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Multi-Scale Factorization of the Wave Equation with Application to Compressed1

Sensing Photoacoustic Tomography∗2

Gerhard Zangerl† and Markus Haltmeier†3

4

Abstract. By performing a large number of spatial measurements, high spatial resolution photoacoustic imaging5
can be achieved without specific prior information. However, the acquisition of spatial measurements6
is time consuming, costly and technically challenging. By exploiting non-linear prior information,7
compressed sensing techniques in combination with sophisticate reconstruction algorithms allow a8
reduction of number of measurements while maintaining a high spatial resolution. For this purpose,9
in this paper, we propose a multiscale factorization for the wave equation, which separates the data10
into a low frequency factor and sparse high frequency factors. By extending the acoustic reciprocal11
principle, we transfer sparsity in measurements domain to spatial sparsity of the initial pressure,12
which allows the use of sparse reconstruction techniques. Numerical results are presented which13
demonstrate the feasibility of the proposed framework.14

Key words. photoacoustic tomography, image reconstruction, limited data, wave equation, cost reduction,15
compressed sensing, multiscale factorization.16
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1. Introduction. Photoacoustic tomography (PAT) is an emerging imaging technique that18

combines the high resolution of ultrasound imaging with the high contrast of optical to-19

mography [45]. As illustrated in Figure1, in PAT a semitransparent sample is illuminated20

by short pulses of optical energy which causes the excitation of an acoustic pressure wave21

p : R3 × [0,∞) → R, depending the spatial position x ∈ R3 and time t ≥ 0. The initial22

pressure distribution f : R3 → R is proportional to the inner light absorption properties of23

the sample and caries valuable diagnostic information. Detectors located on a measurement24

surface S (partially) surrounding the sample measure the acoustic pressure from which the25

initial pressure distribution is recovered. Throughout we denote by W f := p|S×[0,∞) the26

restriction of the acoustic pressure to the measurement surface.27

Exact reconstruction formulas are available for complete data for certain surfaces S, see,28

for example, [12, 14, 16, 21, 32, 33, 37]. Efficient reconstruction schemes in PAT accounting29

for acoustic attenuation or variable sound speed have also been developed [1, 2, 3, 24, 27, 29,30

30, 44]. Different detector types such as linear or circular detectors that record integrals of31

the acoustic pressure have been investigated [5, 46]. In this paper, we consider the constant32

sound speed case and address the issue of compressed sensing to reduce the amount of data33

while maintaining high spatial resolution.34

1.1. Compressed sensing PAT. Acoustic signals in PAT offer large bandwidth. Therefore,35

high spatial resolution can be achieved by using a sufficiently large number of measurements36

[22] as predicted by Shannon’s sampling theorem. In practice, however, collecting a high37
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2 G. ZANGERL, M. HALTMEIER
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Figure 1. Basic principles of PAT. Left: A sample object is illuminated by short optical pulses. Middle:
Optical energy is absorbed within the sample, causes non-uniform heating and induces a subsequent acoustic
pressure wave. Right: Acoustic sensors located outside of the sample capture the pressure signals, which are
used to recover an image of the interior. In this paper, we develop a specific compresses sensing algorithm that
allows to reduce the number of spatial measurements while keeping high spatial resolution.

number of measurements either needs a high number of parallel data acquisition channels or38

many sequential measurements. This either results in an increase of the cost and technical39

complexity of the system, or significantly increases measurement time. Several approaches ac-40

celerating data collection have been proposed. For example, in [38] a phase contrast method41

has been developed where a reconstruction of the initial pressure can be obtained from pro-42

jections of the acoustic pressure that can be collected in short time. In the present work,43

we use compressed sensing techniques [6, 11, 17, 18] to reduce the number of measurements44

while preserving high spatial resolution. Main challenges in compressed sensing are the de-45

velopments of sophisticated image formation algorithms. In PAT such CS techniques have46

been developed [23, 25, 4]. Here, we develop a novel image reconstruction strategy based on47

a multiscale factorization of the wave equation universally applicable to compressed sensing48

PAT (CSPAT).49

Compressed sensing reconstruction techniques are based on the sparsity of the signals to be50

reconstructed. In PAT, a possible approach is to express the initial density in a suitable basis.51

Using such a strategy leads to a coupled forward model that might numerically challenging to52

be solved. As an alternative, strategies that apply a transform in the time domain to sparsify53

PAT data have been proposed in [42, 23]. These methods have been demonstrated to very54

well reconstruct the high frequency content of the initial pressure from a significantly reduced55

amount of measurements. However, the proposed differential operators used as sparsifying56

transforms suppress low frequency information of the acoustic signals which results in low-57

frequency artefacts in the reconstruction.58

1.2. Main Contributions. In this work, we develop the concept multiscale temporal trans-59

forms and multiscale factorization for CSPAT. We apply multiscale transforms in the time60

domain that the separate the data into a low frequency component and several high frequency61

This manuscript is for review purposes only.



MULTI-SCALE FACTORIZATION FOR CSPAT 3

components. The main idea of the proposed reconstruction scheme is to use the acoustic62

reciprocal principle to show that there is a one-to-one correspondence between the transform63

data in the time domain and spatially transformed initial pressure. This factorization allows64

the use of sparse recovery techniques for the high frequency factor of the initial pressure while65

the low frequency part can be inverted with standard methods. To be more specific, for a66

mother wavelet function v : R → R we set vj(t) = 2jφ(2jt) for j ≥ 1 and denote by v0 a67

function containing missing low frequency content. For example, this might be the associated68

scaling function of mother wavelet. We then explicitly derive associated functions uj : R2 → R69

such that for any initial pressure we have the reciprocal relation70

(1.1) W(f ~x uj) = vj ~t (W f) for all j ∈ N .71

The latter identity is then used in the context of compressed sensing data instead of classical72

data W f . Based on (1.1), we develop a reconstruction strategy for recovering a multiscale73

decomposition of the initial pressure consisting of several sparse high frequency parts and on74

smooth version of the initial pressure distribution f . Figure (2) shows a phantom f pressure75

data W f and the corresponding multiscale factors vj ~t (W f) (top) and f ~x uj (bottom).76

Figure 2. Top: Data W f (left) and convolved pressure data vj ~t W f at three different scales. Bottom:
Initial pressure f and convolved initial pressure f ~x uj as the same scales. According to the acoustic reciprocal
principle (1.1), the convolved pressure data are corresponding to the convolved initial data for which we have
sparsity, that we employ for compresses sensing reconstruction.

The concept of sparsifying temporal transforms for CSPAT has been originally developed77

for PAT in [42, 23] for two and three spatial dimensions. These earlier approaches use a78

single scale sparsifying transform. The sparsifying transforms filter out low frequency com-79

ponents which results in low frequency artefacts in the reconstruction. By also considering80

an additional low frequency component, the proposed multiscale scheme naturally overcomes81

this drawback of single multiscale transforms. Another solution to the missing low frequency82
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4 G. ZANGERL, M. HALTMEIER

content has been proposed in [25] where we proposed to jointly recover the initial pressure f83

and a sparsified version of f based on second time derivative. However, the present approach84

seems more natural from and more accessible to rigorous mathematical analysis.85

1.3. Outline. The remainder of the paper is organized as follows. In Section 2 we present86

required background from PAT and derive a dual form acoustic reciprocal principle. In Section87

3 we derive a multiscale factorization for the wave equation. The application to CSPAT is88

presented Section 4. Numerical illustrations are provided in Section 5. The paper end with a89

short summary and outlook presented in Section 6.90

2. Photoacoustic tomography. In this section, we provide the required background from91

PAT and derive a reciprocal version of the acoustic reciprocal principle that is required for92

our later analysis.93

2.1. Wave equation model. Throughout we consider PAT using constant speed of sound94

propagation. The acoustic pressure is modeled as a function p : Rd× [0,∞)→ R that satisfies95

the following initial value problem for the wave equation96

ptt (x, t)−∆p (x, t) = 0 for (x, t) ∈ Rd × (0,∞) ,(2.1)97

p (x, 0) = f (x) for x ∈ Rd ,(2.2)98

pt (x, 0) = 0 for x ∈ Rd .(2.3)99100

Here f ∈ C∞(R3) is the initial pressure distribution that for simplicity we assume to be101

smooth. Note that in the practical application the cases d = 2 and d = 3 are relevant102

[5, 15, 16, 31, 45].103

Continuous PAT data consist of time resolved acoustic pressure restricted in space to a104

smooth detection surface S ⊆ R3. The continuous PAT forward operator is given by,105

(2.4) W : C∞(R3)→ C∞(S × (0,∞)) : f 7→W f = p
∣∣
S×(0,∞)

.106

The corresponding full data inverse problem consists in solving the operator equation W f = g107

from possible noisy information. In the last two decades, many methods including exact108

reconstruction formulas and iterative methods, for different geometries, variable and constant109

sound speed and detector types have been developed by researchers, see [40] for a recent110

review. Clearly, in practice only discrete data can be collected. We will present standard111

discrete sensing as well as compressed sensing strategies in Section 4.112

2.2. Acoustic reciprocal principle. Compressed sensing reconstruction techniques are113

typically based on sparsity of the unknown signals to be reconstructed. To obtain spar-114

sity in PAT we use the acoustic reciprocal principle in combination with sparsifying temporal115

transforms. The acoustic reciprocal principle states that manipulating photoacoustic data in116

the temporal domain corresponds to a spatial convolution of the initial pressure with a radial117

function. An explicit form of acoustic reciprocal principle was first proven in [26] for three118

spatial dimensions and extended in [20] for arbitrary dimension.119
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Proposition 2.1 (Acoustic reciprocal principle of [20]). Let u ∈ L1(Rd) be a compactly120

supported radial function of the form u = ū (‖ · ‖) and set121

(2.5) Ru : R→ R : t 7→

{
ū(t) if d = 1

ωd−2

∫∞
|t| ū(s)

(
s2 − t2

)(d−3)/2
sds if d > 1 ,

122

where ωd−2 denote the volume of the (d − 2)-dimensional unit sphere Sd−2. Then, for every123

f ∈ C∞(Rd) we have124

∀(x, t) ∈ Rd × (0,∞) : W (u~x f) (x, t) = ((Ru) ~t W f) (x, t) .(2.6)125126

Here ~x denotes the the spatial convolution in Rd and ~t denotes the one-dimensional con-127

volution applied in the second component.128

This Lemma serves as the basis for the derived multiscale factorization for the wave129

equation and the resulting sparse reconstruction strategy. Actually, we use the following dual130

version where we prescribe the temporal filter v instead of prescribing the spatial filter u.131

Proposition 2.2 (Acoustic reciprocal principle, dual version). Let v : R → R be an even132

function with sufficient decay such that v ◦
√
| · | ∈ Cd(d−1)/2e(R) and define133

R] v : Rd → R : x 7→


(−1)(d−1)/2
√
πd−1

((
1
2t

∂
∂t

)(d−1)/2
v
)
(‖x‖) for d odd

2(−1)(d−2)/2
√
πd

∫∞
‖x‖

( 1
2t

∂
∂t)

d/2
v(t)√

t2−‖x‖2
tdt for d even .

(2.7)134

135

Then, for every f ∈ C∞(Rd),136

∀(x, t) ∈ Rd × (0,∞) : v ~t (W f) (x, t) = W
(

(R] v) ~x f
)

(x, t) .(2.8)137
138

Proof. The proof is given in Appendix A.139

Note that the assumption v ◦
√
| · | ∈ Cd(d−1)/2e(R) is made such that the derivatives in140

(2.7) are well-defined in the classical sense.141

3. Multiscale factorizations of the wave equation. Based on the acoustic reciprocal prin-142

ciple, in this section we derive convolution factorization for PAT. For that purpose, we fist143

recall some results for convolutional frames. Then we introduce convolutional frame decompo-144

sitions in Subsection 3.2, which are used to derive multiscale factorizations in Subsection 3.3.145

3.1. Convolutional frames. Let Λ be an at most countable index set and consider a146

family (uλ)λ∈Λ of functions in L2(Rd) ∩ L1(Rd). According to the convolution theorem we147

have f ~x uλ = F−1
d ((Fd f) · (Fd uλ)) for all f ∈ L2(Rd). Moreover, f ~x uλ is well defined148

almost everywhere and satisfies f ~x uλ ∈ L2(Rd). Here and in the following we denote149

by Fd f(ξ) :=
∫
Rd f(x)e−ix·ξ dx for ξ ∈ Rd the d-dimensional Fourier transform and F−1

d its150

inverse. We write u∗(x) := u(−x) for u ∈ L2(Rd) and note that Fd u
∗ = [Fd u], where [ · ]151

denotes complex conjugation.152
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6 G. ZANGERL, M. HALTMEIER

Definition 3.1 (Convolutional frame). We call a family u = (uλ)λ∈Λ ⊆ (L2(Rd)∩L1(Rd))Λ153

a convolutional frame in Rd, if there are constants A,B > 0 such that154

(3.1) f ∈ L2(Rd) : A ‖f‖22 ≤
∑
λ∈λ
‖f ~x uλ‖22 ≤ B ‖f‖

2
2 .155

If u is a convolutional frame, we name A, B the frame bounds and call156

1. Tu : L2(Rd)→ `2(Λ, L2(Rd)) : f 7→ (uλ ~x f)λ∈Λ analysis operator,157

2. T∗u : `2(Λ, L2(Rd))→ L2(Rd) : (fλ)λ∈Λ 7→
∑

λ∈Λ u
∗
λ ~x fλ synthesis operator,158

3. T∗uTu : L2(Rd)→ L2(Rd) : f 7→
∑

λ∈Λ u
∗
λ ~x uλ ~x f frame operator.159

Finally, we call u tight if T∗uTu = I.160

Note that `2(Λ, L2(Rd)) is a Hilbert space with inner product 〈a, b〉Λ :=
∑

λ∈Λ 〈aλ, bλ〉161

and corresponding norm ‖ · ‖ Λ. Using the analysis operator, we can write the defining iden-162

tity (3.1) in the form A ‖f‖22 ≤ ‖Tu f‖2Λ ≤ B ‖f‖22. Hence the right inequality states that163

Tu : L2(Rd) → `2(Λ, L2(Rd)) is well defined an bounded, whereas the left inequality states164

that Tu has a bounded Moore-Penrose inverse T+
u : `2(Λ, L2(Rd)) → L2(Rd). Further note165

that T∗u is the adjoint of Tu.166

Lemma 3.2 (Characterization of convolutional frames). For any family u = (uλ)λ∈Λ of167

functions in L2(Rd) ∩ L1(Rd), the following statements are equivalent:168

(i) u is a convolutional frame with frame bounds A,B.169

(ii) The identity A ≤
∑

λ∈Λ |Fd uλ|
2 ≤ B holds almost everywhere.170

Proof. The convolution theorem and the isometry property of Fourier transform imply171

that (3.1) holds if and only if for all f ∈ L2(Rd) we have172

A

∫
Rd

|Fd f(ξ)|2 dξ ≤
∫
Rd

|Fd f(ξ)|2
∑
λ∈λ
|Fd uλ(ξ)|2 dξ ≤ B

∫
Rd

|Fd f(ξ)|2 dξ .173

This is in turn equivalent that Item (ii) holds.174

In particular, u is tight if and only if
∑

λ∈Λ |Fd uλ|
2 = 1 almost everywhere.175

Lemma 3.3 (and definition of a dual convolutional frame). Let u = (uλ)λ∈Λ and w =176

(wλ)λ∈Λ be two convolutional frames in Rd. Then the following statements are equivalent:177

(i) The identity
∑

λ∈Λ [Fdwλ] · (Fd uλ) = 1 holds almost everywhere.178

(ii) The reproducing formula ∀f ∈ L2(Rd) : T∗w Tu f =
∑

λ∈Λw
∗
λ ~x (uλ ~x f) = f holds.179

If (i), (ii) hold, we call (wλ)λ∈Λ a dual convolutional frame of (uλ)λ∈Λ.180

Proof. The linearity and continuity of the Fourier transform together with the convolu-181

tion theorem show that the identity in (ii) is equivalent to the identity (Fd f) ·
∑

λ∈Λ(Fdw
∗
λ) ·182

(Fd uλ) = Fd f for all f ∈ L2(Rd). Because Fdw
∗
λ = [Fdwλ] this implies the desired equiva-183

lence.184

In particular, Item (i) in Lemma 3.3 is satisfied with w taken as the canonical dual185

convolutional frame u+ := (u+λ)λ∈Λ defined by186

(3.2) ∀µ ∈ Λ: Fd u
+
µ :=

Fd uµ∑
λ∈Λ |Fd uλ|

2 .187
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MULTI-SCALE FACTORIZATION FOR CSPAT 7

In this case we have Tu+ = T+
u, where T+

u denotes the Moore-Penrose inverse of the analysis188

operator Tu.189

3.2. Convolution factorization. The following concept is central for this paper.190

Definition 3.4 (Convolution factorization of the wave equation). Let Λ be an at most count-191

able index set and consider families u = (uλ)λ∈Λ ∈ (L2(Rd))Λ and v = (vλ)λ∈Λ ∈ (L2(R))λ.192

We call the pair (u,v) a convolution factorization for W if the following hold:193

(CFD1) (uλ)λ∈Λ is a convolutional frame of L2(Rd),194

(CFD2) (vλ)λ∈Λ is a convolutional frame of L2(R),195

(CFD3) The commutation relation holds ∀f ∈ L2(K) : W(uλ ~x f) = vλ ~t (W f).196

Given a convolution factorization (u,v) for W and data g = W f the commutation197

relation (CFD3) formula shows that is sufficient to solve each equation W fλ = vλ~t g. These198

equations now involve the unknown fλ = uλ ~x f having specific prior information, that we199

can exploited for inversion. Moreover, we will later show that the same identity holds for any200

spatial sampling scheme, enabling it for CSPAT. It is well known that W is injective when201

restricted to function having some decay. Therefore, if (u,v) is a convolution factorization202

and uλ ~x f has sufficient decay we have the reproducing formula203

(3.3) f =
∑
λ∈Λ

u∗λ ~x W
−1(vλ ~t (W f))204

In fact, the factorization identity (3.3) is the reason why we name a pair (u,v) satisfying205

(CFD1)-(CFD3) a convolution factorization.206

As the main theoretical result, in this paper we construct explicit convolution factoriza-207

tions for the PAT forward operator. For that purpose, recall208

R] v : Rd → R : x 7→


(−1)(d−1)/2
√
πd−1

((
1
2t

∂
∂t

)(d−1)/2
v
)
(‖x‖) for d odd

2(−1)(d−2)/2
√
πd

∫∞
‖x‖

( 1
2t

∂
∂t)

d/2
v(t)√

t2−‖x‖2
tdt for d even ,

209

and the dual version of the acoustical reciprocal principle v ~t (W f) = W
(
(R] v) ~x f

)
210

stated in Proposition 2.2.211

Theorem 3.5 (Construction of convolution factorization of the wave equation). Let (vλ)λ∈Λ ∈212

L2(R)Λ be a convolutional frame consisting of even functions vλ with sufficient decay such that213

such that vλ ◦
√
| · | ∈ Cd(d−1)/2e(R) and let (v+λ)λ∈Λ be its canonical dual and set uλ = R] vλ.214

1. The pair ((uλ)λ∈Λ, (vλ)λ∈Λ) is a convolutional frame decomposition for W.215

2. The canonical dual of (uλ)λ∈Λ is given by (R] v+λ)λ∈Λ.216

3. For all f ∈ L2(Rd), the factors fλ = uλ ~x f satisfy217

f =
∑
λ∈Λ

u+λ ∗ fλ ,(3.4)218

W fλ = vλ ~t W f .(3.5)219220

Hence any function f ∈ L2(Rd) can be recovered from data W f by first solving equa-221

tion (3.5) for fλ and the evaluating the series (3.4).222
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8 G. ZANGERL, M. HALTMEIER

Proof. To show Item 1 we verify (CFD1)-(CFD3) from Definition 3.4. Item (CFD1) is
satisfied because (vλ)λ∈Λ ∈ L2(R)Λ is a convolutional frame according to the made assump-
tions. Item (CFD3) follows from the acoustic reciprocal principle Proposition 2.1. It remains
to verify Item (CFD2), namely that the family (uλ)λ∈Λ ∈ L2(R)Λ is a convolutional frame.
For that purpose, recall that RR] vλ = vλ where R denotes the Radon transform of a ra-
dial function. According to the Fourier slice theorem we have FdR

] vλ = F1 vλ. Therefore∑
λ∈Λ

∣∣FdR] vλ
∣∣2 =

∑
λ∈Λ |F1 vλ|2 which implies that (R] vλ)λ∈Λ is a convolutional frame

according to Lemma 3.2. Moreover, we have F1 v
+
λ = F1 vλ/

∑
λ∈Λ |F1 vλ|2 and therefore

F1 R
] v+λ = F1 v

+
λ =

F1 vλ∑
λ∈Λ |F1 vλ|2

=
F1 R

] vλ∑
λ∈Λ

∣∣FdR] vλ
∣∣2 ,

which shows that (R] v+λ)λ∈Λ is the canonical dual of (R] vλ)λ∈Λ which is Item 2. Finally,223

Item 3 follows Items 1, 2 and the definitions of a CDF and a dual frame.224

3.3. Multiscale factorization. As shown in the previous subsection, a convolution fac-225

torization splits the image reconstruction into several reconstruction problems, one for each226

convolved initial data uλ ~x f . The basic idea is now to take (uλ)λ∈Λ as a multiscale system227

in order to be able bring sparsity into account.228

For given u ∈ L2(Rd) ∩ L1(Rd) consider the scaled versions229

(3.6) uj : Rd → R : x 7→ 2jd u
(
2jx
)

for j ≥ 1 .230

According to the scaling property of the Fourier transform we have Fd uj(ξ) = Fd u(2−jξ).231

Suppose that Fd u is essentially supported
{
ξ ∈ Rd | b0 ≤ ‖ξ‖ < 2b0

}
. Then, as j increases232

the Fourier transform Fd uj are essentially supported in
{
ξ ∈ Rd | 2j−1b0 < ‖ξ‖ ≤ 2jb0

}
.233

Its union covers all frequencies except the low frequencies that are contained in in the ball234

B0 =
{
ξ ∈ Rd | ‖ξ‖ < b0

}
. In order to obtain a convolutional frame with reasonable constants235

we therefore select another function u0 ∈ L2(Rd) such that Fd u0 covers frequencies in b0.236

Definition 3.6 (Multiscale convolution decomposition). Let u0, u ∈ L2(Rd) ∩ L1(Rd) and237

define uj for j ≥ 1 by (3.6). We call the family (uj)j∈N a multiscale convolution decomposition238

in L2(Rd) if it forms a convolutional frame. For f ∈ L2(Rd), we refer to f ~x u0 as the low239

frequency factor and to f ∗ uj for j ≥ 1 as the high frequency factor at scale j.240

According to Lemma 3.2 and the scaling property of the Fourier transform, the family241

u = (uj)j∈N is a multiscale decomposition if and only if there are constants A,B > 0 such242

that243

(3.7) A ≤
∑
j∈N
|Fd uj(ξ)|2 ≤ B for almost every ξ ∈ Rd .244

Moreover, the canonical dual frame u+ = (u+j )j∈N of u is given by the Fourier representation245

Fd u
+
j := Fd uj/

∑
k∈N |Fd uk|

2 for j ∈ N. In the one-dimensional case we write (vj)j∈N for a246

multiscale decomposition.247

Definition 3.7 (Multiscale factorization of the wave equation). We call a pair (u,v) a mul-248

tiscale factorization of W if it is a convolutional frame decomposition such that u = (uj)j∈N249

and v = (vj)j∈N are multiscale decompositions in L2(Rd) and L2(R), respectively.250
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MULTI-SCALE FACTORIZATION FOR CSPAT 9

From Theorem 3.5 we immediately get the following.251

Theorem 3.8 (Construction of multiscale factorization of the wave equation). Let v =252

(vj)j∈N be a multiscale decomposition in L2(R) consisting of even functions with sufficient253

decay, let v+ be its canonical dual and define u = (R] vj)j∈N . Then the following holds254

1. The pair (u,v) is a multiscale factorization for W.255

2. The canonical dual (u+j)j∈N of u has the Fourier representation256

Fd u
+
j(ξ) =

1∑
j∈N |F1 vj(‖ξ‖)|2

F1 vj(‖ξ‖) .(3.8)257

258

3. For all f ∈ L2(Rd) the factors fj := uj ~x f satisfy259

f =
∑
j∈N

u+j ~x fj(3.9)260

W fj = vj ~t W f .(3.10)261262

Hence any f ∈ L2(Rd) can be recovered from W f by first solving (3.10) and then263

evaluating the series (3.9).264

Proof. Follows from Theorem 3.5.265

Alternatively, we have the following result that avoids computing the canonical dual.266

Corollary 3.9 (Multiscale reconstruction for the wave equation). Let (vj)j∈N ∈ (L2(R))N267

be a multiscale decomposition consisting of even functions vj with sufficient decay such that268

vj ◦
√
| · | ∈ Cd(d−1)/2e(R) and set uj = R] vj. Then, all f ∈ L2(Rd) the factors fj = uj ~x f269

satisfy270

Φ ~x f =
∑
j∈N

uj ~x fj(3.11)271

W fj = vj ~t W f ,(3.12)272273

with Φ := F−1
d

(∑
j∈N |Fd uj |

2
)

.274

Proof. Similar to the proof of Theorem 3.5.275

From Corollary 3.9 it follows that any function f ∈ L2(Rd) can be recovered from data276

W f by means of the following consecutive steps277

• Solve equation (3.12) for fj278

• Evaluate the series on the right hand side of (3.11)279

• Solve the deconvolution problem (3.11) for f .280

Because the (vλ)λ∈Λ is a convolutional frame, Fd Φ is bounded away from zero and therefore281

the deconvolution problem (3.11) is stably solvable. Because inversion of the wave equation in282

the full data case is stable, also (3.12) can be stably solved for fj . In the case of compressed283

sensing this will not be the case and we will have to include additional prior information for284

its solution.285
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Remark 3.10 (Examples for multiscale decompositions). Possible multiscale decompositions286

can be constructed via a dyadic translation invariant wavelet frame, which names a convo-287

lutional frame (ψj)j∈Z where ψj := 2jψ(2j( · )) for a so-called mother wavelet ψ : R → R.288

If we define vj := ψj for j ≥ 1 and select v0 such that |F1 v0|2 =
∑

j≤0 |F1 ψj |2 we obtain289

a multiscale decomposition (uj)j∈N. Alternatively, for the low resolution filter we can take290

any other function v0 such that |F1 v0|2 +
∑

j≥1 |Fd ψj |
2 is bounded and away from zero by291

reasonable constants. Several examples of dyadic translation invariant wavelet frames can be292

extracted from classical wavelet analysis [8, 34]. Among many others, examples for the gen-293

erating mother wavelet ψ = v0 are Mexican hat wavelets, Shannon wavelets, spline wavelets294

or Meyer wavelets. For our numerical simulations, we use the Mexican hat wavelet.295

4. Application to compressed sensing PAT. In this section, we extend the multiscale fac-296

torization to the case of compressed sensing data in PAT. Moreover, we derive a corresponding297

sparse recovery scheme.298

4.1. Sampling the wave equation. When realizing a PAT setup, the acoustic data can299

only be collected for a finite number of sampling points that we denote by z` ∈ S for ` ∈300

{1, . . . , n}. Note that we do not discretize the temporal variable since temporal samples can301

easily be collected at rate well above the Nyquist sampling rate.302

Definition 4.1 (Sampled PAT forward operator). Let W be the continuous PAT forward303

operator defined in (2.4). For sampling points z` ∈ S, ` ∈ {1, . . . , n}, we set304

Sn : C∞(S × (0,∞))→ (C∞(0,∞))n : g 7→ (g(z`, · ))`=1,...,n(4.1)305

Wn : C∞(Rd)→ (C∞(0,∞))n : f 7→ SnW f = (p(z`, · ))`=1,...,n .(4.2)306
307

We call Sn the regular sampling scheme and Wn = SnW the (regularly) sampled PAT forward308

operator corresponding to the n-tuple (z`)`=1,...,n of spatial sampling points.309

The fundamental question of classical Shannon sampling theory in the context of PAT is310

finding “simple” sets X where the initial pressure belongs to and associated conditions on the311

sampling points under which the sampled data Wn f uniquely determine the initial pressure312

distribution f ∈ X. For equispaced detectors on the boundary of a disc D ⊆ R2, explicit313

sampling conditions for PAT have been derived in [22]. Roughly spoken, these results state314

that any function f ∈ C∞0 (D) whose Fourier transform f̂(ξ) is sufficiently small for ‖ξ‖ ≥ b0,315

where b0 is the bandwidth, can be stably recovered from sampled PAT data Wn f provided316

that the sampling condition n ≥ 2R0b0 is satisfied (for a precise statement see [22]). Sampling317

theory for other tomographic inverse problems is discussed, for example, in [43, 28, 13, 10, 36].318

4.2. Compressive sampling. In order to reduce the number of detectors while preserving319

spatial resolution CSPAT has been studied in several works [19, 41, 4, 4, 19]. The basic idea320

is to use general linear measurements of the form321

yj = 〈aj ,Wn(f)〉 =

n∑
i=1

aj,i(Wn(f))i for j ∈ {1, . . . ,m} .(4.3)322

323

Here aj are measurement vectors with entries aj,i and Am,n := (aj,i)j,i ∈ Rm×n is the measure-324

ment matrix. The term compressed sensing refers to the fact that the number of measurements325
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m is intended to be chosen much smaller than the number of initial sampling points n. There-326

fore y = Am,nWn f constitutes a highly under determined system of linear equations and can327

only be solved with additional assumptions on unknown to be reconstructed.328

For a systematic treatment, we introduce the following notation.329

Definition 4.2 (Generalized sampling in PAT). For sampling points (z`)`=1,...,n ∈ Sn, mea-330

surement matrix Am,n ∈ Rm×n and subspace X ⊆ C∞(Rd) we call331

1. Am,n Sn a generalized sampling scheme;332

2. Am,nWn = Am,n SnW CSPAT forward operator;333

3. Am,n Sn a complete sampling scheme for X, if the restriction Am,n SnW |X is injective.334

The results of [22] essentially show that Sn gives a complete sampling scheme on the335

space V = VR0,b0 of all functions being supported in a disc of radius R0 and having essential336

bandwidth b0 for n ≥ 2R0b0 equally distributed sampling points. This implies that for any337

invertible matrix Am,n, the composition Am,n Sn is a complete sampling scheme on VR0,b0 as338

well. We are not aware of any results (even for related inverse problems) when the general-339

ized sampling scheme cannot be written in the form BSm with Sm being a regular sampling340

scheme and Am,n ∈ Rn×n being invertible. The question for which spaces such a general sam-341

pling matrix are complete sampling schemes seems an interesting direction of open research.342

Anyway, in this paper we investigate the case when Am,nWn is not injective on the linear343

subspace X and develop a nonlinear reconstruction approach based on `1-minimization.344

4.3. Multiscale reconstruction for CSPAT. Let Wn = SnW be a regularly sampled345

discrete PAT forward operator with sampling points (z`)`=1,...,n ∈ Sn. We suppose that the346

regular sampling scheme Sn is complete for a subspace347

(4.4) Xn ⊆ BΩ(Rn) :=
{
f ∈ L2(Rn) | f is Ω-bandlimited

}
.348

Here f ∈ L2(Rd) is called Ω-bandlimited if supp(Fd f)(ξ) vanishes for ‖ξ‖ > Ω. Note that we349

have BΩ(Rd) ⊆ C∞(Rd)∩L2(Rd). Moreover, let Am,n ∈ Rm×n be a measurement matrix with350

m < n such Am,n Sn is not complete on Xn. This means that Am,nWn is not injective on351

Xn and therefore cannot be uniquely inverted. Our aim is to nevertheless to recover f ∈ Xn352

from data y = Am,nWn f by using suitable prior information.353

Below we describe how a multiscale factorization for the wave equation can be used to354

recover an initial pressure from CSPAT data. The main ingredient for our approach is that355

the factorizations of Theorems 3.8 and Corollary 3.9 for the full wave equation generalize to356

the compressed sensing setup. Here we only formulate such an extension of Corollary 3.9,357

because we use this version for the numerical implementation.358

Proposition 4.3 (Multiscale CSPAT decomposition). Let (u,v) be a multiscale factorization359

of W. Then for all f ∈ L2(Rd) the factors fj = uj ~x f satisfy360

Φ ~x f =
∑
j∈N

(R] vj) ∗ fj(4.5)361

(Am,nWn)fj = vj ~t ((Am,nWn)f) .(4.6)362363

with Φ := F−1
d

(∑
j∈N |Fd uj |

2
)

.364
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12 G. ZANGERL, M. HALTMEIER

Proof. This follows from Corollary 3.9 by simply noting that Am,n Sn acts in the spatial365

variable and therefore commutes with the temporal convolution.366

4.4. Proposed multiscale reconstruction. Consider the situation as described in Subsec-367

tion 4.3. Based on the factorization of Corollary 4.3 we propose the following reconstruction368

scheme form CSPAT data:369

Algorithm 4.4 (Recover initial pressure f from CSPAT data Am,nWn f).370

(S1) Solve equation (4.6) for fj as described below.371

(S2) Evaluate the series on the right hand side of (4.5).372

(S3) Solve the deconvolution problem (4.5) for f .373

Because the (vj)j∈N is a convolutional frame, Fd Φ is bounded away from zero and therefore374

the deconvolution problem (4.5) in step (S3) is stably solvable. However, because Am,nWn375

is non-injective, solving (4.6) in step (S1) requires prior information. The proposed procedure376

is described in following in Remark 4.5.377

Remark 4.5 (Solution of step (S1)). Appropriate prior information is different for the low378

frequency factor f0 and the high frequency factors fj for j ≥ 1. We therefore recover the low379

frequency factor and the high frequency factors differently.380

• Low frequency factor: Assuming that v0 has essential bandwidth in b0, then381

low frequency factor f0 = u0 ~x f also has essential bandwidth b0. This means that382

the Fourier transform Fd f0(ξ) is sufficiently small for ‖ξ‖ ≥ b0. Therefore, classical383

sampling theory in the context of PAT [22] shows that m regular samples are sufficient384

to recover f0 = u0 ~x f as solution of385

(4.7) min
h∈Xn

‖h‖2 such that Am,nWn h = y0 .386

We use (4.7) when Am,n ∈ Rm×n is a either a subsampling matrix or random sensing387

matrix.388

• High frequency factors: Assuming that the Fourier transform F1 v(ω) is neg-389

ligible in a suitable sense when |ω| is outside the interval [b0, 2b0], then the Fourier390

transforms are of high factors Fd u(ξ) are negligible outside the annulus Dj :=
{
ξ ∈391

Rd | [2j−1b0 ≤ ‖ξ‖ ≤ 2kb0
}

. However if we perform compressive sampling, Am,nWn392

will not be injective on the space of all functions that are essentially supported in Dj393

and therefore (4.5) cannot be inverted uniquely without additional prior information.394

As we observe from Figure 2 the high frequency factors f0 = u0 ~x f are sparse in the395

spatial domain. Therefore in this paper we propose to use `1-minimizing solutions396

(4.8) min
h∈Xn

‖h‖1 such that Am,nWn h = yj .397

Here ‖h‖1 :=
∑

i∈Z2 |h(iπ/Ω)| is the `1-norm of h at the discrete samples xi = π/Ω398

advices by Shannon’s sampling theorem.399

We can derive uniqueness of (4.8) from compressed sensing conditions. Here we make use400

of the [18] dealing with the reconstruction of individual elements, which in our context read401

as follows:402
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• There exists η ∈ Rm with (Am,nWn)∗η ∈ Sign(uj ~x f)403

• ∀i ∈ In \ supp(u0,j ~x f) : |〈en, (Am,nWn)∗η〉| < 1.404

• The restricted mapping (Am,nWn)supp(x†) is injective on Xj .405

A detailed error analysis for CSPAT with Algorithm 4.4 using (4.7) for the low resolution406

factor and (4.8) for the high resolution factors is an interesting line of future research and407

beyond the scope of this paper.408

5. Numerical experiments. In this section, we present details on the implementation of409

the sparse reconstruction scheme from compressed sensing measurements presented in Sec-410

tion 4. In our numerical experiments, we consider the two dimensional case when the initial411

pressure is supported in the unit disc in R2 of radius 0.9 and measurements are taken the unit412

sphere S1. This situation appears in PAT with integrating line detectors [5, 14].413

Figure 3. Left: Initial pressure on a square grid of side length 2. The point-like detectors are equidistantly
distributed on the black circle. Right: Full data.

5.1. Numerical implementation. For all presented numerical implementations we replace414

f by its discrete values (f(xi))i on a Cartesian grid of side length 2 at nodes xi = i 2/Nx for415

i ∈ {−Nx/2, . . . Nx/2− 1}2 with Nx = 100. We assume that f is sampled at the Nyquist rate416

such that the maximal Bandwidth is given by Ω = Nx(π/2). The space Xn in (4.4) is taken417

as the space of all f ∈ BΩ whose samples vanish outside the disc of radius 0.9. We implement418

Wn and Am,n with n = 300 and m = 75 as described below. Note that the fully sampled PAT419
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14 G. ZANGERL, M. HALTMEIER

forward operator Wn satisfies the classical sampling conditions of [22]. The measurements420

matrix Am,n corresponds to a subsampling factor of 4.421

• Sampled PAT forward operator: The discretization of Wn is based on the422

Fourier representation Fd p(ξ, t) = cos(‖ξ‖ t)Fd f(ξ) for the solution of the wave equa-423

tion (2.1)-(2.3). For the numerically computation we replace the Fourier transform424

by the discrete Fourier transform on the square grid of side length 4 with spatial425

nodes xi = i 2/Nx for i ∈ {−Nx, . . . Nx − 1}2 and frequency nodes ξk = kΩ/Nx for426

k ∈ {−Nx, . . . Nx − 1}2. Here, the bandwidth Ω and the spatial sampling step size427

2/Nx are satisfy the Nyquist condition 2/Nx = π/Ω and the larger numerical domain428

is [−2, 2] × [−2, 2] is chosen to avoid boundary effects. We then define discrete fully429

sampled PAT forward operator Wn by nearest neighbor interpolation at the detec-430

tor locations. The adjoint of W∗
n is numerically computed via the backprojection431

algorithm described in [5].432

• Multiscale filters: The high frequency filters vj for ≥ 1 are taken as Mexican hat433

wavelets434

vj(t) := 232j(1− (2j8t)2) exp

(
−(2j8t)2

2

)
435

and the corresponding low resolution temporal filter v0 is taken as a Gaussian v0(t) :=436

23 exp(−(8t)2/2). The width of the filter v0 is taken such that v0 ~x f is can be437

recovered from n = 75 samples according to classical sampling theory. For the high438

frequency components vj ~x f with j ≥ 1 this is not the case, and therefore we use439

sparsity as described in Section (4). The spatial filters uj = R] vj are computed440

analytically by evaluating (2.7) for d = 2 and v = vj . For j ≥ 2, the essential support441

vj lies outside the considered frequency regime [−b, b] and therefore for the numerical442

simulations we use the three filters (v0, v1, v2). All temporal and spatial convolutions443

are replaced by discrete convolution via the discrete Fourier transform.444

• Measurement matrix: For the measurement matrix Am,n ∈ Rm×n we consider two445

choices. First, we take Am,n as uniform subsampling matrix which has entries aj,i = 1446

if j = 4(i− 1) + 1 and aj,i = 0 otherwise. Second we take Am,n as Gaussian random447

matrix where each entry aj,i is the realization of an independent Gaussian random448

variables with zero mean.449

The initial pressure used for the numerical simulations, the corresponding fully sampled450

data as well as the subsampled data and the Gaussian measurement data are shown in Figure 3.451

The filtered data for the subsampling scheme are shown in the left column of Figure 4 and452

the filtered data using Gaussian measurements in Figure 5.453

5.2. Reconstruction results. Following the strategy proposed in Section 4 (see Algorithm454

4.4 and Remark 4.5), we recover the initial phantom via the following three steps:455

• First recover the factors uj~x f from data yj = vj~x (Am,nWn f). For that purpose,456

we use the Landweber iteration for recovering the low frequency factor u0 ~x f and457

the iterative soft thresholding algorithm458

hk = softsλ
(
hk + s W∗

nA
∗
m,n (Tjfy −Am,nWn fk)

)
459
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Figure 4. Left: The convolved data yj = vj ~t (Am,n Wn f) for j = 0, 1, 2 where Am,n is the subsampling
matrix with subsampling factor 4. Right. Corresponding reconstructions of convolved initial pressure uj ~x f
using the Landweber method (for j = 0) and iterative soft thresholding (for j = 1, 2).

for recovering the sparse high frequency factors u1 ~x f and u2 ~x f . Here softsλ f =460

sign(f) max{|f | − sλ, 0} is the soft thresholding operation, s the step size and λ the461

regularization parameter.462

• Second we evaluate fconv :=
∑2

j=0 uj ~x fj .463

• As a final reconstruction step we recover an approximation to f by deconvolution464
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Figure 5. Left: The convolved data yj = vj ~t (Am,n Wn f) for j = 0, 1, 2 where Am,n is a Gaussian
random matrix with subsampling factor 4. Right. Corresponding reconstructions of convolved initial pressure
uj ~x f using the Landweber method (for j = 0) and iterative soft thresholding (for j = 1, 2).

fconv with kernel Φ = F−1
d

∑2
j=0 |Fd uj |

2. In this work we again use the iterative soft465

thresholding algorithm for performing the deconvolution.466

The reconstructions of the convolved phantoms for the subsampling measurements are467

shown in the right column in Figure 4 and the for the Gaussian measurements in the right468

column in Figure 5. The right column in Figure 6 shows the resulting reconstructions from469
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Figure 6. Top: Reconstruction from sparse measurements y = Am,n Wn f with subsampling factor 4 using
standard `1-minimization (left) and the proposed algorithm (right). Bottom: Same for Gaussian measurements.

subsampled measurements and Gaussian measurements. The left column shows the recon-470

structions using standard `1-minimization without out multiscale sparsifying transforms. The471

relative `2-reconstruction errors are 0.17 (sparse sampling) and 0.19 (Gaussian measurements)472

for the proposed method and 0.22 (both cases) for standard `1-minimization with iterative473

soft thresholding. Notably, the high-resolution pattern is reconstructed significantly better474

for the proposed multiscale approach that for standard `1-minimization.475

6. Conclusion. In this paper, we derived a multiscale factorization of the wave equation.476

We applied the multiscale factorization to CSPAT, where reconstructions are obtained from477

only a few compressed sensing measurements that consist of linear combinations of the signals478

recorded by individual point-like detectors. We present a novel multiscale reconstruction479

approach that uses the acoustic reciprocal principle to achieve a multiscale decomposition of480

the desired initial pressure by applying a family of operators that act on acoustic data in the481

time domain. In this way sparsity of the desired initial pressure distribution can be introduced482

for the high scales of the operators. Our numerical results demonstrate that the proposed483

method improves the reconstructions in the case of compressed sensing measurements.484

In future work, we will improve and analyze the reconstruction algorithm associated to485

the multiscale factorization. In particular, we analyze the theoretical conditions for unique486
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recovery. Other interesting lines of future research is the extension of the proposed method487

to PAT with variable sound speed as well as other tomographic image reconstruction modal-488

ities. During finalization of the manuscript we found that in the context of Radon inversion489

with filtered backprojection, related multiscale factorizations have been proposed in [39, 7].490

The combination of such results with compressed sensing and more advanced reconstruction491

techniques seems an interesting line of research.492

Appendix A. Proof of Proposition 2.2.493

According to Proposition 2.1 it is sufficient to show that R] v is a solution of the equation494

v = Ru. Recalling the definition of R in (2.5) this amounts in showing that R] v = ū ◦ ‖ · ‖495

satisfies the integral equation v(t) = ωd−2

∫∞
|t| sū(s)(s2 − t2)(d−3)/2ds for t ∈ R. We note that496

(θ, t) 7→ Ru(t) is the Radon transform of the radially symmetric function u. Therefore, there497

is exactly one radial function satisfying the above integral equation. An explicit expression for498

the solution has been given in [9]. Using elementary computation, a formula has been derived499

in [35, p. 23]. By slight modification we obtain the following results.500

Lemma A.1. The solution u = ū ◦ ‖ · ‖ of the equation v = Ru is given by501

(A.1) ∀r > 0: ū(r) :=
2 (−1)d−1

π(d−1)/2Γ((d− 1)/2)
Dd−1
r

∫ ∞
r

(t2 − r2)(d−3)/2v(t) t dt .502

Proof. In [35, p. 23] the identity Dd−1
r

∫∞
r (t2−r2)(d−3)/2v(t)tdt = 2−1(−1)d−1ωd−2c(d)(d−503

2)!ū(r) has been derived with c(d) := 21−d ∫ 1
−1(1 − s2)(d−3)/2ds. Together with the iden-504

tities ωd−2 = 2π(d−1)/2/Γ((d − 1)/2) and c(d) = 21−dπ1/2Γ ((d− 1)/2) /Γ(d/2) as well as505

Γ (d/2) Γ ((d− 1)/2) = 22−dπ1/2 (d− 2)! imply the explicit solution formula (A.1).506

In remains to bring the right hand side of Equation (A.1) in the desired form. We do this507

separately for the even and odd dimensional case.508

• If d is odd we have509

D(d−1)/2
r Dr D

(d−3)/2
r

∫ ∞
r

(t2 − r2)(d−3)/2v(t) t dt510

= (−1)(d−3)/2 ((d− 3)/2)! D(d−1)/2
r Dr

∫ ∞
r

v(t) t dt511

= (−1)(d−1)/2 ((d− 3)/2)!

2
D(d−1)/2
r v(r) .512

513

Together with Lemma A.1 this gives (2.7) for d odd.514

This manuscript is for review purposes only.



MULTI-SCALE FACTORIZATION FOR CSPAT 19

• If d is even we first compute515

Dr

∫ ∞
r

v(t)√
t2 − r2

tdt516

= Dr

∫ ∞
r

(
∂t
√
t2 − r2

)
φ(t)dt517

= −Dr

∫ ∞
r

√
t2 − r2

(
∂tφ(t)

)
dt518

=

∫ ∞
r

1

2

1√
t2 − r2

(∂sφ(t))dt519

=

∫ ∞
r

Dt φ(t)√
t2 − r2

tdt .(A.2)520
521

Therefore522

Dd/2
r D(d−2)/2

r

∫ ∞
r

(t2 − r2)(d−3)/2v(t) tdt523

= (−1)(d−2)/2Γ((d− 1)/2) Dd/2
r

∫ ∞
r

(t2 − r2)−1/2 v(t) t dt524

= (−1)(d−2)/2Γ((d− 1)/2)

∫ ∞
r

(
1
2t

∂
∂t

)d/2
v(t)

√
t2 − r2

t dt ,525
526

where the last equality follows after (d/2)-times applying equality (A.2). This gives527

(2.7) for d even.528
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