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Abstract
Recently, a large number of efficient deep learning methods for solv-

ing inverse problems have been developed and show outstanding numerical
performance. For these deep learning methods, however, a solid theoretical
foundation in the form of reconstruction guarantees is missing. In contrast,
for classical reconstruction methods, such as convex variational and frame-
based regularization, theoretical convergence and convergence rate results
are well established. In this paper, we introduce deep synthesis regular-
ization (DESYRE) using neural networks as nonlinear synthesis operator
bridging the gap between these two worlds. The proposed method allows
to exploit the deep learning benefits of being well adjustable to available
training data and on the other hand comes with a solid mathematical foun-
dation. We present a complete convergence analysis with convergence rates
for the proposed deep synthesis regularization. We present a strategy for
constructing a synthesis network as part of an analysis-synthesis sequence
together with an appropriate training strategy. Numerical results show the
plausibility of our approach.
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1 Introduction

Inverse problems naturally arise in a wide range of important imaging applications,
ranging from computed tomography, remote sensing to image restoration. Such
application can be formulated as the task of reconstructing the unknown image
u ∈ U from data

vδ = Ku+ zδ . (1)
Here K : U → V is a linear operator between Hilbert spaces and zδ ∈ V is the
data distortion. Moreover, we assume ‖zδ‖ ≤ δ, where the index δ ≥ 0 denotes
noise level. For δ = 0 we call v = Ku the noise free equation.

1.1 Regularization

Inverse problems are typically ill-posed. This means that even in the noise free case
the solution of (1) is not unique or is unstable with respect to data perturbations.
In order to overcome the ill-posedness, regularization methods have to be applied
which incorporate suitable prior information that acts as a selection criterium and
at the same time stabilizes the reconstruction [1, 2].
One of the most established stable reconstruction approaches is convex variational
regularization. In this case one considers minimizers of the generalized Tikhonov
functional

‖Ku− vδ‖2 + αRU(u)→ min
u
, (2)

where RU : U → [0,∞] is a convex regularizer on the signal space U and α > 0
is the regularization parameter. Several choices for the regularizer have been
proposed and analysed. For example, the choice RU(u) = ‖u‖2

U leads to quadratic
Tikhonov regularization, choosing the regularizer as the total variation (TV) semi-
norm RU(u) = ‖∇u‖1 yields to TV-regularization, and choosing the `1-norm
RU(u) = ∑

i∈N|〈ei, u〉| with respect to a given orthonormal basis (ei)i∈N yields to
sparse `1-regularization.
Convex variational regularization is build on a solid theoretical fundament. In
particular, if RU is convex, lower semi-continuous and coercive on ker(K)⊥, then
(2) is well-posed, stable and convergent as α → 0. Moreover, for elements u ∈ U
satisfying the so-called source condition ran(K∗)∩∂RU(u) 6= ∅, convergence rates
in the form of quantitative estimates between u and solutions of (2) have been
derived [1, 3].

1.2 Frame-based methods

Variational regularization (2) is based on the assumption that a small value of
the regularizer is a good prior for the underlying signal-class. However, it is often
challenging to hand-craft an appropriate regularization term for a given class of
images. Frame-based methods address this issue by adjusting frames to the signal
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class and using a small value of the regularizer of the frame coefficients as image
prior.
Let (ϕλ)λ∈Λ be a frame of U and denote by Φ : `2(Λ)→ U the synthesis operator
that maps ξ ∈ `2(Λ) to the synthesized signal Φ(ξ) := ∑

λ∈Λ ξλϕλ. Its adjoint
Φ∗ is the analysis operator and maps u ∈ U to the so-called analysis coefficients
Φ∗(u) = (〈ϕλ, u〉)λ∈Λ. Two established frame based approaches are the following
frame synthesis and frame analysis regularization, respectively,

ξsyn
α,δ ∈ arg min

ξ

{
‖KΦ(ξ)− vδ‖2 + αR(ξ)

}
(3)

uana
α,δ ∈ arg min

u

{
‖Ku− vδ‖2 + αR(Φ∗(u))

}
. (4)

Here R : `2(Λ) → [0,∞] is a convex regularizer on the coefficient space and α >
0 the regularization parameter. Typical instances of frame analysis and frame
synthesis regularization are when the regularizer R = ‖ · ‖1,w is taken as the
(weighted) `1-norm given by

‖ξ‖1,w :=
∑
λ∈Λ

wλ|ξλ| , (5)

where wλ > 0. In this case (4) enforces sparsity of the analysis coefficients Φ∗(u),
whereas (3) enforces sparsity of the synthesis coefficients of the signal. In the case
of bases, the two approaches (3) and (4) are equivalent (if one of them is applied
with the dual basis). In the redundant case, however, they are fundamentally
different [4, 5].
Many different frame-based approaches for solving inverse problems have been
analyzed [4–8]. However, these methods rely on linear synthesis operators which
may not be appropriate for a given signal-class. Recently, non-linear deep learning
and neural network based approaches showed outstanding performance for various
imaging applications. Inspired by such methods, in this paper, we generalize the
frame based synthesis approach to allow neural networks as synthesis operators.
Because these representations are non-linear, the resulting approach requires new
mathematical theory that we develop in this paper.

1.3 Deep synthesis regularization

In this paper, we propose deep synthesis regularization (DESYRE) where we
consider minimizers of

Sα,vδ(ξ) := ‖(K ◦Dα)(ξ)− vδ‖2 + α‖ξ‖1,w . (6)

Here, Dα : `2(Λ)→ U are possibly non-linear synthesis mappings and ‖ · ‖1,w : `2(Λ)→
[0,∞] is the weighted `1-norm defined by (5). The main theoretical results of
this paper provide a complete convergence analysis for the DESYRE approach.
The corresponding proofs closely follow [1, 9]. We point out, however, that the
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convergence results in these references cannot be directly applied to our setting
because we allow the coefficient operators K ◦ Dα in (6) to depend on α. Us-
ing non-stationary synthesis mappings Dα allows accounting for discretization as
well as for approximate network training. In the recent years various deep learn-
ing based reconstruction methods have been derived which outperform classical
variational regularization [10–13]. However, rigorously analyzing them as regu-
larization methods is challenging. DESYRE follows the deep learning strategy
and, as we demonstrate in this paper, allows the derivation of results similar to
classical sparse regularization.
In [14], a somehow dual approach to (6) has been studied, where minimizers
of the NETT functional ‖Ku − vδ‖2 + αR(E(u)) have been considered, where
E : U → `2(Λ) is a non-linear analysis operator and R a regularizer. Due to the
non-linearity of E, the penaltyR◦E is typically non-convex. One advantage of the
deep synthesis method over the analysis counterpart is that the penalty term is
still convex, which is beneficial for the theoretical analysis as well as the numerical
minimization. Another strength of DESYRE is that the network can be trained
without explicit knowledge of the operator K. Thus, the proposed approach has
some kind of universality like [14–18] in the sense that the network is trained
independent of the specific forward operator and can be used for different inverse
problems without retraining.

1.4 Outline

The rest of the paper is organized as follows. Section 2 gives a theoretical analysis
of the proposed method. In Section 3 we propose a learned synthesis mapping. We
present numerical results and compare DESYRE to other reconstruction methods
in Section 4. The paper ends with a summary and outlook presented in Section 5.
This paper is a significantly changed and extended version of the proceedings [19]
presented at the SampTA 2019 in Bordeaux. The analysis of the proposed method
and all the numerical results are completely new.

2 Convergence analysis

This section gives a complete convergence analysis of DESYRE together with
convergence rates. For the following analysis consider the coefficient equation

v = (K ◦D)(ξ) , (7)

where K is the linear forward operator and D a possibly non-linear synthesis op-
erator. In the case of noisy data, we approach (7) by deep synthesis regularization
(6), (5) with variable synthesis operators (Dα)α>0. Whenever it is clear from the
context which norm is used, we omit the subscripts.

4



2.1 Well-posedness

Throughout this paper we assume that the following assumption holds. For the
following let D,Dα : `2(Λ)→ U for α > 0 be given.
Assumption 2.1 (Deep synthesis regularization).

(R1) U and V are Hilbert spaces;

(R2) K : U→ V is linear and bounded;

(R3) Λ is an at most countable set;

(R4) ∀α > 0: Dα is weakly sequentially continuous;

(R5) (wλ)λ∈Λ ∈ (0,∞)Λ satisfies w := infλ∈Λwλ > 0.

Assumption (R5) implies that ‖ · ‖1,w is coercive. To see this, let ξ ∈ `2(Λ) and
assume ‖ξ‖1,w <∞. Then, for all λ ∈ Λ, we have wλ|ξλ|/‖ξ‖1,w ≤ 1 and hence

w2

‖ξ‖2
1,w
‖ξ‖2

2 =
∑
λ∈Λ

(
w |ξλ|
‖ξ‖1,w

)2

≤
∑
λ∈Λ

(
wλ|ξλ|
‖ξ‖1,w

)2

≤
∑
λ∈Λ

wλ|ξλ|
‖ξ‖1,w

= 1.

This yields the estimate ‖ξ‖2 ≤ ‖ξ‖1,w/w and proves the coercivity of ‖ · ‖1,w.
Since the data-discrepancy term is non-negative this also shows the coercivity of
the synthesis functional Sα,vδ for every α > 0.
Remark 2.2. The above proof relies on the fact that x ≥ x2 for x ∈ [0, 1]. Since
the inequality xq ≥ x2 on [0, 1] holds for any q ≤ 2, the above proof can be done with
a weighted `q-norm. Similarly, the following well-posedness and the convergence
results also hold for the (weighted) `q-regularizer ‖ξ‖q,w = ∑

λ∈Λwλ|ξλ|
q with q ∈

[1, 2].

As the sum of non-negative convex and weakly continuous functionals, ‖ · ‖1,w is
convex and weakly lower semi-continuous. Assumptions (R2), (R4) imply that
(K ◦Dα) is weakly sequentially continuous. Moreover, the norm ‖ · ‖V is weakly
sequentially lower semi-continuous. This shows that Sα,vδ is weakly lower semi-
continuous as a sum of weakly lower semi-continuous functionals. Coercivity and
weak lower semi-continuity basically yield the following well-posedness results for
deep synthesis regularization.
Theorem 2.3 (Well-posedness). Let Assumption 2.1 be satisfied, vδ ∈ V and
α > 0. Then the following hold:

(a) Existence: Sα,vδ has at least one minimizer.

(b) Stability: Let (vk)k∈N ∈ VN satisfy vk → vδ and choose ξk ∈ arg minSα,vk .
Then (ξk)k∈N has a convergent subsequence and the limit of every convergent
subsequence is a minimizer of Sα,vδ .

Proof. Assumptions (R2), (R4) imply that (K ◦Dα) is weakly sequentially con-
tinuous. Therefore the results follow from [9, Propositions 5 and 6].
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2.2 Convergence

An element in the set arg min{‖ξ‖1,w | (K◦D)(ξ) = v} is called ‖ · ‖1,w-minimizing
solution of (7). Note that ‖ · ‖1,w-minimizing solutions exists whenever there is any
solution ξ with ‖ξ‖1,w <∞, see [1, Theorem 3.25]. For the following convergence
results we make the following additional assumption

(R6) ∀ρ > 0: ∆ρ(α) := sup‖ξ‖≤ρ‖Dα(ξ)−D(ξ)‖ → 0.

This assumption guarantees that Dα arbitrarily well approximates D as α→ 0.

Theorem 2.4 (Convergence). Let Assumption 2.1 and (R6) hold, let v ∈ V, ξ†
be an ‖ · ‖1,w-minimizing solution of (7) and choose α : (0,∞)→ (0,∞) such that

lim
δ→0

α(δ) = lim
δ→0

∆ρ(α(δ))2

α(δ) = lim
δ→0

δ2

α(δ) = 0 . (8)

Moreover, let (δk)k∈N ∈ (0,∞)N, (vk)k∈N ∈ VN satisfy δk → 0, ‖y − yk‖ ≤ δk and
choose ξk ∈ arg minSα(δk),vk . Then, the following hold:

(a) (ξk)k∈N has a convergent subsequence.

(b) The limit of every convergent subsequence (ξk(n))n∈N is an ‖ · ‖1,w-minimizing
solution of (7).

(c) If the ‖ · ‖1,w-minimizing solution of the coefficient equation (7) is unique,
then ξk → ξ†.

Proof. Let ρ > ‖ξ†‖ and write αk := α(δk), Dk := Dαk . By definition of ξk, we
have

Sαk,vk(ξk) = ‖(K ◦Dk)(ξk)− vk‖2 + αk‖ξk‖1,w

≤ ‖(K ◦Dk)(ξ†)− vk‖2 + αk‖ξ†‖1,w

≤ (‖K‖∆ρ(αk) + δk)2 + αk‖ξ†‖1,w . (9)

The right hand side in (9) tends to 0, which together with the estimate ‖v−vk‖ ≤
δk and (8) yields

lim
k→∞
‖(K ◦Dk)(ξk)− v‖ = 0 , (10)

lim sup
k→∞

‖ξk‖1,w ≤ ‖ξ†‖1,w . (11)

The coercivity of ‖ · ‖1,w and (11) in turn imply that there is some weakly conver-
gent subsequence (ξk(n))n∈N. We denote its weak limit by ξ̂.

Using (10) and (R6), we see that ξ̂ solves (7). The lower semi-continuity of ‖ · ‖1,w
and (11) imply

‖ξ̂‖1,w ≤ lim inf
n→∞

‖ξk(n)‖1,w ≤ lim sup
n→∞

‖ξk(n)‖1,w ≤ ‖ξ†‖1,w .
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Hence ξ̂ is an ‖ · ‖1,w-minimizing solution of (7) and ‖ξk(n)‖1,w → ‖ξ†‖1,w. Accord-
ing to [9, Lemma 2], weak convergence of (ξk(n))n∈N together with the convergence
of ‖ξk(n)‖1,w implies ‖ξk(n)−ξ̂‖ → 0. Finally, if (7) has a unique ‖ · ‖1,w-minimizing
solution, then every subsequence of (ξk)k∈N has a subsequence converging to ξ†,
which implies ξk → ξ†.

The existence of a solution ξ† to (7) always implies the existence of a solution u† :=
D(ξ†) to the original problem. Moreover, Theorem 2.4 shows strong convergence
of the regularized solutions in the coefficient space `2(Λ). By assuming that the
synthesis mappings Dα are uniformly Lipschitz continuous we further get the
strong convergence of the regularized solutions in the signal space.

Theorem 2.5 (Convergence in signal space). Let the assumptions of Theorem 2.4
hold. Assume, additionally, that (K ◦D)(ξ) = v has a unique ‖ · ‖1,w-minimizing
solution ξ†, and that (Dα)α>0 are uniformly Lipschitz. Consider ξk ∈ arg minSα,vk ,
and define u† := D(ξ†), uk := Dα(δk)(ξk). Then limk→∞‖uk − u†‖ → 0.

Proof. Following the notions of the proof of Theorem 2.4 we have

‖u† − uk‖ = ‖D(ξ†)−Dk(ξk)‖
≤ ‖D(ξ†)−Dk(ξ†)‖+ ‖Dk(ξ†)−Dk(ξk)‖
≤ ‖D(ξ†)−Dk(ξ†)‖+ L‖ξ† − ξk‖ ,

where L is a uniform Lipschitz-constant for (Dα)α>0. By assumption, ‖D(ξ†) −
Dk(ξ†)‖ → 0 and according to Theorem 2.4 we have ‖ξ† − ξk‖ → 0. This yields
‖u† − uk‖ → 0 and concludes the proof.

Remark 2.6. With ξk ∈ arg minSα,vk , Theorem 2.4 states that (ξk)k∈N has a
subsequence (ξk(n))n∈N converging to some ‖ · ‖1,w-minimizing solution ξ† of (K ◦
Φ)(ξ) = v. If we additionally assume that (Dα)α>0 are uniformly Lipschitz-
continuous, then following the proof of Theorem 2.5 one shows that Dk(n)(ξk(n))→
D(ξ†) = u†. In particular, the limits u† are characterized as solutions of Ku = v
having a representation using an ‖ · ‖1,w-minimizing solution ξ† of the coefficient
problem (K ◦Φ)(ξ) = v.

A network is typically given as a composition of trained Lipschitz-continuous
functions and given activation functions. The standard activation functions all
satisfy a Lipschitz-continuity condition, e.g. the ReLU, tanh or sigmoid function
are all Lipschitz-continuous. The uniform Lipschitz-continuity assumption on the
networks Dα can therefore easily be fulfilled.

2.3 Convergence rates

Convergence rates name quantitative error estimates between exact and regular-
ized solutions. In order to derive such results we have to make some additional
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assumptions on the interplay between the regularization functional and the oper-
ators K, D, Dα.

Assumption 2.7. Let ξ† be an ‖ · ‖1,w-minimizing solution of (7) with v ∈ V.
Assume there are β1, β2, σ > 0 and ρ > ‖ξ†‖1,w such that

‖ξ‖1,w − ‖ξ†‖1,w ≥ β1‖ξ − ξ†‖ − β2‖K(D(ξ)−D(ξ†))‖

for all ξ with ‖ξ‖1,w < ρ and ‖K(D(ξ)−D(ξ†))‖ < σ.

Proposition 2.8 (Quantitative error estimates). Let Assumptions 2.1, 2.7 and
(R6) hold. Furthermore, assume that vδ ∈ V satisfies ‖vδ − v‖ ≤ δ choose
ξα,δ ∈ arg minSα,vδ , and set hα,δ := ‖K(Dα(ξα,δ) − D(ξα,δ))‖ and gρ,α,δ := (δ +
‖K‖∆ρ(α)). Then, the following hold:

‖ξα,δ − ξ†‖ ≤
g2
ρ,α,δ + αβ2(δ + hα,δ) + (αβ2)2

2
αβ1

,

‖(K ◦Dα)(ξα,δ)− vδ‖2 ≤ 2g2
ρ,α,δ + 2αβ2(δ + hα,δ) + (αβ2)2 .

Proof. By definition of ξα,δ we have

Sα,vδ(ξα,δ) ≤ Sα,vδ(ξ†)
= ‖(K ◦Dα)(ξ†)− vδ‖2 + α‖ξ†‖1,w

≤ g2
ρ,α,δ + α‖ξ†‖1,w .

Using Assumption 2.7 we get

g2
ρ,α,δ ≥ Sα,vδ(ξα,δ)− α‖ξ†‖1,w

= ‖(K ◦Dα)(ξα,δ)− vδ‖2 + α(‖ξα,δ‖1,w − ‖ξ†‖1,w)
≥ ‖(K ◦Dα)(ξα,δ)− vδ‖2 + αβ1‖ξα,δ − ξ†‖

− αβ2‖K(D(ξα,δ)−D(ξ†))‖
≥ ‖(K ◦Dα)(ξα,δ)− vδ‖2 + αβ1‖ξα,δ − ξ†‖

− αβ2‖(K ◦Dα)(ξα,δ)− vδ‖ − αβ2δ

− αβ2‖K(Dα(ξα,δ)−D(ξα,δ))‖ .

Applying Young’s inequality ab ≤ a2/2 + b2/2 with a = αβ2 and b = ‖(K ◦
Dα)(ξα,δ)− vδ‖ shows

g2
ρ,α,δ + (αβ2)2

2 + αβ2(δ + hα,δ) ≥
1
2‖(K ◦ Dα)(ξα,δ) − vδ‖2 + αβ1‖ξα,δ − ξ†‖

and the assertion follows since the terms on the right hand side are non-negative.

In the following we write α � δ if C1δ ≤ α(δ) ≤ C2δ for δ > 0 and some constants
C1, C2 > 0.
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Theorem 2.9 (Linear convergence rate). Let Assumptions 2.1, 2.7 and (R6) hold,
let α = α(δ) be such that α, hα,δ,∆ρ(α(δ)) � δ and choose ξα,δ ∈ arg minSα,vδ .
Then the following hold:

(a) ‖ξα,δ − ξ†‖ = O(δ),

(b) Assume that Dα is Lipschitz and set uα,δ := Dα(ξα,δ), u† := D(ξ†). Then
‖uα,δ − u†‖ = O(δ).

Proof. This is an immediate consequence of the first inequality in Proposition 2.8.

Remark 2.10. The convergence rate condition in Assumptions 2.1 is the same
as by taking q = r = 1 and choosing K ◦ D for the forward operator in [9,
Assumption 1]. As shown in [9], this assumption is satisfied if K ◦ D is linear
and injective on certain finite dimensional subspaces, and the so-called source
condition ∂‖ · ‖1,w(ξ†) ∩ ran((K ◦D)∗) 6= ∅ is satisfied. The latter condition is in
particular satisfied if Λ is finite and K ◦D is injective.

3 Learned synthesis operator

In this section we propose a non-linear learned synthesis operator which is part
of a sparse encoder-decoder pair. We describe a modified U-net that we use for
the network architecture and give details on the network training.

3.1 Sparse encoder-decoder pair

Following the deep learning paradigm we select the synthesis operator D from
a parametrized class (Dθ)θ∈Θ of neural network functions Dθ : `2(Λ) → U by
adjusting them to certain training images u1, . . . , um ∈ U. Here the subscript θ ∈
Θ refers to the parameters of the network taken from a finite dimensional Hilbert
space. The theoretical analysis presented in the previous section is based on the
assumption that the images of interest can be represented as u = Dθ(ξ) where
ξ ∈ `2(Λ) has small value of the regularizer ‖ · ‖1,w. To find a suitable synthesis
network Dθ, we write the corresponding coefficients in the form ξ = Eη(u) with
another neural network Eη : U→ `2(Λ) applied to u.
In order to enforce sparsity, a reasonable training strategy is to take the network
parameters as solutions of the constraint minimization problem

min
θ,η

1
m

m∑
i=1
‖Eη(ui)‖1,w + β0‖θ‖2 + γ0‖η‖2

s.t. ∀i ∈ {1 . . . ,m} : ui = Dθ(Eη(ui)) .

 (12)
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Here β0‖θ‖2 + γ0‖η‖2 is a regularization term with regularization parameters
β0, γ0 > 0. As described in the following subsection 3.2, we use a modified tight-
frame U-net as actual architecture for Dθ ◦Eη. The weights in ‖ · ‖1,w are chosen
as wλ = 2−`, where λ = (`, j) corresponds to the coefficients in the `-th downsam-
pling step of the network architecture (see Figure 3.1).

3.2 Modified tight frame U-net

For the numerical results we take Dθ ◦ Eη as a variation of the tight-frame U-
net [10], where we do not include the bypass-connections from the sequential layer
to the concatenation layer. The input is passed to a sequential layer which consists
of convolution, batch normalization and a ReLU activation. The first sequential
layer starts with 64 channels. We pass the output of the first sequential layer to
another sequential layer where we reduce the number of channels to 2 to keep
the output dimension of the encoder E reasonable. The output of the second
sequential layer is then passed to the downsampling step with the filters H` and
L`, that are given by the Haar wavelets low-pass and high-pass filters, respectively.
The output of the high pass filtered image H` then serves as one set of inputs
for the decoder. This downsampling step is then recursively applied to the low
frequency output L`. The low-pass output LL of the last step of the network is
also used as input for the decoder D. In each downsampling step the dimensions
are reduced by a factor of 2 while the number of channels is increased by a factor
of 2.
The upsampling is performed with the transposed filters of the downsampling
step. The outputs of the upsampling step Hᵀ

` and Lᵀ
` are then concatenated and

two sequential layers are applied. The channel sizes of these sequential layers are
the same as the corresponding first sequential layer of the downsampling step.
To obtain the final output we apply a (1 × 1)-convolution with no activation
function. We use L = 4 downsampling and upsampling steps. A visualization of
one downsampling and upsampling step is depicted in Figure 3.1.

Input Seq.

H`

L`↓ 2 N`+1

Hᵀ
`

Lᵀ
`

D input
Concat.· · ·

↑ 2

Seq.

Figure 3.1: Illustration of the used synthesis network. We start by applying
sequential layers which consist of convolution, batch normalization and activation.
After that we use a fixed filter to downsample the features. The network is then
recursively applied to the output L`. We continue by upsampling using the same
filters as before and concatenating the features. Lastly we apply sequential layers
again to obtain the output.
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Table 3.1 shows the dimension of the feature outputs and the channel sizes for the
`th step. Note that the number of channels for the highpass and lowpass filtered
output H`,L` is multiplied by 4 because we have 3 different highpass filters.

Dimension No. Channels

Sequential`1 512
2`−1 × 512

2`−1 64 · 2`−1

Sequential`2 same 2 · 2`−1

H`,L`
512
2` ×

512
2` 4 · 2 · 2`

Hᵀ
` ,L

ᵀ
`

512
2`−1 × 512

2`−1 4 · 2 · 2`
Concatenation same 4 · 2 · 2`
Sequential`3,4 same 64 · 2`−1

Table 3.1: Dimension and channel sizes for the `th step of the network.
Same means that the same dimension as the one above is used.

3.3 Network training

Finding minimizers of (12) might be unstable in practice and difficult to solve.
Therefore we consider a relaxed version where the constraint is added as a penalty.
Hence we train the networks by instead considering the following loss-function

1
m

m∑
i=1
‖ui −Dθ(Eη(ui))‖2 + α‖Eη(ui)‖1,w + β‖θ‖2 + γ‖η‖2 , (13)

where α > 0 is the regularization parameter in (6) and β , αβ0, γ , αγ0. In the
numerical realization, the parameters have been chosen empirically as α = 10−2,
β = γ = 10−4. We minimize (13) with the Adam optimizer [20] using proposed
hyper-parameter settings for Adam for 150 epochs and a batch size of 6.
As training data we use the Low Dose CT Grand Challenge dataset provided by
Mayo Clinic [21]. The complete dataset consists of 512 × 512 grayscale images
from which we selected a subset containing only lung slices. This results in a
dataset with a total of m = 1311 images of which 1151 images (corresponding
to 8 patients) were used for training purposes and 160 (corresponding to the
remaining 2 patients) were used for testing purposes. Each image was scaled to
have pixel-values in the interval [0, 1].

4 Numerical results

In this section we present numerical results for sparse view CT, comparing the
DESYRE functional (6) with wavelet synthesis regularization, TV-regularization
and a post-processing network.
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Figure 4.1: Measurement-data using 60 projection views. Left: Noise-free
data. Right: Noisy data with 5% Gaussian noise added.

4.1 Sparse view CT

For the numerical results we consider the Radon transform [22, 23] with under-
sampling in the angles as a forward operator K. Formally, the Radon transform
is given by

∀(θ, s) ∈ [0, π)×R : (Ku)(θ, s) =
∫
E(θ,s)

u(x)dx ,

where E(θ, s) , {(x1, x2) ∈ R2 | x1 cos(θ) + x2 sin(θ) = s}. The discretization of
the Radon transform was performed using the Operator Discretization Library [24]
using nθ = 60 equidistant angles in [0, π) and ns = 768 equidistant parallel beams
in the interval [−3/2, 3/2]. In the case of noisy data we simulate the noise by
adding 5% Gaussian noise to the measurement-data. This data is visualized in
Figure 4.1.
We minimize (6) using the FISTA algorithm [25] with a constant step-size. We
found experimentally that we can use a step-size of at most s = 10−3 to guarantee
stability. For the following numerical results we choose s = 10−3 and use 2000
iterations to minimize (6). To obtain the initial coefficients we apply the encoder
Eη to the FBP reconstruction. The appropriate regularization parameter value
for the DESYRE approach has been chosen empirically to give the best results
which resulted in α = 10−6 for the noise-free case and α = 3 · 10−5 for the noisy
case. Developing more efficient algorithms for minimizing the functional (6) is an
important aspect of future work, that is beyond the scope of the present article.

4.2 Comparison methods

We compare DESYRE to wavelet synthesis regularization, TV-regularization and
a post-processing network. In wavelet synthesis regularization and TV-regularization
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we consider elements

uWS
α,δ ∈ Φ(arg min

ξ
‖KΦ(ξ)− vδ‖2 + α‖ξ‖1) (14)

uTV
α,δ ∈ arg min

u
‖Ku− vδ‖2 + α‖u‖TV , (15)

respectively. Here Φ is the Wavelet synthesis operator corresponding to the
Haar Wavelet basis and ‖u‖TV is the discrete total variation of u. In order to
minimize (14) and (15) numerically we use the FISTA algorithm [25] and the
primal-dual algorithm [26], respectively. The step-sizes for both algorithms are
chosen as the inverse of the operator norm of the discretized forward operator.
For the Wavelet synthesis regularization we use 500 iterations, whereas the TV-
regularization needs about 4000 iterations to converge. For both methods the
regularization parameter α was chosen to give the best results which resulted
in αWS = 10−8 for wavelet synthesis regularization and αTV = 5 · 10−5 for TV-
regularization in the case of noise-free data and αWS = 2 · 10−7 and αTV = 10−4

in the case of noisy data. We initialize each algorithm with RFBP(vδ,i), where
RFBP(·) denotes the filtered back-projection.
As a post-processing network we use the tight frame U-Net of [10]. For a given set
of training images u1, . . . um, the network Uθ is trained to map the filtered back-
projection reconstruction RFBP(vδ,i) to the residual image RFBP(vδ,i) − ui. The
reconstruction of the signal is then given by uPost

δ = RFBP(vδ,i)−Uθ(RFBP(vδ,i)).
To obtain images with streaking artefacts the FBP using the Hann filter was
applied to the data vi. No noise was added for the training of the post-processing
network. To regularize the parameters of the network we add `2-regularization
with regularization parameter β = 10−4. The network was then trained for 150
epochs using the Adam optimizer [20] with hyper-parameters as suggested in [20]
and a batch size of 3.

4.3 Results

Figure 4.2 shows an example of the different reconstruction methods. We can see
that DESYRE is outperformed by the post-processing method. We hypothesize
that this is because the post-processing network uses additional information about
the inverse problem in training, whereas the training of DESYRE independent of
the operator. In comparison to the other regularization methods, DESYRE shows
a better performance visually and quantitatively in the case of noise-free data.
When comparing DESYRE with the Wavelet synthesis regularization we see that
DESYRE does not suffer from the ’pixel-like’ structure even though it is also based
on the Haar wavelets. Taking a look at the zoomed in version of the plot, we see
that the TV-regularization somehow merges the details, whereas DESYRE is still
able to represent these smaller details. One iteration of the wavelet synthesis, TV
regularization and DESYRE take 0.057, 0.051 and 0.122 seconds, respectively
To quantitatively compare the reconstructions uα,δ we compute the peak-signal-
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True FBP

TV Wavelet

Post-processing DESYRE

Figure 4.2: Reconstruction results for 60 views an noise-free data. The
subplot in the lower right corner shows a zoomed in version of the orange square.

PSNR NMSE
FBP 28.40± 0.82 0.020± 0.0051
Wavelet 31.07± 0.72 0.011± 0.0029
TV 32.58± 0.60 0.007± 0.0020
Post-processing 39.42± 0.52 0.001± 0.0004
DESYRE 35.49± 0.55 0.004± 0.0009

Table 4.1: Quantitative comparison of different reconstruction methods
for noise-free data. Average results ± standard deviation over 160 different
phantoms.

to-noise-ration and the normalized-mean-squared-error, respectively

PSNR(u, uα,δ) := 10 log10

(
max(u2)
‖u− uα,δ‖2

2

)

NMSE(u, uα,δ) := ‖u− uα,δ‖
2
2

‖u‖2
2

,
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True FBP

TV Wavelet

Post-processing DESYRE

Figure 4.3: Reconstruction results for 60 views and 5% Gaussian noise.
The subplot in the lower right corner shows a zoomed in version of the orange
square.

where u is the ground truth. The results of these quantitative comparisons in the
case of noise-free data can be seen in Table 4.1.
Figure 4.3 shows an example of the reconstructions using noisy data. In this case
DESYRE is able to completely remove the noise from the image. However, it can-
not satisfactorily recover any small detail features which are present in the image.
When compared to TV-regularization DESYRE shows a more blurry image and
is outperformed by the TV-regularization. Like in the noise-free case DESYRE
shows a smoother but blurrier image. This suggests that additional regularization,
e.g. TV-regularization, of the image should be used to further enhance the image
quality. Even though no noise was added during training, the post-processing
approach still shows reasonable results. When comparing the two deep learning
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True FBP

Post-processing DESYRE

Figure 4.4: Reconstruction results for 30 projection views and noise-free
data. The subplot in the lower right corner shows a zoomed in version of the
orange square.

approaches we see that DESYRE is able to better remove the noise from the
image, while the post-processing approach is able to more clearly represent edges.
Lastly we illustrate one practical advantage of DESYRE over a standard post-
processing approach. To this end, we consider a similar problem as above. How-
ever, this time we only take nθ = 30 projection views. While the underlying
signal class does not change, the reconstruction of the signal is more difficult and
the post-processing network trained with nθ = 60 has been used. This results in
reconstructions containing artefacts (Figure 4.4) which cannot be removed using
the post-processing network. Additionally, the post-processing network produces
some structure which are not present in the ground truth. While the deep syn-
thesis regularization approach was not able to completely remove the artefacts,
it was able to greatly reduce them and does not introduce any additional arte-
facts. While we have not studied this behaviour in great detail, this suggests that
the deep synthesis approach is more generally applicable without retraining the
network.
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5 Summary and outlook

We have introduced the deep synthesis approach for solving inverse problems.
This approach relies on a neural network as a non-linear synthesis operator for
representing a signal u using the representation u = D(ξ) such that ‖ξ‖1,w is small.
Using this representation we proposed to solve inverse problems by minimizing the
deep synthesis functional (6), generalizing linear frame based methods. In section
2 we proved that the method is indeed a regularization method and we derived
linear convergence rates. To find such non-linear representations we follow a data-
driven approach where we train a sparse encoder-decoder pair. We give numerical
results of the proposed method and compare it with other regularization methods
and a deep learning approach.
Besides the theoretical benefits, a practical advantage of the deep synthesis ap-
proach over standard post-processing networks is that the training is independent
of the forward operator K and is thus more flexible in changes of the forward oper-
ator. While the results for the sparse view CT problem shows that this approach
is outperformed by specifically trained post-processing network, the deep syn-
thesis approach outperforms classical regularization methods for the considered
problem. To further improve the quality of the image reconstruction one could
adapt the training strategy to include information about the inverse problem at
hand. This could be achieved by, for instance, including images with artefacts in
the training data and map these images to some output which does not repre-
sent the original image well, thus yielding a large data-discrepancy value in the
minimization process.
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