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Unsupervised Adaptive Neural Network
Regularization for Accelerated Radial Cine MRI

Andreas Kofler, Marc Dewey, Tobias Schaeffter, Christoph Kolbitsch and Markus Haltmeier

Abstract—In this work, we propose an iterative reconstruction
scheme (ALONE - Adaptive Learning Of NEtworks) for 2D radial
cine MRI based on ground truth-free unsupervised learning of
shallow convolutional neural networks. The network is trained to
approximate patches of the current estimate of the solution dur-
ing the reconstruction. By imposing a shallow network topology
and constraining the L2-norm of the learned filters, the network’s
representation power is limited in order not to be able to recover
noise. Therefore, the network can be interpreted to perform a
low dimensional approximation of the patches for stabilizing
the inversion process. We compare the proposed reconstruction
scheme to two ground truth-free reconstruction methods, namely
a well known Total Variation (TV) minimization and an unsuper-
vised adaptive Dictionary Learning (DIC) method. The proposed
method outperforms both methods with respect to all reported
quantitative measures. Further, in contrast to DIC, where the
sparse approximation of the patches involves the solution of a
complex optimization problem, ALONE only requires a forward
pass of all patches through the shallow network and therefore
significantly accelerates the reconstruction.

Index Terms—Neural Networks, Unsupervised Learning, Inverse
Problems, Dynamic MRI, Image Processing, Compressed Sens-
ing, Iterative Reconstruction

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a widely used and
indispensable medical tool for the non-invasive assessment of
various diseases. For example, dynamic cardiac MRI, allows
for the assessment of the cardiac function. Thereby, a certain
number of cardiac phases is obtained.
However, MRI is well-known to suffer from relatively long
acquisition times which for example limit the achievable
temporal resolution which is required for a proper diagnosis.
Therefore, in order to accelerate the measurement process, dif-
ferent techniques have emerged in field of MRI. For example,
Parallel Imaging [1], [2] allows the acceleration of the data-
acquisition process as solution implemented on a hardware
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level. In addition, to further accelerate the acquisition process,
instead of acquiring the full k-space data in Fourier-domain,
undersampling schemes have been extensively investigated in
the literature.
Compressed Sensing theory [3], [4] delivers theoretical guar-
antees and error bounds on the the signal-recovery from a
set of random measurements. However, randomly sampling k-
space data is challenging from a technical point of view and
therefore, different undersampling schemes have been investi-
gated in the literature, [5], [6]. In particular, radial undersam-
pling has the advantages of oversampling the center of k-space
which contains the Fourier-coefficients corresponding to the
basis functions with lower frequencies. As most physiological
motions are smooth (e.g. heart contraction), radial undersam-
pling has been reported to be particularly suitable for dynamic
cine MRI applications. When undersampling k-space data, the
underlying inverse problem becomes an underdetermined one
and no unique solution exists. Therefore, several regularization
techniques have been proposed in the past, either based on
hand-crafted priors, e.g. Total Variation (TV)-minimization
[7], or regularizations based on information learned from data,
e.g. Dictionary Learning [8], [9], [10].
Recently, Neural Networks (NNs) have been widely ap-
plied within the field of inverse problems. Most commonly,
the convolutional NNs (CNNs) are either applied as post-
processing methods to reduce artefacts or denoise images,
see for example [11], [12], [13], [14] or employed in so-
called iterative or cascaded neural networks [15], [16], [17],
[18], [19]. In the latter, the network architectures consist of
CNNs as well as layers containing the forward and the adjoint
operators which are used to ensure that the output of the
CNNs match the acquired raw data. However, most methods
based on CNNs nowadays are based on supervised learning
(SL), i.e. on the implicit assumption of the availability of a
large enough dataset of pairs. The literature in which CNNs
using Unsupervised Learning (UL) are applied, is highly
under-represented. In this work, we propose a method for
image reconstruction in undersampled 2D radial cine MRI
using an adaptive unsupervised learning approach, where the
regularization is learned during the reconstruction process. Let
AI : CN → Cm be the undersampled dynamic radial cine
MRI forward operator, yI ' AIx the available k-space data
of the unknown image x. Let Ej : CN → Cd denote the
operator that extracts the j-th patch and Φθ : Cd → Cd a
neural network (see Section II-A for precise formulations).

ar
X

iv
:2

00
2.

03
82

0v
1 

 [
ee

ss
.I

V
] 

 1
0 

Fe
b 

20
20



2

The proposed approach is based on minimizing the functional

RyI ,λ(x, θ) , 1

2
‖AIx− yI‖22

+
λ

2

p∑

j=1

‖Ej(x)−Φθ

(
Ej(x)

)
‖22 + Ω(θ) (1)

jointly over x ∈ X and the set of trainable parameters θ ∈ Rq .
The term

∑p
j=1 ‖Ej(x) − Φθ

(
Ej(x)

)
‖22 acts as regularizer

defined by a neural network that is adapted to the specific
data, i.e. all the available image-patches, and Ω is a penalty
that prevents overfitting of the network to noise.
In order to minimize (1), we propose an iterative minimization
procedure (ALONE- Adaptive Learning Of NEtworks) that
performs minimization steps in x and θ in an alternating
manner. The update step of the network parameters amounts to
network training on patches of the current iterates. Therefore
the network is trained in a completely unsupervised manner
without needing to rely on ground truth image data. As we
shall demonstrate, ALONE can be used with rather small patch
size and shallow convolutional neural networks. As a result,
ALONE is numerically efficient, comes without any preceding
training phase and does not require artefact-free ground truth
data. To the best of our knowledge, we are not aware of
any CNN-based image reconstruction method sharing similar
features.
The rest of the paper is structured as follows. In Section
II, the inverse problem as well the proposed reconstruction
algorithm are formally introduced and discussed. In Section
III, we introduce the quantitative measures which are used
to evaluate the performance of our method. We compare it
to the well-known TV-minimization approach, a dictionary
learning-based approach and a method using previously trained
CNNs to generate priors which are then used in an iterative
reconstruction. We then conclude the work with a discussion
and some conclusions in Section IV and V. Note that while
we focus our presentation on dynamic radial MRI, we point
out that the proposed framework can be used for general 2D
or 3D image reconstruction problems as well.

II. PROPOSED RECONSTRUCTION FRAMEWORK

In this section, we give a precise problem formulation and
introduce the proposed unsupervised adaptive deep neural
network based reconstruction framework.

A. Problem Formulation

We consider the problem given by

AIx = yI , (2)

where the forward operator AI is given by the composition
SI ◦ A, of a binary mask SI and the A the (discretized)
2D frame-wise Fourier-encoding operator which samples the
k-space data along radial lines. More precisely, the radial
trajectories are chosen according to the golden-angle radial

method [20], [21]. The coefficients are assumed to be enu-
merated by a set of indices I ⊂ J = {1, . . . , Nrad} with
|I| , m < Nrad which corresponds to a subset of all Nrad

Fourier coefficients that could be sampled. The number Nrad

is more precisely specified by the MR-acquisition parameters,
i.e. by the number of radial trajectories, the number of receiver
coils, the number of acquired cardiac phases, etc. For further
details about a possible implementation of the radial Fourier-
encoding operator, we refer to [22].
The vector yI ∈ Cm contains the undersampled k-space data
and the goal is to reconstruct a complex-valued 3D image
x ∈ CN with N = Nx×Ny×Nt from the measurements yI .
Due to the application of the binary mask SI , the Nyquist
criterion is violated and the direct reconstruction from the
measured data yields images which are contaminated by
artefacts . Addressing the undersampling issue requires the use
of proper regularization techniques which exploit structure in
the manifolds of potential solutions to provide high quality
and aliasing artefact-free results.
In the following, for convenience, we write

∥∥E(x)−Φθ

(
E(x)

)∥∥2
2
,

p∑

j=1

‖Ej(x)−Φθ

(
Ej(x)

)
‖22

E(x) ,
(
E1(x), . . . ,Ep(x)

)

Φθ

(
E(x)

)
,
(
Φθ

(
E1(x)

)
, . . . ,Φθ

(
Ep(x)

))
.

Here, Ej : CN → Cd for j = 1, . . . , p is the operator
which extracts the j-th 3D patch (i.e. a small sub-portion
of the image) from an image x, Φθ : Cd → Cd is a neural
network with trainable parameters θ ∈ Rq operating on the
patches. The number p results from the shape of the patches
and the strides used to extract the patches. As presented in
the introduction, we approach the reconstruction problem as
finding a regularized solution x ∈ CN by jointly minimizing
(1) over x ∈ CN and θ ∈ Rq . Using the above introduced
notation, this amounts to the optimization problem

RyI ,λ(x, θ) =
1

2
‖AIx− yI‖22

+
λ

2

∥∥E(x)−Φθ

(
E(x)

)∥∥2
2

+ Ω(θ)→ min
x,θ

. (3)

Here, Ω denotes a regularization imposed on the parameter set
Rq . It limits the capacity of the network Φθ such that it does
not adapt to image noise. In order to minimize (1) we propose
an alternating minimization algorithm described below.

B. Proposed Reconstruction Algorithm

We begin the reconstruction process by applying the adjoint
operator to the measured data and obtaining an initial guess
of the solution xI , AH

I yI . Then, we proceed by alternating
between the following minimization steps (R1) and (R2) with
respect to x and θ, respectively.
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(R1) Network update: We first update the set of parameters
θ ∈ Rq . For this purpose, we fix x ∈ CN and solve

Lx,yI ,λ(θ) , λ

2

p∑

j=1

‖Ej(x)−Φθ

(
Ej(x)

)
‖22

+ Ω(θ)→ min
θ

. (4)

Minimizing the loss function Lx,yI ,λ(θ) clearly corresponds to
training the network Φθ on a dataset of pairs of patches which
are extracted from the current image estimate x. The aim of the
network is to reproduce the relevant (low-dimensional) infor-
mation contained in the patches Ej(x) and discard the (high-
dimensional) noise-like artefacts. Therefore, for each patch,
the network can be interpreted to perform a low-dimensional
approximation of the patches. In practice, problem (4) can
be efficiently solved by employing state-of-the-art non-linear
optimization routines, e.g, the ADAM optimizer [23].

(R2) Reconstruction update: After having obtained an esti-
mate for θ, we set zj = Φθ

(
Ej(x)

)
∈ Cd for any patch and

and update the image estimate x ∈ CN by solving

Lθ,yI ,λ(x) , 1

2
‖AIx− yI‖22

+
λ

2

p∑

j=1

‖Ej(x)− zj‖22 → min
x

. (5)

The optimization problem (5) is quadratic and hence can be
solved efficiently. More precisely, according to Fermat’s rule,
x solves (5) if and only if it satisfies the linear optimality
condition

0 = ∇xLθ,yI ,λ(x) = Hx− c , (6)

with

H , AH
I AI + λ

p∑

j=1

ET
j Ej , (7)

c , xI + λ

p∑

j=1

ET
j (zj). (8)

If the operator A is an isometry, e.g. when the full data
acquisition takes place using a single-coil and sampling along
a Cartesian grid, it holds ‖Ax‖2 = ‖x‖2 for all x and,
consequently, problem (5) has an analytic solution. It is given
by performing a linear combination of the available k-space
data yI and the one estimated by CNN-approximation and
then subsequently applying the inverse operator, i.e.

x∗ = AH
( λ

1 + λ
yI + ΛA

p∑

j=1

ET
j (zj)

)
, (9)

where the diagonal operator Λ accounts for proper weighting
of the k-space data; see [8] for a detailed derivation of (9). In
the general case, the solution of problem (5) can be obtained
by solving the linear matrix equation Hx = c. The system
Hx = c can be efficiently solved by means of any iterative
scheme. Due to the symmetric structure of the operator H, we
can apply, for example, the pre-conditioned conjugate gradient
method (PCG) [24].

Figure 1. Reconstruction algorithm ALONE. Network update: from the
current image estimate xk , 3D patches are extracted and used for training
the CNN Φθ in an unsupervised manner. Then, after training, all patches
are processed using the CNN Φθ and reassembled to obtain a regularized
solution Φθ(xk). The regularized solution is then used in a reconstruction
update step, which updates the image estimate using PCG.

Algorithm 1 Proposed ALONE algorithm
Input: Initialization x0 = AH

I yI
Parameters: λ > 0, iteration number T > 0, accuracy ε ≥ 0
Output: reconstructed image xreco

1: k ← 0
2: ek ←∞
3: while k ≤ T and ek > ε do
4: θk ← arg minθ Lxk,yI ,λ(θ)
5: ∀j : zk,j ← Φθk

(
Ej(xk)

)

6: ck ← xI + λ
∑p
j=1 ET

j (zk,j)
7: xk+1 ← arg minx Lθk,yI ,λ(x) by solving Hx = ck
8: ek+1 ← ‖xk+1 − xk‖22/‖xk‖22
9: k ← k + 1

10: end while
11: xreco ← xk

After having obtained the solutions to problem (4) and (5),
we repeat the procedure until a pre-defined stopping criterion
is fulfilled. Let (xk)k∈N be the sequence of reconstructions
obtained as just described. We stop the iteration either if the
relative change of the newly obtained solution xk+1 is small
enough, i.e. ‖xk+1 − xk‖22/‖xk‖22 < ε for some ε ≥ 0 or
if a chosen maximal number of iterations T > 0 has been
performed. Algorithm 1 summarizes the just described steps,
which we name ALONE (Adaptive Learning Of NEtworks)
reconstruction algorithm. Figure 1 shows an illustration of the
Algorithm.
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III. EXPERIMENTS

A. Dataset and Evaluation Metrics

For the evaluation of our proposed method, we used a dataset
of four patients for which we acquired 2D cine MRI image
sequences. The image sequences have an in-plane number of
pixels of Nx × Ny = 320 × 320 and a number of cardiac
phases of Nt = 30. For two of the patients, Nz = 12 different
slices were obtained, while for the resting two patients, we
could only acquire Nz = 6 slices due to restricted respiratory
capabilities. Thus, our dataset consists of a set of 36 two-
dimensional cine MR image sequences. In order to quantita-
tively assess the performance of our method, we reconstructed
all the 2D cine MR images using kt-SENSE [25], [21] using
Nϕ = 3400 radial lines. Then, from the obtained image se-
quences we retrospectively generated radially acquired k-space
data by only sampling along Nϕ = 1130 radial trajectories.
More precisely, in our case, the operator AI is given by AI =
diag(SI , . . . ,SI) ◦ diag(A, . . . ,A) ◦ [C1, . . . ,Cnc ]

T, where
Ci is the i-th coil-sensitivity map and nc = 12 and, again,
A is the frame-wise radial Fourier encoding operator. Note
that due to the used radial sampling pattern, sampling along
Nϕ = 3400 spokes already corresponds to an undersampling
factor of ∼ 3. Therefore, acquiring k-space data along only
Nϕ = 1130 corresponds to an acceleration factor of ∼ 9.
We assessed the quality of our obtained reconstructions by
comparing them to the kt-SENSE reconstructions obtained
using Nϕ = 3400 radial spokes. For the evaluation, we
used the following quantitative measures: peak signal-to-
noise ratio (PSNR), normalized root mean squared error
(NRMSE), the structural similarity index measure (SSIM) and
the Haar wavelet-based perceptual similarity measure (HPSI)
[26]. Since the field of view is quite large and image sequences
contain a noticeable portion of background which is irrelevant
for diagnostic purposes, before calculating the statistics, we
cropped all the image sequences to Nx × Ny × Nt = 160 ×
160×30 using a symmetric cut-off of 80 in x- and y-direction.

B. Network Architecture and Training

Here, we briefly describe the network architecture used for all
the experiments. The CNN is shown in Figure 2. It consists of
a three-layers CNN with only one hidden layer. The input of
the CNN is a patch Ej(x) which is extracted from the current
estimate of the image. Since the images are complex-valued
we represent the patches using two-channels. The image patch
is passed through a 3×3×3-convolutional layer with K filters,
followed by a voxel-wise application of the ReLU activation
function. Then, from the feature maps a complex-valued patch
is obtained by applying a 1 × 1 × 1-convolutional layer with
the identity as activation function. Therefore, the output patch
corresponds to a learned linear combination of the extracted
K feature maps which are learned by the K filters.
Intuitively speaking, the network Φθ is trained to perform
a learned dimensionality reduction of the 3D patches which
are supposed to lie on a lower dimensional manifold. Sim-
ilar to dictionary learning, where signals are represented as

sparse combinations of elements of an overcomplete basis, our
method performs a dimensionality reduction representing each
3D patch as a linear combination of last extracted feature maps
which depend on the learned K filters. However, in contrast to
dictionary learning, where, once the dictionary is learned, the
correspondent support of the signals has to be calculated by
some sparse coding algorithm, our method extracts K filters
which can be globally used for all the patches.
Since the network Φθ is trained in an unsupervised manner
on the patches of the current image estimate, the network’s
representation power has to be constrained in order make it a
proper regularization. The first restriction is directly given by
the fact that the network is very shallow and only contains
one hidden layer. Second, the number of learned filters is
chosen to be quite small, for example K = 16. Further, while
training the network, a further regularization Ω(θ) is included
in the loss function. We choose to bound the L2-norm of the
learned kernels, i.e. Ω(θ) =

∑K
k=1 ‖fk‖22, where fk is the k-th

convolutional filter.

Figure 2. The shallow network used in the experiments. The input is a
complex-valued 3D patch which is extracted from the image sequence. Since
the data is complex-valued, we use two channels to represent real- and
imaginary part, respectively. The number of learned filters is K.

For the following experiments, we used a total number of T =
25 iterations of ALONE. For each iteration in the ALONE
algorithm 1, the number of back-propagations for training the
network Φθ to learn to patch-wise approximate the current
image estimate was 400. The patch-size was chosen to be
32× 32× 4. Network training was carried out by minimizing
the loss function Lx,yI ,λ(θ) using the Adam optimizer [23]
with a learning rate of 0.001. Further, before training, all input
patches were normalized by subtracting the mean and dividing
the patch by the standard deviation. For the reassembling of the
patches, the normalization is reversed after having processed
them with the network Φθ. We set the number of learned
filters to K = 16 and used the L2-norm of the learned kernels
as parameter regularization Ω(θ) used in (4). When given ck,
the system Hx = ck was solved by performing niter = 4
iterations of PCG.

C. Comparison to Other Iterative Methods

In this Section, we compare our proposed reconstruction
method to the well known total variation-minimization algo-
rithm [27] which has been successfully applied to 2D cine
MRI [7] and to an iterative reconstruction algorithm based on
learned dictionaries [9], [10], which we abbreviate by TV and
DIC, respectively. Note that the methods in [9] and [10] further
include a total variation penalty term in the formulation of the
reconstruction problem which was reported to further increase
the image quality of the reconstruction. However, in order to
better compare the effect of the differently learned components
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of the reconstruction algorithms, we neglect the TV-penalty
term for the dictionary learning-based reconstruction. Figure
4 shows an example of results obtained by the three different
methods.

1) Total Variation-Minimization: Our first method of compar-
ison is the well known TV-minimization-based reconstruction,
see for example [7] or [28] and [9], in the case the dictionary
learning-based regularization term is neglected. The recon-
struction problem is formulated as

min
x

1

2
‖AIx− yI‖22 +

λ

2
‖Gx‖1, (10)

where G denotes the discretized version of the isotropic first
order finite differences filter in all three dimensions. Problem
(10) is solved by ADMM as in [9], by introducing an auxiliary
variable z and alternatively solving for z and x. For updating
z, an iterative shrinkage method is used, see [27]. Updating
x corresponds to solving a problem which is linear in x
and therefore to solving a system of linear equations, for
which we used the pre-conditioned conjugate gradient method
(PCG). We used a total number of niter = 16 iterations for
ADMM, where z is updated using one iteration of the iterative
shrinkage method and the linear system for the second sub-
problem for updating x is solved by niter = 4 iterations of
PCG.

2) Dictionary Learning-based Regularization: The DIC
method for comparison is given by the iterative reconstruction
scheme using spatio-temporal learned dictionaries as regular-
izers presented in [9], [10]. We used the method by neglecting
the TV-penalty term. This means the reconstruction problem
is formulated as

min
x,D,{γj}j

‖AIx− yI‖22 +
λ

2

p∑

j=1

‖Ej(x)−Dγj‖22, (11)

where Ej is again a patch-extraction operator, D is a dictio-
nary and {γj}j is a family of sparse codes. Problem (11)
is also solved via ADMM by alternating the update with
respect to x and the dictionary D as well as the sparse codes
γj . For learning the dictionary from the current estimate of
the solution x, we performed 10 iterations of the iterative
thresholding an K residual means method[29], which is a
faster alternative to K-SVD [30], while for obtaining the
sparse codes, we used orthogonal matching pursuit [31]. As
in [9] and [10], the dictionary was trained on patches of shape
4 × 4 × 4. However, in contrast to the original works, we
found a sparsity level S = 16 and a number of atoms of
K = d = 64 = 4 · 4 · 4 to deliver more accurate results. This
can most probably be related to the fact that, in contrast to [10]
and [9], our k-space data is acquired along radial trajectories
and the undersampling artefacts have an inherently different
structure from the ones obtained by Cartesian sampling.

D. Results

Table I summarizes the results obtained by the two just
introduced methods of comparison and our proposed approach.
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Figure 3. Convergence behaviour of the different learning-based methods with
respect to the reported quantitative measures. The solid lines correspond to the
mean value of the statistics calculated over the complete dataset. The dashed
lines denote given by the average measured ± the corresponding standard
deviation.

The Table was obtained by averaging the measures over all
Nz = 36 slices of the all four patients which we recon-
structed for all methods. The first column shows the measures
corresponding to the NUFFT-reconstruction which is directly
obtained from the measured k-space data. The second column
shows the results obtained by the TV-minimization approach
which increases image quality with respect to all reported
measures. The DIC method and our approach further improve
the image quality as can be seen by a further increase of
SSIM, HPSI and PSNR and decrease of NRMSE. However,
our proposed reconstruction considerably outperforms DIC by
≈ 5.3 dB in terms of PSNR, ≈ 7% in terms of SSIM and
0.024 in terms of NRMSE. The increase of HPSI on the other
hand, is relatively small.
Since our proposed method and the DIC method approach

are similar in the sense that the regularization is adaptively
learned from the current image estimate during the iterative
reconstruction, we investigated the convergence behaviour of
the two methods. Figure 3 shows different curves for the differ-
ent reported quantitative measures during the reconstruction.
The solid lines correspond to the mean value of the measure
averaged over the complete dataset of Nz = 36 slices. Further,
the dashed lines show the curves given by the mean ± the
standard deviation of the considered measure. The measures
were calculated after having solved the system Hx = ck,
where ck is given as in (8) for our method. For the DIC
method, ck is given as in (8) but with zj given as the sparse
approximation of all patches of the current image estimate, i.e.
zj = Dγj for all j. Note that, while the DIC methd reaches
a point of stagnation in terms of NRMSE decrease (which
naturally corresponds the measure which is minimized during
the iterative reconstruction) and PSNR between the fifth and
tenth iteration, our proposed method ALONE seems to still
have the potential to further improve image image quality, as
neither NRMSE nor PSNR or SSIM have reached a point of
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure 4. Results obtained by different methods based on iterative reconstruction. NUFFT reconstruction from Nϕ = 1130 radial spokes (a), TV minimization-
based regularization (b), DIC-based regularization (c), proposed regularization based on shallow CNNs (d), kt-SENSE reconstruction from Nϕ = 3400 radial
spokes (e).

saturation. Further, note how for all measures except for PSNR
the standard deviation of the measure becomes smaller during
the reconstruction which indicates an improved stability of the
algorithm compared to the DIC method.

Table I
COMPARISON ALONE WITH DIFFERENT ITERATIVE METHODS USING

DIFFERENT REGULARIZATIONS.

NUFFT TV DIC ALONE

PSNR 35.496 40.412 42.858 48.122

SSIM 0.626 0.838 0.895 0.962

HPSI 0.955 0.981 0.991 0.998

NRMSE 0.137 0.077 0.058 0.033

IV. DISCUSSION

In this work, we have presented a simple yet powerful method
named ALONE (Adaptive Learning of NEtworks) for regular-
ization for 2D undersampled radial cine MRI. The method is
based on the adaptive regularization of the solution given in
the form of a shallow CNN which is trained in an unsupervised
manner during the reconstruction.

We have compared ALONE to a well-known total variation-
minimization approach (TV) as well as to another learning-
based method which employs an adaptive regularization based
on dictionary learning (DIC). Our method outperforms the TV-
and the DIC method with respect to all reported measures.
Further, we investigated the effect of the adaptive regulariza-
tion for both learning-based methods during the reconstruction.
ALONE shows an improved and more stable convergence
behaviour during the reconstruction which is visible in terms
of a smaller standard deviation of NRMSE, SSIM and HPSI
during the reconstruction.
Further, our proposed approach ALONE has one significant
advantage over the dictionary learning-based method DIC,
which is the acceleration of the regularization step during
the reconstruction. Note from (11), that the reconstruction
problem is formulated as joint minimization problem over the
variables x, D and {γj}. In contrast, from (1) we see that
our formulation only requires the update of two variables.
While for DIC, training the dictionary D is achieved in
a relatively short time, the computational bottleneck of the
approach is finding the sparse codes γj of the patches Ej(x)
with respect to the dictionary D. This is because obtaining
γj involves solving an optimization problem for all j, namely
the sparse coding problem. On the other hand, the sparse-



7

approximation counterpart in our reconstruction scheme is
given by calculating zj = Φθ

(
Ej(x)

)
, i.e. by performing a

forward pass of the patches through the (shallow) CNN. Table
II shows a direct comparison of the corresponding counterparts
for the DIC method and our proposed reconstruction scheme
ALONE. The time in the Table refers to the average time
needed for obtaining the regularized image, i.e. for the patch-
wise sparse approximation using OMP for the DIC method,
and for obtaining ck for our method ALONE by performing a
forward pass of all patches. Therefore, the total cost of the
regularization can be estimated by multiplying the average
time by the number of iterations T one sets before the
reconstruction.

Table II
COMPARISON OF THE DIFFERENT COMPONENTS FOR THE

REGULARIZATION WITH DICTIONARY LEARNING AND OUR PROPOSED
METHOD ALONE.

DIC ALONE

Patches size 4× 4× 4 32× 32× 4

Strides 2× 2× 2 16× 16× 2

Number of patches 353 934 5 054

Training ITKrM Back-propagation
Time ≈ 10 s ≈ 6 s

Patches approximation OMP Forward pass
Time ≈ 7 m ≈ 0.3 s

Data type of patches R C

In [9], it was reported that for the DIC method, us-
ing real-valued dictionaries for the sparse approximation
of the complex-valued images outperformed the usage of
complex-valued dictionaries. Note that this adds another (non-
negligible) factor of two to the most computational demanding
component of the reconstruction, i.e. the sparse coding of all
patches. In our proposed reconstruction scheme ALONE, in
contrast, there is no noticeable difference between using a real-
valued and a complex-valued CNN in terms of speed, as the
additional increase of complexity is negligible. For ALONE,
training the CNN on complex-valued patches represented
by two input-channels yielded more accurate reconstruction.
Since iterative reconstruction is time consuming, we only
reconstructed the image data for only one of the four patients
with Nz = 12 slices by employing a CNN-based regularization
which is learned from the real-valued patches. Similarly to [9],
the complex-valued patches were then obtained by performing
a forward pass of the real and the imaginary part of the patches
using the same CNN. Figure 5 shows an example of results
obtained with ALONE using a real-valued and complex-valued
CNN, where we see that the complex-valued CNN improved
the results. Further, from the point-wise error images and the
yellow arrows, we see that DIC tends to slightly smooth image
details, while ALONE well preserves edges. Table III shows
the obtained results for one of the patients for the real- and
the complex version of our proposed ALONE reconstruction
as well as for the DIC method.

(a)

(b)

(c)

(d)

(e) (f)

Figure 5. Results obtained by the NUFFT reconstruction from Nϕ = 1130
radial spokes (a), with the DIC method (b), with ALONE by using a complex-
valued CNN Φθ (c), with ALONE by using a real-valued CNN Φθ (d) and
the reference kt-SENSE reconstruction obtained from Nϕ = 3400 radial
spokes.

Table III
COMPARISON OF ALONE USING A REAL-VALUED AND

COMPLEX-VALUED CNN Φθ TO DIC USING REAL VALUED DICTIONARIES.

DIC (R) ALONE (R) ALONE (C)

PSNR 40.623 43.669 45.505

SSIM 0.868 0.926 0.950

HPSI 0.994 0.998 0.999

NRMSE 0.059 0.043 0.035
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Another advantage of using ALONE is that we can use
relatively large patch-sizes and strides without observing
artefacts which could be attributed to the overlapping of
patches. The reason for that most probably lies in the fact
that the network Φθ is a CNN. Since CNNs are well-known
to be translation-equivariant, using larger strides for the
regularization of the solution does not lead to block-artefacts.
In contrast, since the approximation using a learned dictionary
can be identified with a single fully-connected layer taking the
sparse code γj as an input, the operation is not translation-
equivariant in general and therefore, relatively small strides
need to be used in order to avoid patchy artefacts. Compared
to the DIC method, in our proposed method ALONE, the
number of patches needed to be processed is lower, larger
strides can be used and the patch-wise approximation is faster.
In sum, this results in an acceleration of the regularization
step by several orders of magnitude. Therefore, for ALONE,
the overall cost of the reconstruction is dominated by the
application of the forward and adjoint operators as in any
other reconstruction algorithm.
Even if the regularization of the solution in each iteration
is highly accelerated, the main limitation of the method
clearly remains the relatively high number of iterations
needed to perform the reconstruction. Further, the strength
of the regularization λ has to be chosen a priori which
might be problem-dependent. However, note that the usage
of cascaded networks, which can be thought of unrolled
iterative schemes is prohibitive for large-scale problems as the
one considered in this work. Opposed to other works using
cascaded networks for the MR image reconstruction task, see
e.g. [18], [17], [19], our forward operator AI is given by a
radial Fourier encoding operator with nc = 12 coils and does
not allow the construction of iterative neural networks due to
its computational complexity. For a more detailed discussion
about the issue and a possible way to overcome the problem,
we refer to [14].

V. CONCLUSION

In this work we have presented a new reconstruction algorithm
named for accelerated 2D radial cine MRI. The reconstruction
algorithm involves a patch-wise regularization which is adap-
tively learned during the reconstruction in an unsupervised
manner. Therefore, the method does not require having access
to large training datasets with ground truth data.
We have compared our reconstruction method to a total
variation-minimization method and to a dictionary learning-
based method using adaptively trained dictionaries. Our
method outperformed both methods with respect to all cho-
sen reported measures. Further, compared to the dictionary
learning-based method, it accelerates the reconstruction by
orders of magnitude since it highly reduces the regularization
step needed during the reconstruction.
While in this work we have applied our reconstruction method
ALONE to 2D cardiac radial cine MRI, the method’s formu-
lation is held general and therefore we expect ALONE to be
applicable to other imaging modalities as well.
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APPENDIX
MATHEMATICAL ANALYSIS OF ALONE

In this appendix we present some theoretical results for
Algorithm 1 (ALONE). For that purpose, we assume absence
of noise in the measurements and note that ALONE is of the
fixed point form

θk ∈ arg min
θ

λ

2
‖E(xk)−ΦθE(xk)‖22 + Ω(θ) ,

xk+1 ∈ (AH
I AI + λETE)−1(AH

I yI + λETΦθkExk) ,

with initialization x0 = AH
I yI .

A. Characterization of fixed points

We first define the natural underlying prior information for
solutions of (2) induced by ALONE.

Definiton A.1 (θ∗-adapted solution): For any θ∗ ∈ Rq , we call
x∗ ∈ CN a θ∗-adapted solution of (2), if

AIx
∗ = yI (12)

Ex∗ = Φθ∗Ex∗ (13)

We will show that θ∗-adapted solutions are fixed points of
the ALONE algorithm as well as partial minimizers of Rλ,yI
defined next.

Definiton A.2 (Fixed points): The pair (θ∗,x∗) ∈ CN ×Rq is
called fixed point of ALONE if

θ∗ ∈ arg min
θ

λ

2
‖Ex∗ −Φθ(Ex∗)‖2E + Ω(θ∗) (14)

x∗ ∈ (AH
I AI + λETE)−1(AH

I yI + λETΦθ∗Ex∗) . (15)

Definiton A.3 (Partial minimizers): The pair (x∗, θ∗) ∈ CN ×
Rq is called a partial minimizer of Rλ,yI if

∀x ∈ CN : Rλ,yI (x∗, θ∗) ≤ Rλ,yI (x, θ∗) (16)
∀θ ∈ Rq : Rλ,yI (x∗, θ∗) ≤ Rλ,yI (x∗, θ) (17)

We have the following result relating θ∗-adapted solutions of
inverse problems of the form given in (2) to fixed points of
ALONE and partial minimizers of Rλ,yI .

Theorem A.4 (Fixed points and partial minimizers for θ∗-
adapted solutions): Let θ∗ ∈ Rq satisfy (14) and x∗ ∈ CN be
a θ∗-adapted solution of (2). Then the following hold:

(a) (θ∗,x∗) is a fixed point of ALONE.

(b) (θ∗,x∗) is a partial minimizer of Rλ,yI .
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Proof: (a) Equation (14) is satisfied by assumption. Further,
(15) is satisfied if and only if the optimality condition

0 = λ(ETEx∗ −ETΦθ∗Ex∗) + AH
I (AIx

∗ − yI)

holds. According to (12), (13) this is however the case. Hence
(θ∗,x∗) is a fixed point of ALONE.

(b) According to (12), (13) we have RyI ,λ(x∗, θ∗) = Ω(θ∗).
Consequently, for any x ∈ CN we have

RyI ,λ(x, θ∗) =
λ

2
‖Ex−Φθ∗Ex‖22

+
1

2
‖AIx− yI‖22 + Ω(θ∗) ≥ Ω(θ∗) = RyI ,λ(x∗, θ∗) .

This shows (16). Using (14), one verifies

RyI ,λ(x∗, θ) =
λ

2
‖Ex∗ −ΦθEx∗‖22 + Ω(θ)

+
1

2
‖AIx

∗ − yI‖22 ≥ RyI ,λ(x∗, θ∗) .

Hence (17) is satisfied for any θ ∈ Rq and (θ∗,x∗) is a partial
minimizer of Rλ,yI .

B. Existence and stability

Next we show that the ALONE algorithm 1 is well-defined
(iterates exist) and stable with respect to data perturbation.
For that purpose we assume that the following reasonable
conditions hold.

Assumption A.5 (Existence and stability):

(A1) AI : CN → Cm is a linear forward operator.

(A2) Rq × CN → CN : (θ,x) 7→ Φθ(x) is continuous.

(A3) ∀j ∈ {1, . . . , p} : Ej : CN → Cd is linear.

(A4) Ω: Rq → [0,∞) is continuous and coercive.

All above assumptions are naturally fulfilled in our context.
(A2) is satisfied for typical network architectures, in particular
for CNNs. (A3) is satisfied for the patch extraction operator
and, finally (A4) is satisfied for typically used regularizers
such as the Frobenius-norm or weighted `q-norms. Recall that
Ω is called coercive if Ω(θk) → ∞ if (θk)k∈N is a sequence
with ‖θk‖2 →∞.

Theorem A.6 (Existence): Algorithm 1 defines a sequence
(xk)k∈N of iterates and a sequence of parameters (θk)k∈N.

Proof: In order to show that ALONE defines sequences
(xk)k∈N, (θk)k∈N, it is sufficient to show that the functionals
Lθ,yI ,λ and Lx,yI ,λ both have at least one minimizer. Because
of (A1), (A2), the functional Lθ,yI ,λ is quadratic and nonneg-
ative and therefore has a minimizer. According to (A2) the
mapping θ 7→ Φθ(E(x)) is continuous. Together with (A4)
this implies that Lx,yI ,λ(θ) = ‖Ex−Φθ(E(x))‖22 + Ω(θ) is
continuous and coercive. Standard arguments therefore imply
the existence of minimizers. To see this, let (θk)k∈N be a se-
quence with Lx,yI ,λ(θk)→ infθ Lx,yI ,λ(θ). The coercivity of
Lx,yI ,λ implies that this sequence is bounded and therefore has

at least one convergent subsequence. The continuity implies
that the limit of the subsequence is a minimizer of Lx,yI .

Note that that the minimizer of Lθ,yI ,λ is unique if the matrix
H has full rank. For example, this is the case of ETE has full
rank. For the patch extraction operator, the full rank condition
is satisfied, provided the patches cover the whole image do-
main. However, the minimizer of Lx,yI ,λ might be non-unique
due to the non-convexity of θ 7→ ‖Ej(x) − Φθ

(
Ej(x)

)
‖22.

Therefore ALONE depends on the particular choice of the
minimizers of Lx,yI ,λ and, in general, does not define a unique
sequence.

Definiton A.7 (Sets of ALONE iterates): For any yI ∈ Cm and
any iteration index k ∈ N we denote by Bk(yI) the set of all
iterates (xk, θk) ∈ CN×Rq that are generated by the ALONE
reconstruction Algorithm 1, by choosing arbitrary minimizers
of Lx`,yI ,λ, Lθ`,yI ,λ for ` ∈ {0, . . . , k − 1}.
We next show that the sets of ALONE iterates Bk(yI) depend
stably on the inputs yI . For that purpose, we write B : Cm ⇒
CN×Rq for a multivalued mappings where B(yI) ⊂ CN×Rq
and use the following notion of stability.

Definiton A.8 (Stability of multivalued mappings): A multival-
ued mapping B : Cm ⇒ CN × Rq is called stable if for any
yI ∈ Cm and any sequence (y`I)`∈N converging to yI the
following statements hold true:

(i) (B(y`I))`∈N has at least one accumulation point.

(ii) All accumulation points of (B(y`I))`∈N are in B(yI).

Theorem A.9 (Stability of ALONE iterates): For any iteration
index k ∈ N, the set of ALONE iterates Bk is stable.

Proof: An inductive argument shows that it is sufficient verify
that x 7→ arg minθ Lθ,yI ,λ(x) is stable. For that purpose,
let (y`I)`∈N be a sequence converging to yI ∈ Cm and let
x∗ ∈ arg minLθ,yI ,λ(x), x` ∈ arg minLθ,y`I ,λ(x). Then
Lθ,y`I ,λ(x`) ≤ Lθ,y`I ,λ(x∗) and therefore

Lθ,yI ,λ(x`)

=
λ

2

∥∥Ex` − Z
∥∥2
2

+
1

2
‖AIx− yI‖22

≤ λ

2

∥∥Ex` − Z
∥∥2
2

+
∥∥AIx

` − y`I
∥∥2
2

+
∥∥yI − y`I

∥∥2
2

≤ 2Lθ,y`I ,λ(x`) +
∥∥yI − y`I

∥∥2
2

≤ 2Lθ,y`I ,λ(x∗) +
∥∥yI − y`I

∥∥2
2

≤ 4Lθ,yI ,λ(x∗) + 3
∥∥yI − y`I

∥∥2
2
.

Because
∥∥yI − y`I

∥∥
2
→ 0, this and the coercivity of Lθ,yI ,λ

show that (x`)`∈N is bounded. In particular, (x`)`∈N has at
least one accumulation point. Let (xτ(`))`∈N be a subsequence
converging to some x̂ ∈ CN . The continuity of the norm
implies

Lθ,yI ,λ(x̂) = lim
`→∞

L
θ,y

τ(`)
I ,λ

(xτ(`))

≤ lim inf
`→∞

L
θ,y

τ(`)
I ,λ

(x∗) = Lθ,yI ,λ(x∗) = inf
x
Lθ,yI ,λ(x) .
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Consequently, x̂ ∈ arg minx Lθ,yI ,λ(x).

Clearly a main theoretical questions is to show, under suitable
assumptions, convergence of ALONE to fixed points defined
by (14), (15). This turned out to be a very challenging question
that we aim to investigate in future work.
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[15] J. Adler and O. Öktem, “Solving ill-posed inverse problems using
iterative deep neural networks,” Inverse Problems, vol. 33, no. 12, p.
124007, 2017.

[16] ——, “Learned primal-dual reconstruction,” IEEE Transactions on Med-
ical Imaging, vol. 37, no. 6, pp. 1322–1332, 2018.

[17] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson,
T. Pock, and F. Knoll, “Learning a variational network for reconstruction
of accelerated mri data,” Magnetic Resonance in Medicine, vol. 79, no. 6,
pp. 3055–3071, 2018.

[18] J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert, “A
deep cascade of convolutional neural networks for dynamic mr image
reconstruction,” IEEE Transactions on Medical Imaging, vol. 37, no. 2,
pp. 491–503, 2018.

[19] C. Qin, J. Schlemper, J. Caballero, A. N. Price, J. V. Hajnal, and
D. Rueckert, “Convolutional recurrent neural networks for dynamic mr
image reconstruction,” IEEE Transactions on Medical Imaging, vol. 38,
no. 1, pp. 280–290, 2018.

[20] L. Feng, L. Axel, H. Chandarana, K. T. Block, D. K. Sodickson, and
R. Otazo, “XD-GRASP : Golden-Angle Radial MRI with Reconstruction
of Extra Motion-State Dimensions Using Compressed Sensing,” Magn.
Reson. Med., vol. 00, no. October 2014, pp. 1–14, 2015.

[21] L. Feng, M. B. Srichai, R. P. Lim, A. Harrison, W. King,
G. Adluru, E. V. R. Dibella, D. K. Sodickson, R. Otazo, and
D. Kim, “Highly accelerated real-time cardiac cine MRI using k-t
SPARSE-SENSE.” Magn. Reson. Imag., aug 2012. [Online]. Available:
http://dx.doi.org/10.1002/mrm.24440

[22] J.-M. Lin, “Python non-uniform fast fourier transform (pynufft): An
accelerated non-cartesian mri package on a heterogeneous platform
(cpu/gpu),” Journal of Imaging, vol. 4, no. 3, p. 51, 2018.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[24] M. R. Hestenes, E. Stiefel et al., “Methods of conjugate gradients for
solving linear systems,” Journal of research of the National Bureau of
Standards, vol. 49, no. 6, pp. 409–436, 1952.

[25] J. Tsao, P. Boesiger, and K. P. Pruessmann, “k-t blast and k-t sense:
dynamic mri with high frame rate exploiting spatiotemporal correla-
tions,” Magnetic Resonance in Medicine: An Official Journal of the
International Society for Magnetic Resonance in Medicine, vol. 50,
no. 5, pp. 1031–1042, 2003.

[26] R. Reisenhofer, S. Bosse, G. Kutyniok, and T. Wiegand, “A haar wavelet-
based perceptual similarity index for image quality assessment,” Signal
Processing: Image Communication, vol. 61, pp. 33–43, 2018.

[27] A. Chambolle, “Total variation minimization and a class of binary mrf
models,” in International Workshop on Energy Minimization Methods in
Computer Vision and Pattern Recognition. Springer, 2005, pp. 136–152.

[28] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[29] K. Schnass, “Convergence radius and sample complexity of itkm algo-
rithms for dictionary learning,” Applied and Computational Harmonic
Analysis, vol. 45, no. 1, pp. 22–58, 2018.

[30] M. Aharon, M. Elad, A. Bruckstein et al., “K-svd: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Transactions on Signal Processing, vol. 54, no. 11, p. 4311, 2006.

[31] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Transactions on
Information Theory, vol. 53, no. 12, pp. 4655–4666, 2007.


