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ABSTRACT
We propose a sparse reconstruction framework (aNETT) for
solving inverse problems. Opposed to existing sparse recon-
struction techniques that are based on linear sparsifying trans-
forms, we train an autoencoder network D ◦E with E acting
as a nonlinear sparsifying transform and minimize a Tikhonov
functional with learned regularizer formed by the `q-norm of
the encoder coefficients and a penalty for the distance to the
data manifold. We propose a strategy for training an autoen-
coder based on a sample set of the underlying image class
such that the autoencoder is independent of the forward op-
erator and is subsequently adapted to the specific forward
model. Numerical results are presented for sparse view CT,
which clearly demonstrate the feasibility, robustness and the
improved generalization capability and stability of aNETT
over post-processing networks.

Index Terms— Inverse problems, sparsity, regulariza-
tion, deep learning, autoencoder

1. INTRODUCTION

Various applications in medical imaging, remote sensing and
elsewhere require solving inverse problems of the form

y = Ku+ z , (1.1)

where K : X→ Y is a linear operator between Hilbert spaces,
and z is the data distortion. Inverse problems are well ana-
lyzed and several established approaches for its solution exist
[1, 2]. Recently, neural networks (NN) and deep learning ap-
peared as a new paradigms for solving inverse problems and
demonstrate impressive performance [3, 4, 5, 6].

In order to enforce data consistency, in [7] a deep learn-
ing approach named NETT (NETwork Tikhonov Regulariza-
tion) has been proposed and analyzed based on minimizing
‖K(u) − y‖2 + αR0(u), where R0 is a trained network
serving as regularizer. One of the main assumptions for the
analysis of [7] is the coercivity of the regularizer which re-
quires special care in network design and training. In order to
∗Corresponding author: markus.haltmeier@uibk.ac.at. DO and MH ac-
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overcome this limitation, we introduce the sparse augmented
NETT (aNETT), which considers minimizers of

Tα,y(u) := ‖Ku− y‖2

+ α

(∑

λ∈Λ

wλ|(E(u))λ|q +
c

2
‖u−N(u)‖2

)
. (1.2)

Here N = D ◦ E is a sparse autoencoder network, E : X →
`2(Λ) and D : `2(Λ) → X are the encoder and decoder
network, Λ is a countable index set, and `2(Λ) is the la-
tent Hilbert space of sparse codes. The weighted `q-norm
‖E(u)‖q,w ,

∑
λ∈Λ wλ|(E(u))λ|q implements learned spar-

sity, and the augmented term ‖u − N(u)‖2 is to force u to
be close to the data manifoldM. Both terms together allow
to show coercivity of the regularizer. Based on this we de-
rive stability, convergence and convergence rates for aNETT.
Note that sparse regularization is well investigated for linear
representations [8, 9] but so far has not been investigated for
nonlinear deep autoencoders.

2. SPARSE AUGMENTED NETT

2.1. Theoretical results

Throughout this section we assume the following.

• K : X→ Y is linear and bounded.
• E : X→ `2(Λ) is weakly sequentially continuous.
• D : `2(Λ)→ X is weakly sequentially continuous.
• q ≥ 1, c > 0,
• wmin , inf{wλ | λ ∈ Λ} > 0.

Furthermore, we define N , D◦E and choose the regularizer

Rc(u) ,
∑

λ∈Λ

wλ|(E(u))λ|q +
c

2
‖u−N(u)‖2.

Under these assumptions, (1.2) has a minimizer for all y ∈ Y
and all α > 0. Moreover, we have the following results.

Theorem 2.1 (Convergence) Let y ∈ K(X), yk ∈ Y for k ∈
N satisfy ‖yk − y‖ ≤ δk, and δk, αk, δ2

k/αk → 0 as k →∞.
Then with uk ∈ arg minu Tαk,yk(u) the following hold:

• (uk)k∈N has at least one weak accumulation point.
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• Every weak accumulation point of (uk)k∈N is an Rc-
minimizing solution of Ku = y.

• If Ku = y has a unique Rc-minimizing solution u+,
then (uk)k∈N weakly converges to u+.

Theorem 2.2 (Convergence rate) LetRc be Gâteaux differ-
entiable, K have finite-dimensional range and consider mini-
mizers uα,δ ∈ arg minu Tα,yδ(u) with ‖yδ−Ku+‖ ≤ δ. Then
α ∼ δ implies the convergence rate ∆c(uα,δ, u+) = O(δ) as
δ → 0 in terms of the so-called absolute Bregman distance
∆c(u, u+) , |Rc(u)−Rc(u+)− 〈∇Rc(u+), u− u+〉|.

Proofs of Theorems 2.1 and 2.2 are given in [10].

2.2. Trained autoencoder

First, an autoencoder Na is trained such that u is close to
Na(u) and that ‖E(u)‖1,w is small for any u in a class M
of images of interest. For that purpose, we add the regular-
izer ‖ · ‖1,w to the loss function for training Na as denois-
ing network. To be more specific, let (Na

θ)θ∈Θ be a family
of autoencoder networks Na

θ = Da
θ ◦ Eθ, where Eθ : X →

`2(Λ) are admissible (in the sense of above assumptions) en-
coder networks and Da

θ : `2(Λ)→ X admissible decoder net-
works. Moreover, suppose that u1, . . . , um ∈ M is a train-
ing dataset. To select the particular autoencoder based on the
training data, we consider the following training strategy for
the sparse denoising autoencoder

θ∗ ∈ arg min
θ

1

m

m∑

i=1

‖Na
θ(ui + εi)− ui‖22

+ η‖Eθ(ui + εi)‖1,w + β‖θ‖22 , (2.1)

and set [Na,E] , [Na
θ∗ ,Eθ∗ ]. Here vi ∈ X are data pertur-

bations and β > 0 a regularization parameter.
By training with perturbed data points ui+εi, we increase

robustness of the trained autoencoder. Note that the perturba-
tions εi ∈ X are chosen independently of the operator K such
that the autoencoder can be used for each forward operator in
a universal manner. Clearly then, the autoencoder depends on
the specific manifoldM of images of interest. As we shall see
however, opposed to typical deep learning based reconstruc-
tion methods which do not account for data consistency out-
side the training data set, the sparse aNETT is robust against
changes of the specific image manifold. Note that Thms. 2.1
and 2.2 hold true for Na in place of N.

2.3. Adaptation to specific forward models

The sparse aNETT (1.2) consists of a data consistency term,
a sparsity term, and an augmented term enforcing N(u) ' u.
Ideally, the set of all approximately data consistent elements
that are also approximate fixed points of N, is close to the
image manifoldM. However, without adjusting the autoen-
coder to specific forward models, this is a challenging and

maybe impossible task. Indeed, for the application we con-
sider in this paper, namely sparse view CT, we observed that
the autoencoder trained independent of the forward operator,
was not able to sufficiently well distinguish between data-
consistent elements inside and outside desired image class.

One way to increase the value of ‖u − N(u)‖ for un-
desired but data consistent elements is to adopt the training
strategy developed in [7] and to take the data perturbations in
(2.1) as εi = K]Kui − ui where K] is a reconstruction op-
erator approximating the Moore-Penrose inverse of K, ui are
the artifact free images and K]Kui images with artefacts. In
this case, the training dataset depends on the forward opera-
tor, and the autoencoder has to be retrained for every specific
forward operator. Therefore, in this paper we follow a differ-
ent approach. Instead of adjusting the autoencoder training,
we compose the operator independent autoencoder Na with
another network U, that is trained to distinguish between the
desired images and images with operator dependent artefacts.
For that purpose we choose a network architecture (Uκ)κ∈K
and select U = Uκ∗ , where κ∗ is a minimizer of

1

2m

2m∑

i=1

‖Uκ(Na(vi))− ui‖22 + γ‖κ‖22 , (2.2)

where vi = K]Kui for i = 1, . . . ,m and vi = ui for i = m+
1, . . . , 2m and γ > 0 is a regularization parameter. We see
that Thms. 2.1 and 2.2 still hold true for the final autoencoder
N , U ◦Na if U is weakly sequentially continuous.

3. APPLICATION TO SPARSE VIEW CT

For the numerical simulations we consider the problem of re-
covering an image from sparse view parallel-beam CT data
with 60 angles. For this problem, the forward operator K is
given by the angularly subsampled Radon transform

(Ku)(s, ϕ) ,
∫

L(s,ϕ)

u(x)dσ(x) ,

for 60 equidistant angles ϕ in [0, π]. Here L(s, ϕ) is the line
in the plane with normal vector (cos(ϕ), sin(ϕ)) and signed
distance s ∈ [−1.5, 1.5] from the origin. Discretization of
the Radon transform is done using the ODL library [11]. The
data chosen for the numerical simulations are taken from the
Low Dose CT Grand Challenge [12]. We consider the im-
ages at 1 mm slice thickness given in the dataset and take the
first seven patients for training (4267 images), the next two
patients for validation (1143 images) and the last patient for
testing (526 images). Each of these images is rescaled to have
pixel values in the interval [0, 1].

3.1. Network training

We first train Na, E by minimizing (2.1) and subsequently
train U by minimizing (2.2). The sparse autoencoder is cho-
sen as N = U ◦ Na. The network architecture chosen for



the problem adapted network U is the tight frame U-Net [13]
and the auto-encoder architecture is chosen as in [14]. The
perturbations in (2.1) are taken as independent realizations of
Gaussian white noise with standard deviation p · ūi where p is
uniformly sampled from [0, 0.1] and ūi is the mean of ui. The
weighs in the `1-term are taken as w`(λ) = 2−` where `(λ) is
the index of the downsampling-step, see [14].

We train all networks using the Adam [15] optimizer with
the recommended parameters for 100 iterations and use only
the best parameters of these iterations. Here, the best param-
eters are those which give the smallest loss on the validation
set. The parameters η, β, γ are chosen empirically and we
found that η = 10−3 and β = γ = 10−5 give the best results
for our approach.

3.2. Solution of sparse aNETT

For minimizing the sparse aNETT functional (1.2) we use a
splitting approach. For that purpose we introduce the aux-
iliary variable ξ = E(u) and rewrite (1.2) as the following
constraint optimization problem




min
u,ξ

‖Ku− y‖22 + α‖ξ‖1,w +
αc

2
‖u−N(u)‖22

s.t. E(u) = ξ .

Note that we have only replaced E(u) in th `1-term but not
in the augmented term. To solve the above constrained ver-
sion of aNETT, we use the ADMM scheme with scaled dual
variable. This results in the update scheme

uk+1 = arg min
u
‖Ku− y‖22 +

αc

2
‖u−N(u)‖22 (3.1)

+
ρ

2
‖E(u)− ξk + ηk‖22

ξk+1 = arg min
ξ

α‖ξ‖1,w +
ρ

2
‖E(uk+1)− ξ + ηk‖22 (3.2)

ηk+1 = ηk + (E(uk+1)− ξk+1) , (3.3)

where ρ > 0 is a scaling parameter. The strength of the split-
ting type iteration (3.1)-(3.3) is that the optimization prob-
lems involved in each iterative update is simpler and easier to
solve than the original sparse aNETT minimization problem
(1.2), which contains the non-differentiable `1-norm as well
as non-linear augmented network term. In fact, the ξ-update
can be explicitly solved by soft-thresholding. Additionally, if
we take N being differentiable, the u-update can be solved
efficiently using gradient type iterative schemes.

α c ρ outer inner stepsize

0 % noise 10−5 102 2 50 10 5 · 10−1

5 % noise 5 · 10−4 101 2 100 10 10−1

adversarial 10−5 101 2 50 10 5 · 10−1

Table 3.1: Parameter specification for algorithm (3.1)-(3.3).

We minimize (3.1) using gradient descent with momen-
tum parameter 0.8. The ADMM is initialized with u0 =
N(K]y), ξ0 = E(u0) and η0 = 0, where y are the given
data. Here and below K] denotes the filtered backprojection
operator. The parameter specifications for the minimization
using (3.1)-(3.3) in various scenarios are shown in Table 3.1.
All parameters were chosen empirically to give the best re-
sults. Here, outer refers to the total ADMM iterations,
stepsize is the stepsize and inner is the maximal num-
ber of iterations for the u-update step (3.1).

(a) True (b) FBP

(c) Network (d) aNETT

Fig. 3.1: Reconstruction from simulated data.

3.3. Numerical results

The first case we consider is the case of noise-free data. Fig-
ure 3.1 shows the FBP reconstruction uFBP = K](y) and the
reconstruction with the full network upost = N(uFBP) where
N is defined as above and the aNETT reconstruction uaNETT.
Comparing the results we see that the output of the problem
adapted network upost and the aNETT output uaNETT are vi-
sually identical. This is because, the test image u is close
to the training data and therefore the considered training pro-
cedure implies that upost is close to minimizer of the sparse
aNETT. In comparison to the FBP we see that the aNETT
was able to completely remove all the artefacts and yields an
almost perfect reconstruction.

To simulate noisy data we add 5 % Gaussian noise to the
measurement data, i.e. we use yδ = y + 0.05 · ȳ · δ where ȳ
is the mean of the data and δ is a standard normal distributed
noise term. Reconstructions using FBP, post-processing and
the sparse aNETT are shown in Figure 3.2. We enhance



(a) True (b) FBP

(c) Network (d) aNETT

Fig. 3.2: Reconstruction from simulated data with 5 % Gaus-
sian noise. The contrast is enhanced to emphasize the differ-
ence in the reconstructions.

the contrast in these images by a factor of c = 1.7 using
the Python Pillow library [16] to make the differences more
clearly visible. The post-processing reconstruction shows
some noise-like structure on parts where the image should be
mostly constant, e.g. in and around the orange square. We
hypothesize that these noise like structures occur because the
problem adapted network U has not been trained with noise
in the data domain and hence has difficulties in reconstructing
these. While we could add this to the training the networks
would then likely fail on different noise models, e.g. Poisson
noise. Comparing this to the aNETT we see that this noise-
like structure has been greatly reduced and we have to rely
more on the sparsifying term of the regularization method to
get noise-free reconstructions.

3.4. Robustness to adversarial attack

One particular advantage of aNETT over post-processing is
the increased robustness with respect to the type of image to
be reconstructed. To highlight this advantage, as illustrated in
the top left image in Figure 3.3 we add a high intensity disc
to the CT image shown in 3.1. The disc represents a clear low
complexity structure and its accurate reconstruction should be
easily possible.

Figure 3.3 shows the reconstructions using the FBP, the
post-processing network and the aNETT. Taking a look at the
zoomed in square in these images we see that FBP well recon-
structs the circle. The post-processing network output, how-

(a) True (b) FBP

(c) Network (d) aNETT

Fig. 3.3: Reconstruction from data with additional structure.

ever, has some dark spots close to the circle and generally
shows data-inconsistent behaviour around the circle. On the
other hand, using the aNETT we see that these problems do
not occur. This improved accuracy is because aNETT takes
into account the given data even for images different form the
training data.

4. DISCUSSION

In this paper we introduced the sparse aNETT which is a
sparse reconstruction framework using a learned regulariza-
tion term and founded on a solid mathematical fundament.
As we have shown in our numerical experiments, the aNETT
shows results similar to a post processing network in the
case of noise-free data phantoms close to the training data.
However, thanks to included data consistency, the aNETT ap-
proach can much better deal with unseen phantom structure.
While the chosen simple example might look artificial, it sug-
gests that similar effects occur for more complex structures in
a real scenario. When considering the case of noisy data, the
aNETT is able to leverage the sparsifying term and increase
robustness with respect to noise.

While the aNETT gives an overall more robust and stable
reconstruction method, there is currently one major downside.
Namely, our proposed approach relies on an iterative min-
imization scheme and is therefore substantially slower than
the reconstruction by a post-processing network. Therefore
the design of numerical schemes for minimizing the sparse
aNETT functional is a main step of future research. Further,



comparisons with different reconstruction methods including
network cascades [17, 18], variational and iterative networks
[5, 19, 20] and null space networks [21] in future work.
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