius
ρ > 0 and center z ∈ R

n, f ∈ C∞
c (Bn

ρ (z)), a, b ∈ R with b 6= 0 and kT : (0, T )2 → R be
the kernel function as defined in Theorem 3.1. Then, for every x ∈ B

n
ρ (z) we have

f(x) =
2(−1)

n−2
2

bωnγn

∫

∂Bn
ρ (z)

∫ ∞

‖x−y‖

(

∂tt
−1
)

n−2
2 ua,b(y, t)

√

t2 − ‖x − y‖2
dt dσ(y) (3.6)

and

f(x) =
2(−1)

n−2
2

bωnγn

∫

∂Bn
ρ (z)

∫ T

0
kT (‖x − y‖ , t)

(

∂tt
−1
)

n−2
2 ua,b(y, t) dt dσ(y), (3.7)

where ωn denotes the volume of the n-dimensional unit ball and γn = 2 · 4 · · · (n − 2) · n.

For the proof, we first derive formula (3.6), which requires measurements for every
time point t > 0. Similarly as in the previous sections, we use then the derived exact
inversion formula for unbounded time intervals to establish formula (3.7) that requires
only measurements on the finite time interval (0, T ).

For the derivation of the first result, we make use of the inversion formulas in even
dimensions (see [12])

f(x) = −2(P∗t∂2
t Pf)(x) and (3.8)

f(x) = −2(P∗∂tt∂tPf)(x) (3.9)

for recovering f ∈ C∞
c (Bn) from Pf . Here, P∗ denotes the formal adjoint operator of P.

We use an analytic expression of the adjoint P∗ for certain functions F : Sn−1 × [0, ∞)
from which we are able to deduce a range condition for the solution of wave equation
with initial data (f, 0) presented in Lemma 3.5.

Note that in [12] there has been derived an representation of P∗ in the two-dimensional
case for continuous functions F : Sn−1 × [0, ∞) with sufficient small decay, i.e, F (y, t) =
O(t−α) as t → ∞ for some α > 0. For higher dimensions n > 2 , we additionally assume
that F is (n−2)/2 times continuously differentiable on (0, ∞) in the second component,
(t−1∂t)

kt−1F (y, t) = O(t−α) for 0 ≤ k ≤ (n − 4)/2 and (∂tt
−1)(n−2)/2F (y, t) = O(t−α)

as t → ∞. Then, the adjoint of P can be expressed as (see [14])

P∗F (x) =
(−1)

n−2
2

γnωn

∫

Sn−1

∫ ∞

‖x−y‖

(∂tt
−1)(n−2)/2F (y, t)
√

t2 − ‖x − y‖2
dt dσ(y), x ∈ R

n. (3.10)
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Lemma 3.5. Let n ≥ 2 be an even number, Bn
ρ (z) ⊂ R

n the open ball with radius ρ > 0
and center z ∈ R

n and f ∈ C∞
c (Bn

ρ (z)). Then, for every x ∈ B
n
ρ (z) we have

0 =

∫

∂Bn
ρ (z)

∫ ∞

‖x−y‖

(∂tt
−1)(n−2)/2u(y, t)
√

t2 − ‖x − y‖2
dt dσ(y). (3.11)

Proof. In the following, we assume without loss of generality that z = 0 and ρ = 1. The
remaining statement follows from a translation and rescaling argument. Note that from
the product rule we have ∂tt∂tP = ∂tPf +t∂2

t Pf and therefore ∂tPf = ∂tt∂tPf −t∂2
t Pf .

Hence, subtracting (3.9) from (3.8) gives

0 = P∗(∂tt∂tPf − t∂2
t Pf)(x) = (P∗∂tPf)(x).

Since ∂tPf fulfills the conditions for the analytic expression of P∗ in (3.10) (see, for
example, (2.3) and [8, Lemma 3.4]), we deduce

0 =

∫

Sn−1

∫ ∞

‖x−y‖

(∂tt
−1)(n−2)/2∂tPf(y, t)
√

t2 − ‖x − y‖2
dt dσ(y).

From (1.1) we easily see that ∂tPf solves the wave equation with initial data (f, 0) and
therefore, (3.11) is proved.

Proof of formula (3.6). From (1.2) we have

f(x) =
2(−1)

n−2
2

bωnγn

∫

∂Bn
ρ (z)

∫ ∞

‖x−y‖

(

∂tt
−1
)

n−2
2 b∂νu(y, t)

√

t2 − ‖x − y‖2
dt dσ(y). (3.12)

Furthermore, (3.11) implies

0 =
2(−1)

n−2
2

bωnγn

∫

∂Bn
ρ (z)

∫ ∞

‖x−y‖

(∂tt
−1)(n−2)/2au(y, t)
√

t2 − ‖x − y‖2
dt dσ(y). (3.13)

Hence, adding (3.12) and (3.13) leads to (3.12).

As a consequence of Lemma (3.5), we obtain the following range conditions for the
spherical mean operator in even dimensions.

Lemma 3.6. Let f ∈ C∞
c (Bn

ρ (z)) be a smooth function with compact support in the
open ball with radius ρ > 0 and center z ∈ R

n. Then, for every x ∈ B
n
ρ (z) the range

conditions

0 =

∫

∂Bn
ρ (z)

∫ T

0

(

∂rr
(

r−1∂r

)n−2
rn−2Mf(y, r)

) log
(

r+‖x−y‖
|r−‖x−y‖|

)

2 ‖x − y‖ dr dσ(y) (3.14)

and

0 =

∫

∂Bn
ρ (z)

p. v.

∫ T

0

r
(

r−1∂r
)n−2

rn−2Mf(y, r)

r2 − ‖x − y‖2 dr dσ(y) (3.15)

for the spherical mean operator in even dimensions hold.
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Proof. The statements follows from inserting formula (2.7) into (3.11) and analogous
calculations as in the proof of Theorem 3.6.

The last lemma in this section presents a range condition for the solution of the
wave equation on the bounded manifold ∂Bn

ρ (z) × (0, T ), which is the key ingredient for
the derivation of the second formula in Theorem 3.1.

Lemma 3.7. Let n ≥ 2 be an even number, Bn
ρ (z) ⊂ R

n the open ball with radius ρ > 0
and center z ∈ R

n and f ∈ C∞
c (Bn

ρ (z)). Then, for every x ∈ B
n
ρ (z) we have

0 =

∫

∂Bn
ρ (z)

∫ T

0
kT (‖x − y‖ , t)

(

∂tt
−1
)

n−2
2 u(y, t) dt dσ(y). (3.16)

Proof. Similarly to the proof of Theorem 3.3, we observe that inner integral in the range
condition of (3.15) has the same form as in (3.3). Thus, by inserting the relation for
the spherical mean transform (2.12) into (3.15) and using the same arguments as in
the proof for Neumann traces, the right-hand side in (3.15) can be transformed to the
double integral in (3.16).

Proof of formula (3.6). Again, this follows from an addition of (3.1) and (3.16).

4 Inversion on finite time intervals in odd dimensions

In the last section of this article, we present new results for recovering the initial data
of the wave equation from measurements on finite time intervals in odd dimensions. In
[8, 14, 17], for example, there have already been established explicit inversion formulas
for the recovery of the initial data from Neumann and Dirichlet data on bounded time
intervals for the odd-dimensional case. The derivations of such inversion formulas are
based on the fact that the wave data on the boundary ∂Ω equals zero for all time points
greater than or equal to diam(Ω). This leads automatically to reconstruction formulas
that require only wave data on ∂Ω × (0, diam(Ω)). Therefore, we only investigate the
inverse problem for recovering f from knowledge of mixed measurements. Again, we
consider open balls B

n
ρ (z) and their boundary as their measurement surface.

4.1 Inversion from mixed data on finite time intervals

The inverse problem of determining f from the wave data ua,b on the boundary of
open balls B

n
ρ (z) between the time points zero and 2ρ can be solved similarly to the

even-dimensional case. The main statement reads as follows.

Theorem 4.1. Let n ≥ 3 be an odd number, B
n
ρ (z) ⊂ R

n the open ball with radius
ρ > 0 and center z ∈ R

n, f ∈ C∞
c (Bn

ρ (z)) and a, b ∈ R with b 6= 0. Then, for every
x ∈ B

n
ρ (z) we have

f(x) =
2(−1)

n−3
2

bnγnωn

∫

∂Bn
ρ (z)

(

t−2
(

∂tt
−1
)

n−3
2

)

ua,b(y, ‖x − y‖) dσ(y), (4.1)
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where ωn denotes the volume of the n-dimensional unit ball and γn = 1 · 3 · · · (n − 2).

The proof of Theorem 4.1 is based on the reconstruction formulas (see [14])

f(x) = cn(N ∗D(n−3)/2t−1∂2
t tPf)(x) and (4.2)

f(x) = cn(N ∗tD(n−3)/2t−1∂tt∂tPf)(x) for x ∈ B
n, (4.3)

which are valid in odd dimensions for recovering f ∈ C∞
c (Bn) from Pf . Here, N ∗

denotes the formal L2 adjoint of N , D := 1
2t∂t and cn := (−1)(n−1)/2√

π
Γ(n/2) . In [13], there

has been derived the explicit expression

N ∗F (x) =
1

nωn

∫

Sn−1

F (y, ‖x − y‖)

‖x − y‖ dσ(y), x ∈ R
n, (4.4)

provided that F : Sn−1 × [0, ∞) → R is smooth and zero to infinite order in the time
variable at t = 0. Equation (4.4) and reconstruction formulas (4.2), (4.3) can be used
to deduce the following range condition for the Dirichlet trace in odd dimensions which
looks slightly different to that one in even dimensions.

Lemma 4.2. Let n ≥ 3 be an odd number, Bn
ρ (z) ⊂ R

n the open ball with radius ρ > 0
and center z ∈ R

n and f ∈ C∞
c (Bn

ρ (z)). Then, for every x ∈ B
n
ρ (z) we have

0 =

∫

∂Bn
ρ (z)

(1 − ‖x − y‖)

‖x − y‖

(

(

t−1∂t

)
n−3

2 t−1
)

u(y, ‖x − y‖) dσ(y). (4.5)

Proof. As in the even-dimensional case, we deduce from the product rule the relation
∂tPf = ∂2

t tPf − ∂tt∂tPf . Then, substracting (4.3) from (4.2) gives

0 = N ∗(D(n−3)/2t−1∂2
t tPf − tD(n−3)/2∂tt∂tPf)(x)

= N ∗((1 − t)D(n−3)/2t−1∂tPf)(x).

Finally, using the explicit expression of (4.4) leads to

0 =

∫

∂Bn
ρ (z)

((1 − t)D(n−3)/2t−1∂tPf)(y, ‖x − y‖)

‖x − y‖ dσ(y)

=

∫

∂Bn
ρ (z)

(1 − ‖x − y‖)

‖x − y‖

(

(

t−1∂t

)
n−3

2 t−1
)

u(y, ‖x − y‖) dσ(y),

where we used again in the last step that ∂tPf is the unique solution of (1.1) with
initial data (f, 0).

Proof of Theorem 4.1. In [8, Theorem 4.1], it has been shown

f(x) =
2(−1)

n−3
2

bnγnωn

∫

∂Bn
ρ (z)

(

(

t−1∂t

)
n−3

2 t−1
)

b∂νu(y, ‖x − y‖) dσ(y).

Then, using (4.5) leads to

f(x) =
2(−1)

n−3
2

bnγnωn

∫

∂Bn
ρ (z)

(

(

t−1∂t
)(n−3)/2

t−1
)

(au + b∂νu)(y, ‖x − y‖)

‖x − y‖ dσ(y),

which shows the final result.
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5 Numerical implementation and experiments

Following the theoretical results in sections 3 and 4, we now present numerical imple-
mentations in two dimensions of our new inversion formulas for wave measurements
on finite time intervals and compare them with old formulas requiring unlimited time
wave measurements. We will consider all three types of traces. For the sake of com-
pleteness, we briefly discuss how we discretized initial data and the corresponding wave
measurements and elaborate how we numerically implemented our new inversion for-
mulas. Throughout this section, we suppose that f has compact support in some ball
B

2
ρ(z) ⊂ R

2 with radius ρ > 0 and center z ∈ R
2.

5.1 Discretization of simulated data and numerical implementation of

new inversion formulas

Let N denote the number samples in one direction, ∆x = 2ρ
N−1 the step size and T ≥

2ρ the end time. Our goal is to determine discrete values of f on the uniform grid
{−ρ + i∆x | i ∈ {0, . . . , N − 1}}2 from discrete wave data mT [k, l] given on the points
of the circle

yk := z + ρ(cos(ϕk), sin(ϕk)), k = 0, . . . , Nϕ − 1

with Nϕ := ⌈2ρπ/∆x⌉, ϕk := k∆ϕ and ∆ϕ := 2ρπ/Nϕ, and time points

tl = l∆t, l = 0, . . . , Nt − 1,

where 0 < ∆t < T and Nt := ⌊T/∆t + 1⌋. The measurements mT [k, l] correspond
either to the discrete values of a weighted Neumann trace n[k, l] or a weighted Dirichlet
trace dT [k, l] or a mixed trace mixT [k, l] at (yk, tl). For the numerical simulation, we
computed them by solving the wave equation with fast Fourier transform (FFT) on
the whole grid and using interpolation to obtain the corresponding values on detector
points yk.

Implementation of formula for Neumann/mixed traces

First, we give details on the numerical realization of formula (3.1). Formula (3.7) can
be implemented analogously. Now, given the discrete values of the Neumann trace
nT [k, l] = ∂νu(yk, tl), we approximate (3.1) by

f(xi,j) =
ρ

π

∫ 2π

0

∫ T

0
kT (‖xi,j − h(ϕ)‖ , t)∂νu(h(ϕ), t) dt dϕ

≈ ρ∆ϕ

π

Nϕ−1
∑

k=0

∫ T

0
kT (‖xi,j − yk‖ , t)∂νu(yk, t) dt

where h : (0, 2π) → R
2 : ϕ 7→ z +ρ(cos(ϕ), sin(ϕ))T denotes a parametrization of ∂B2

ρ(z)

and xi,j = (−R + i∆x, −R + j∆x)T a point on the grid for some 0 ≤ i, j ≤ N − 1. In
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order to approximate the above inner integral, we first compute

∫ T

0
kT (tl, t)∂νu(yk, t) dt ≈

Nt−1
∑

m=1

∫ tm

tm−1

kT (tl, t)∂νu(yk, t) dt

≈ 2

π

Nt−1
∑

m=1

∫ tm

tm−1

tm
√

|t2
m − t2| t

−1
m k̃T (tl, tm)∂νu(yk, tm) dt

=
2

π

Nt−1
∑

m=1

∣

∣

∣

∣

√

∣

∣t2
m − t2

l

∣

∣−
√

∣

∣t2
m−1 − t2

l

∣

∣

∣

∣

∣

∣

t−1
m k̃T (tl, tm)nT [k, m]

for 0 ≤ l ≤ Nt − 2. Defining AT [l, m] :=
∣

∣

∣

√

∣

∣t2
m − t2

l

∣

∣−
√

∣

∣t2
m−1 − t2

l

∣

∣

∣

∣

∣ t−1
m k̃(tl, tm) and

AT [l, 0] = 0 for 0 ≤ l ≤ Nt − 2 and 1 ≤ m ≤ Nt − 1, we finally use

FT (nT )[i, j] :=
2ρ∆ϕ

π2

Nϕ−1
∑

k=0

interpolate
((

nT ∗ A
′
T

)

[k, :], ‖xi,j − yk‖)

as a discretization of formula (3.1), where the inner term expresses the interpolated
value of ‖xi,j − yk‖ respectively the array (nT ∗ A

′
T )[k, :] and time points from zero to

Nt −2. Here, A
′
T denotes the transpose of the matrix AT . Formula (1.2) for unbounded

time intervals can be discretized in a similar way

F∞(nT )[i, j] :=
ρ∆ϕ

π

Nϕ−1
∑

k=0

interpolate
((

nT ∗ A
′) [k, :], ‖xi,j − yk‖)

by using the matrix A ∈ R
Nt×Nt defined by

A[i, j] :=







√

t2
j − t2

i −
√

t2
j−1 − t2

i , i < j,

0, else,

and cutting off the inner integral in (1.2) from T to infinity.

The corresponding discretized versions of formulas (3.6) and (3.7) are denoted by
F∞(mixT ) and FT (mixT ).

Implementation of formula for Dirichlet traces

From (3.5) we see that implementing the formula for Dirichlet data requires the nu-
merical computation of the double integral for each component. Writting ν(yk) =
(cos(ϕk), sin(ϕk))T for 0 ≤ k ≤ Nϕ − 1, the double integrals can be numerically evalu-
ated to

GT (dT )1[i, j] :=

Nϕ−1
∑

k=0

cos(ϕk)interpolate
((

dT ∗ A
′
T

)

[k, :], ‖xi,j − yk‖) and
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Figure 1: Initial data of our numerical experiment.

GT (dT )2[i, j] :=

Nϕ−1
∑

k=0

sin(ϕk)interpolate
((

dT ∗ A
′
T

)

[k, :], ‖xi,j − yk‖) ,

resulting in the discretized formula

GT (dT )[i, j] :=
2ρ∆ϕ

π2

(

CD1(GT (dT )1)[i, j] + CD2(GT (dT )2)[i, j]
)

where CD1 and CD1 denote the central differences in x and y direction, respectively.
The disretization G∞(dT ) of formula (1.4) can be approximated similarly by cutting off
the inner integral from T to infinity, using A instead of AT and changing the coefficient
to ρ∆ϕ/π.

5.2 A numerical experiment

In the following, we perform our numerical computations on a [−1, 1]× [−1, 1] grid with
N := 257 coordinate points. As initial data of the wave equation we use the same
phantom being used in [7] (Figure 1), denoted by F ∈ R

257×257. Note that the phantom
has compact support in the open unit ball. We therefore assume that S

1 is the detec-
tion surface and ∆t = 10−4 the time difference in which the simulated acoustic waves
are measured. The end time is T = 2 (=diam(B2)), the shortest time for which our
inversion formulas yield theoretically exact reconstruction. Figure 2 shows the differ-
ent wave measurements of the head phantom with and without Gaussian noise added
to the data. Here, 20% Gaussian noise added data means that normally distributed
data with standard deviation 0.2 of the maximum was added to the original data. The
two weights are set to a = 1 and b = 1/10. The right column in Figure 3 shows the
numerical approximations of our new inversion formulas over finite time intervals for
Neumann and Dirichlet data (FT (nT ) and GT (dT )). We additionally plotted the nu-
merical reconstructions of the filtered back-projection formulas requiring unlimited time
measurements in the left column (F∞(nT ) and G∞(dT )). As we observe from our for-
mulas for mixed data (3.6), (3.7) and the range conditions for Dirichlet traces in (3.11),



22 F. Dreier, M. Haltmeier

Figure 2: Simulated wave data. Top, left: Neumann data nT . Top, right: Neumann
data nT with 20% Gaussian noise. Middle, left: Dirichlet data dT . Middle, right:
Dirichlet data dT with 20% Gaussian noise. Below, left: mixed data mixT . Below,
right: mixed data mixT with 20% Gaussian noise.
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Figure 3: Reconstructions with exact data. Top, left: F∞(nT ). Top, right: FT (nT ).
Below, left: G∞(dT ). Below, right: GT (dT ).

(3.16), an additional numerical error is made by using FT (mixT ) and FT (mixT ). This
error depends on the discrete approximations of the range conditions (with coefficients
ρ/(πb) and 2ρ/(π2b)) corresponding to F∞(dT ) and FT (dT ), where nT is replaced by
dT in the formulas F∞(nT ) and FT (nT ). In the first row in Figure 4, both errors with-
out the weight b are presented. Due to the cut off of the improper integrals in (1.2)
and (1.4) from T to infinity, we can detect a slight error inside the detection surface
which doesn’t belong to the phantom itself. The gray value outside of the phantom in
the left reconstruction from Neumann data has approximately the constant value 0.12,
whereas the right reconstruction with our new inversion formula hardly shows any error.
A similar behaviour can be observed in the reconstructions from Dirichlet traces: The
gray value on left image has here an approximate value of −0.05 and the right image
has values in the range of thousands.
A clear difference can be recognized in the error of the numerical implementations of
the two different range conditions: The error of right reconstruction in the first row in
Figure 4 is nearly seven times lower than the error in left image. This has a huge impact
on the reconstructions F∞(mixT ) and FT (mixT ) from mixed data as we will later see.

In order to study the stability of our inversion formulas, we also applied the dis-
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Figure 4: Discretization of the range conditions which should be equal to zero. Top:
F∞(dT ) (left) and FT (dT ) (right) with exact Dirichlet data. Middle: F∞(dT ) (left)
and FT (dT ) (right) with 20% Gaussian noise added Dirichlet data. Below: F∞(dT )
(left) and FT (dT ) (right) with 40% Gaussian noise added Dirichlet data.
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cretized formulas on noisy data. Figure 5 shows the obtained reconstructions using 20%
Gaussian noise added data. Despite the added noise, we conclude that the disturbed

Figure 5: Reconstructions with 20% Gaussian noise added data. Top, left: F∞(nT ).
Top, right: FT (nT ). Below, left: G∞(dT ). Below, right: GT (dT ).

data didn’t strongly affect the recovery of our head phantom. The artefacts outside
of reconstructions in the left column have become a bit stronger, whereas the right
phantoms almost show any difference to the reconstructions with exact data.

In addition, we added more noise to the exact data and computed the numerical
approximations of our inversion formulas with 40% Gaussian noise. The approximated
phantoms are shown in Figure 6. Because of the higher noise rate in the data, we now
obtain discrete values within the interval [−0.034, 0.477] and [−0.141, 0.351] outside
of the phantom for F∞(nT ) and FT (nT ), respectively. The approximated formulas
for Dirichlet traces yield the ranges [−0.169, 0.307] in G∞(dT ) and [−0.119, 0.329] in
GT (dT ). Despite similar ranges, the discrete approximations of the exact formulas over
finite time intervals show better results.

Lastly, we emphazise the big difference between the numerical reconstructions for
mixed data. As already mentioned, the additional error of the discretization F∞(nT )
for Dirichlet data is many times higher than FT (nT ). This also holds for disturbed data
(see Figure 4 middle, below). As demonstrated in Figure 7, the difference is clearly
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Figure 6: Reconstructions with 40% Gaussian noise added data. Top, left: F∞(nT ).
Top, right: FT (nT ). Below, left: G∞(dT ). Below, right: GT (dT ).

visible for small weights such as b = 1/10.

Varying the end time T

In the last section of article, we conclude our numerical results by calculating the sin-
gle reconstructions for various end times T and compute their discrete L2-error. The
discrete L2-error of F∞(nT ), for example, is defined as





∑

(i,j)∈Ω∆x

|F∞(nT )[i, j] − F[i, j]|2 ∆x2





2

,

where Ω∆x :=
{

(i, j) ∈ {0, . . . , N − 1}2 | xi,j ∈ B
2
}

. The errors for the other recon-

structions are defined in an analogous way. In Figure 8 the corresponding error plots of
the single numerical reconstructions are shown. Note that the diagrams show the error
of the reconstructions with 40% Gaussian noise. Moreover, due to the higher compu-
tation time for the simulation of the wave data, we selected a bigger time difference of
∆t = 10−3.
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Figure 7: Reconstructions with mixed data. Top: F∞(mixT ) (left) and FT (mixT )
(right) with exact data. Middle: F∞(mixT ) (left) and FT (mixT ) (right) with 20%
Gaussian noise. Below: F∞(mixT ) (left) and FT (mixT ) (right) with 40% Gaussian
noise.
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Figure 8: L2-Error of the single reconstructions with 40% Gaussian noise for T =
2, 4, 6, 8: Top, left: F∞(nT ) (solid) and FT (nT ) (dashed). Top, right: F∞(mixT )
(solid) and FT (mixT ) (dashed). Below, left: G∞(dT ) (solid) and GT (dT ) (dashed).
Below, right: F∞(dT ) (solid) and FT (dT ) (dashed).

We can clearly see that biggest difference between the reconstructions are for the
shortest end time T = 2. With very few exceptions, the four discretized versions of the
inversion formulas using finite time intervals have a smaller L2-error for all end times as
the ones using infinite time measurements. Moreover, we can see that the error values
are tending to decrease as T is getting larger. We also observe that the larger the end
time T is, the smaller the difference between the solid and dashed lines gets. Never-
theless, since in practice the acoustic waves are measured as shortly as possible due to
external influences, the use of the new formulas offers a clear advantage for recovering
the initial data of the wave equation.

6 Conclusion

In this article, we presented new reconstruction formulas for the inverse source problem
in PAT requiring only measurements on finite time intervals. We provided inversion
formulas of filtered back-projection type for the three types Dirichlet, Neumann and
mixed data, whereas the formulas for the Dirichlet and Neumann data yields exact
reconstruction for elliptical domains and the formula for mixed data on spheres in R

n.
In the even-dimensional case, we found a kernel function kT : (0, T )2 → R that can be
used to recover the absorption coefficient independently of the spatial dimension n from
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all three traces. We also observe that the formulas (1.2), (1.4) and (3.6) for unbounded
time intervals can also be written in the form of a kernel function defined by

k∞ : (0, ∞)2 → R : (r1, r2) 7→






1√
r2

2−r2
1

, r2 > r1,

0, else.

Then, it is not hard to see that this kernel satisfies the relation

k∞(r1, r2) = lim
T →∞

kT (r1, r2), (r1, r2) ∈ (0, ∞)2,

meaning that sequence (kT )T >0 converges pointwise by a zero extension on (0, ∞)2 to
k∞. In the simulations we have seen that the numerical reconstructions of our new
inversion formulas clearly show better results than the old formulas for unlimited time
measurements, in particular the formula for mixed data. Therefore, the new photoacous-
tic inversion formulas provide a significant improvement to existing inversion formulas
for unbounded time intervals, and thus for real-world applications in PAT.

A Remaining lemmas

Lemma A.1. Let a, b, c, d > 0, a 6= b and max {a, b} < c < d. Then, the following
integral can be evaluated to

∫ d

c

1

x
√

x2 − a2
√

x2 − b2
dx = F (d) − F (c), (A.1)

where F (x) is defined by the term

1

2ab
log









√

√

√

√

x2 − max {a, b}2

x2 − min {a, b}2 +
max {a, b}
min {a, b}





/





max {a, b}
min {a, b} −

√

√

√

√

x2 − max {a, b}2

x2 − min {a, b}2







 ,

for x > max {a, b}, i.e., F is an indefinite integral of the integrand in (A.1). Moreover,

∫ ∞

max{a,b}

1

x
√

x2 − a2
√

x2 − b2
dx =

1

2ab
log

((

1 +
max {a, b}
min {a, b}

)/(

max {a, b}
min {a, b} − 1

))

.

Proof. Assume, without loss of generality, that a < b. First, using the subsitution
x =

√
u2 + a2 gives

∫ u(d)

u(c)

1

(u2 + a2)
√

u2 − (b2 − a2)
du.

Next, we substitute u with
√

b2 − a2 sec(v) to obtain

∫ v(u(d))

v(u(c))

sec(v)

(b2 − a2) sec(v)2 + a2
dv =

∫ v(u(d))

v(u(c))

cos(v)

b2 − sin(v)2a2
dv,
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where we inserted the relation sec(v) = 1
cos(v) and used the trigonemetric identity

cos(v)2 = 1 − sin(v)2 afterwards. Thus, the final substitution w = sin(v) leads to
the standard integral

1

a2

∫ w(v(u(d)))

w(v(u(c)))

1
b2

a2 − w2
dw =

1

2ab

(

∫ w(v(u(d)))

w(v(u(c)))

1

w + b
a

+
1

b
a − w

dw

)

.

Finally, using the relation sin(arcsec(x)) =
√

x2−1
x and inserting the upper and lower

limit into the above integral yield the claimed identity.
The second statement is a consequence of the first integral identity, since F (max {a, b}) =
0 and the limit limd→∞ F (d) coincides with the right term in the second equality in
Lemma A.1.

Lemma A.2. Let a, b, c, d ∈ R, a < b, c ∈ [a, b]c, d ≤ a and c 6= d. Then, we have the
following identities:

(i)

∫ b

a

x

(x2 − c2)
√

x2 − d2
dx

=
1

√

|c2 − d2|







arctan
(√

b2−c2√
d2−c2

)

− arctan
(√

a2−c2√
d2−c2

)

, c<d,

1
2 log

(∣

∣

∣

√
c2−d2−

√
b2−d2√

c2−d2+
√

b2−d2

√
c2−d2+

√
a2−d2√

c2−d2−
√

a2−d2

∣

∣

∣

)

, else.

(A.2)

(ii) For c > d we have

lim
εց0

√
c2 − d2 −

√

(c − ε)2 − d2

√
c2 − d2 +

√

(c − ε)2 − d2

√

(c + ε)2 − d2 +
√

c2 − d2

√

(c + ε)2 − d2 −
√

c2 − d2
= 1. (A.3)

Proof. (i) We first substitute x with
√

u2 + d2 to obtain the integral

∫ u(b)

u(a)

1

u2 + d2 − c2
du.

If c < d, then using the subsitution u =
√

d2 − c2v gives

√
d2 − c2

d2 − c2

∫ v(u(b))

v(u(a))

1

1 + v2
dv

=
1√

d2 − c2

(

arctan

(√
b2 − c2

√
d2 − c2

)

− arctan

(√
a2 − c2

√
d2 − c2

))

.

If d > c, then

∫ u(b)

u(a)

1

u2 − (c2 − d2
du =

1

2
√

c2 − d2

∫ u(b)

u(a)

1

u −
√

c2 − d2
− 1

u +
√

c2 − d2
du.
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Hence, the above integral equals

1

2
√

c2 − d2
log

(√
c2 − d2 −

√
b2 − d2

√
c2 − d2 +

√
b2 − d2

√
c2 − d2 +

√
a2 − d2

√
c2 − d2 −

√
a2 − d2

)

for b < c and

1

2
√

c2 − d2
log

(√
b2 − d2 −

√
c2 − d2

√
c2 − d2 +

√
b2 − d2

√
c2 − d2 +

√
a2 − d2

√
a2 − d2 −

√
c2 − d2

)

for b > c.

(ii) Applying L’Hospital’s rule gives

lim
εց0

√
c2 − d2 −

√

(c − ε)2 − d2

√

(c + ε)2 − d2 −
√

c2 − d2
= lim

εց0

c − ε
√

(c − ε)2 − d2

√

(c + ε)2 − d2

c + ε
= 1,

which implies the second statement in Lemma A.2.

Lemma A.3. Let c > 0 be a positive number.

(i) Define

gε : R → R
+ : t 7→











log

(√
(c+ε)2−t2+

√
c2−t2√

(c+ε)2−t2−
√

c2−t2

)

, t ∈ [c − ε, c],

0, else.

for ε > 0. Then, gε is a monotonically decreasing on [c − ε, c] and |gε| ≤ log(6 +√
2).

(ii) Let 0 < ε < c and

hε : R → R
+

t 7→











log

(√
c2−t2−

√
(c−ε)2−t2

√
c2−t2+

√
(c−ε)2−t2

√
(c+ε)2−t2+

√
c2−t2√

(c+ε)2−t2−
√

c2−t2

)

, t ∈ [0, c − ε],

0, else.

Then, hε is a monotonically increasing on [0, c − ε] and |hε| ≤ log(6 +
√

2).

Proof. (i) By differentiating the inner fraction in gε, one easily verifies that the
derivative is smaller than zero. Hence, from the monotonicity of the logarithmic function
we imply that gε is a monotonically decreasing on [0, c − ε]. Furthermore, note that the
inner fraction is greater or equal than one for t ≤ c and

gε(c − ε) = log

(√
4c +

√
2c − ε√

4c −
√

2c − ε

)

.

Therefore, using that ε 7→
√

4c+
√

2c−ε√
4c−

√
2c−ε

is decreasing for 0 ≤ ε ≤ 2c, the first statement

holds.
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(ii) Differentiating the inner function in hε for t < c − ε with the product rule and
a subsequent factorization lead to the expression

2t
G(t)√
c2 − x2

(

1
√

(c − ε)2 − t2
− 1
√

(c + ε)2 − t2
)

)

> 0,

where G(t) denotes the inner function in hε. This implies the monotonicity of hε on
[0, c − ε]. Then, the same arguments as in (i) show the remaining statement.
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