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Abstract

Data assisted reconstruction algorithms, incorporating trained neural networks,
are a novel paradigm for solving inverse problems. One approach is to �rst apply a
classical reconstruction method and then apply a neural network to improve its so-
lution. Empirical evidence shows that such two-step methods provide high-quality
reconstructions, but they lack a convergence analysis. In this paper we formalize
the use of such two-step approaches with classical regularization theory. We pro-
pose data-consistent neural networks that we combine with classical regularization
methods. This yields a data-driven regularization method for which we provide a
full convergence analysis with respect to noise. Numerical simulations show that
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compared to standard two-step deep learning methods, our approach provides bet-
ter stability with respect to structural changes in the test set, while performing
similarly on test data similar to the training set. Our method provides a stable
solution of inverse problems that exploits both the known nonlinear forward model
as well as the desired solution manifold from data.

1 Introduction

Let (X; k � k) and (Y; k � k) be Banach spaces 1 and let F : D � X! Y be a continuous,
possibly nonlinear, mapping. In this paper we study the stable solution of the inverse
problem

Recover x 2 D from F(x) = y ; (1.1)

where y 2 F(D) are exact data. We are especially interested in the noisy data case
where data y� 2 Y are given with ky � y�k � �. For solving problems of this form
we introduce and analyze convergent regularization methods comprising deep neural
networks.

An inversion method for exact data is a right inverse G0 : F(D)! D for F,

8y 2 F(D) : F(G0(y)) = y : (1.2)

The inversion method G0 therefore recovers elements in G0F(D) = Fix(G0F), the set
of �xed points of G0F : D! D. We are mainly interested in the case where (1.1) is ill-
posed, where no continuous right inverse G0 exists. If noisy data y� 2 Y are given with
kF(x)� y�k � � for x 2 G0F(D), then G0(y

�) is either not well de�ned or arbitrary far
away from x. In this case one has to apply regularization methods to the data, which
are stable approximations to G0 and continuous on all of Y.

Background

Well established regularization methods are quadratic Tikhonov regularization [8, 21,
29] and iterative regularization [4, 12]. Both methods are designed to approximate
minimum norm solutions G0(y) 2 argmin fkx� x0k j F(x) = yg with �xed x0 2 X.
However, for most applications minimum norm solutions are not the desired ones. One
way to overcome this issue is by convex variational regularization [25], where one takes

G�(y
�) 2 argmin

�
1

2
kF(x)� y�k2 + �R(x) j x 2 D

�
; (1.3)

which approximate R-minimizing solutions G0(y) 2 argmin fR(x) j F(x) = yg. Here
the regularization functional R : X! [0;1] incorporates a-priori information and takes
the role of the norm. There are still several challenges related to variational regular-
ization techniques. First, computing R-minimizing solutions requires time consuming
iterative minimization schemes. Second, �nding a regularization functional that well
models solutions of interest is a di�cult issue. Typical choices such as total variation or

1You can take X and Y as �nite dimensional spaces Rn and Rq with the Euclidian norm if you are

not familiar with in�nite dimensional Banach spaces.
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the `q-norm with respect to some frame enforce strong handcrafted prior assumptions
that are often not met in practical applications. One solution for this problem was
proposed in [18, 19], where a regularization term in the form of a neural network is
learned before it is applied in the classical setting.

Recently, several deep learning methods to solve inverse problems were proposed. Some
approaches apply iterative methods, which alternate between data consitency steps
and neural network updates, [1, 22, 13, 28, 14, 7], while others aim for a fully learned
reconstruction scheme [30, 6]. Further, a popular approach for imaging problems is using
a neural network as a second step after some initial reconstruction. Several such post
processing methods have been considered in the literature [10, 11, 13, 23]. In these two-
step approaches, the reconstruction network takes the form R = ΦG where G : Y! X
maps the data to the reconstruction space (reconstruction layer or backprojection) and
Φ : X! X is a neural network (NN) whose free parameters are adjusted to the training
data. In particular, so called residual networks Φ = IdX+U, where only the residual
part U is trained [9, 11, 15, 2] show very accurate results for solving inverse problems.
Due to the huge amount of recent research in this �eld our discussion of related work
is necessarily incomplete, although we have tried to mention the foundational works.

In order to address the ill-posedness of linear inverse problems, regularizing networks
of the form R� = Φ�G� were introduced in [27, 26]. Here G� : Y! X de�nes any reg-
ularization and Φ� : X! X are trained neural networks approximating data-consistent
networks. In the linear case these networks are called nullspace networks because they
only add parts in the kernel of F as proposed in [20, 26]. In this paper we derive conver-
gence and convergence rates for data consistent network families (R�)�>0 for nonlinear
problems and provide some numerical examples.

Regularizing networks for nonlinear problems

Let G0 be any right inverse of F and (G�)�>0 a regularization of G0, for example
classical Tikhonov regularization. Let (Φ�)�>0 be a family of Lipschitz continuous
mappings Φ� : X ! X. In this paper we show that under suitable assumptions the
reconstruction networks

R� := Φ�G� : Y! X ; (1.4)

de�ne a convergent regularization method. Additionally, we derive convergence rates
(quantitative error estimates) for the reconstruction error.

A main condition for these results is that Φ�G�F converges pointwise to a network of
the form Φ0G0F where Φ0 : X ! X is data-consistent in the sense that FΦ0z = Fz
for z 2 G0F(D). The latter property implies that Φ0 preserves data consistency of
G0, meaning that if G0(y) is a solution of (1.1), then Φ0G0(y) is a solution of (1.1)
too. Hence the goal of the learned mapping Φ0 is to improve solutions of the inverse
problem, while keeping data-consistency of the initial solution. We prove that the family
of reconstruction networks (Φ�G�)�>0 is a convergent regularization method, and we
provide convergence rates.

The bene�ts of (Φ�G�)�>0 over (G�)�>0 are twofold. First, in the limit � ! 0, the
network Φ0G0F selects solutions in Φ0G0F(D) that can be trained to better re�ect the
desired image class than G0F(D). Second, for � > 0, the networks Φ� can be trained to
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undo the smoothing e�ect of G�F and thereby allow for obtaining convergence rates for
less regular elements than the original regularization method (G�)�>0. The operator
Φ0G0 can be seen as a right inverse that is learned from a suitable class of training
data.

Outline

The paper is organized as follows. In section 2 we describe the regularization of non-
linear inverse problems and we de�ne the proposed two-step data-driven regularization
method. We introduce data-consistent networks, which allow to de�ne the regular-
ization method called regularizing networks, which approximate a data-driven right
inverse. We investigate under which assumptions these networks generate a convergent
regularization method and we give examples of how such regularizing networks can be
constructed. In section 3 we present a convergence analysis and derive convergence rates
for the proposed method. Section 4 presents the mathematical description of the inverse
problems considered in the numerical simulations. These simulations are explained in
detail in section 5, after which results are shown in section 6. Additional simulation
results can be found in the appendices. The paper concludes with a short summary of
the established theory and the numerical simulations.

2 Convergence of regularizing networks

Throughout the rest of this paper, let F : D � X! Y be a continuous mapping between
Banach spaces X and Y. We study the stable solution of the inverse problem (1.1). In
this section we introduce the regularizing networks and present the convergence analysis.

2.1 Regularization of inverse problems

Let G0 : F(D)! D be any right inverse for F. If (1.1) is ill-posed and y� are noisy data
with kF(x) � y�k � �, then the reconstruction method G0(y

�) is unstable, meaning
arbitrarily far away from G0F(x) or not de�ned. To obtain meaningful approximations
of G0F(x), one has to apply regularization methods de�ned as follows.

De�nition 2.1 (Regularization method). Let (G�)�>0 be a family of continuous map-
pings G� : Y ! X. If for all x 2 G0F(D) there exists a parameter choice function
�� : (0;1)� Y! (0;1) such that

0 = lim
�!0

sup f��(�; y�) j y� 2 B�(F(x))g

0 = lim
�!0

sup fkx�G��(�;y�)(y
�)k j y� 2 B�(F(x))g ;

where B�(F(x)) is the ball with radius � around F(x), we call ((G�)�>0; �
�) a regu-

larization method for G�. If ((G�)�>0; �
�) is a regularization method for G0, we call

(G�)�>0 a regularization of G0 and �� an admissible parameter choice.

Probably the best known regularization is quadratic Tikhonov regularization in Hilbert
spaces [8]. Under the assumption that F is weakly sequentially closed, one shows that
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there exist solutions of (1.1) with minimal distance to a given point x0 2 X and that

T�;y�(x) :=
1

2
kF(x)� y�k2 +

�

2
kx� x0k

2 for x 2 D (2.1)

has at least one minimizer. We can de�ne G�(y
�) as any minimizer of T�;y� . If the

solution of (1.1) with minimal distance to x0 is unique and denoted by G0(y), then
((G�)�>0; �

�) with a parameter choice satisfying �2=�� ! 0 and �� ! 0 as � ! 0 is a
regularization method for G0 [8, 21].

Research indicates that solutions with minimal distance to a �xed initial guess x0 2 X
are too simple in many applications. The use of non-quadratic penalties has demon-
strated to often give better results. Recently, deep learning methods showed outstanding
performance. Here solutions are de�ned by a neural network that maps the given data
to a desired solution.

2.2 Data-consistent networks

The �rst ingredient for constructing regularizing two-step networks are data-consistent
networks.

De�nition 2.2 (Data-consistent network). We call Φ0 : X ! X a data-consistent net-
work if Φ0 is Lipschitz continuous and 8z 2 G0F(D) : FΦ0(z) = F(z).

In data-consistent networks, if z 2 G0F(D) is a solution of (1.1), then Φ0(z) is solution
of (1.1) too. In particular, Φ0G0 is a right inverse for F with solution set Φ0G0F(D) =
Fix(Φ0G0F). Data-consistent networks can be constructed by

Φ0(z) = Pz;0(U(z)) ; (2.2)

where U : X ! X is a Lipschitz continuous trained neural network, and Pz;0 : X ! X
a Lipschitz continuous mapping with Pz;0(x) 2 F�1(F(z)) = fx 2 D j F(x) = F(z)g.
The mapping Pz;0 can be seen as a generalized projection on F�1(F(z)). In the special
case where F is a linear mapping, Φ0(z) can be chosen as Φ0(z) = z + Pker(F)U(z),
where Pker is the projection on the kernel of F [26].

De�nition 2.3 (Regularizing networks). We call (R� : Y ! X)�>0 de�ned by R� :=
Φ� �G� a family of regularizing networks if the following hold:

(R1) (G� : Y! X)�>0 is a regularization of G0.

(R2) (Φ� : X! X)�>0 are uniformly L-Lipschitz continuous mappings.

(R3) For some data-consistent network Φ0 : X! X we have

8x 2 D : lim
�!0

Φ�G�F(x) = Φ0G0F(x) : (2.3)

In practice an important issue is to design networks that converge to a data-consistent
limiting network as the noise level goes to zero. Next we give examples for a possible
strategy to train such networks.
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Example 2.4. Let x1; : : : ; xN be training signals and yi = F(xi) and respectively

y�i the corresponding data. Further de�ne the vectors of reconstructions v :=
(v1; : : : ; vN ) and v� := (v�1 ; : : : ; v

�
N ) where vi = G0(yi) and v�i = G�(y

�
i ). The

weights of the neural network are denoted by � 2 �. We write Φ� to depict a

neural network with �xed architecture, whose weights have not yet been �xed.

(a) One possible simple approach is to take the networks Φ� := Φ0 for all � > 0,
where Φ0 is the network obtained by minimizing the functional

min
�

NX
i

kΦ�(vi)� xik
2 +R(�) : (2.4)

Here R denotes some regularization functional for the weights � that may

be used to ensure a small Lipschitz constant. Clearly, since Φ0 is Lipschitz

continuous and (G�)�>0 is a regularization method, we have the desired limit

in 2.3 for all x 2 D. Now if the data consistency is incorporated in the

network architecture, the condition (R3) is satis�ed.

(b) A more sophisticated approach is to choose the sequence of networks depend-

ing on the regularization parameter �. Here the networks Φ� are obtained

by minimizing

min
�

NX
i

kΦ�(v�i )� xik
2 +R(�):

To enforce the data consistency of the limiting network Φ0 one could either

choose the network architecture to be data-consistent, meaning 8� 2 � 8x 2
D : F(Φ�(x)) = F(x), or taking networks increasingly data-consistent of the

form

Φ�(z) = Pz;�U�(z) : (2.5)

Here U� : X ! X is a trained networks and Pz;� is a Lipschitz continu-

ous mapping with Im(Pz;�) � E�;z := fx j kF(x) � F(z)k � r(�)g with

lim�!0 r(�) = 0. Data-consistency is obtained in the limit. One example

for Pz;� is the metric projection on E�;z which is Lipschitz continuous if

E�;z is convex.

Note that in (2.5) there are no restrictions on the particular choice of the

architecture of the networks U�.

(c) Another network architecture guaranteeing data consistency is given by

Φ�(z) = Φdec (S0 + �S1)Φenc(z) : (2.6)

Here Φenc and Φdec denote an encoder and decoder network respectively, S0

denotes an �-independent network and S1 denotes a network that is allowed

to depend on �.

2.3 Convergence analysis

Theorem 2.5 (Regularizing networks). Any family of regularizing networks (R� =
Φ�G�)�>0 (see De�nition 2.3) is a regularization for Φ0G0 in the sense of De�-

nition 2.1.
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Proof. Let x 2 Φ0G0F(D), y� 2 Y with kF(x) � y�k � � and set x�� := Φ�G�(y
�).

Then

kx� x��k = kΦ0G0F(x)�Φ�G�y
�k

� kΦ0G0F(x)�Φ�G�F(x)k+ kΦ�G�F(x)�Φ�G�y
�k

� kΦ�G�F(x)�Φ0G0F(x)k+ LkG�F(x)�G�y
�k :

Now if ��(�; y�) is an admissible parameter choice for (G�)�>0, then

sup fkx�R��(�;y�)(y
�)k j y� 2 B�(F(x))g � kΦ��(�;y�)G��(�;y�)F(x)�Φ0G0F(x)k

+ L sup fkG��(�;y�)F(x)�G��(�;y�)y
�k j y� 2 B�(F(x))g : (2.7)

According to (R3) in De�nition 2.3, the �rst term converges to zero and because of

kG��(�;y�)F(x)�G��(�;y�)y
�k � kG��(�;y�)F(x)�G0F(x)k+ kG0F(x)�G��(�;y�)y

�k

and the fact that (G�)�>0 with � = ��(�; y�) is a regularization method for G0, the
second term converges to zero as � ! 0.

3 Convergence rates

Another important issue is the rate of approximation. This means speci�cally that
there exists a decreasing function f : (0;1) ! (0;1) such that lim�!0 f(�) = 0 and
kR��(�;y�)(y

�)� xk � f(�) uniformly for all y� 2 Y with kF(x)� y�k � �.

3.1 Reconstruction algorithms and convergence rates

De�nition 3.1 (Reconstruction error of an algorithm). Let X0 � X, � > 0 and G : Y!
X be a reconstruction algorithm. We call

E(G; �;X0) = sup fkx�G(y�)k j x 2 X0 ^ y
� 2 B�(F(x))g (3.1)

the reconstruction error of G over X0.

De�nition 3.2 (Convergence rate of an algorithm). Let X0 � X, r 2 (0; 1] and for any
� > 0, let G� be a reconstruction algorithm. We say that (G�)�>0 converges at rate �r

over X0 if E(G�; �;X0) = O(�r) as � ! 0.

The concept of convergence rates in particular applies for reconstruction algorithms
de�ned by regularization methods. In general, no convergence rate over G0F(D) is
possible; they require restricting to proper subsets X0 ( G0F(D) [8, Proposition 3.11].

Source conditions de�ne suitable sets X0 for classical Tikhonov regularization and re-
lated methods based on minimal norm solutions. We investigate the source condi-
tions (transformed source sets) and convergence rates for regularizing networks where
(G�)�>0 is Tikhonov regularization in Example 3.5.
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3.2 Rates for the regularizing networks

Our aim is to prove a convergence rate for R��(�;y�) assuming a convergence rate for
G��(�;y�). Let (Φ�G�)�>0 be a regularizing network and �� a parameter choice function.
For any � > 0 we de�ne the reconstruction algorithms G�;R� : Y! X and Φ� : X! X
by

G�(z) := G��(�;z)(z);

Φ�;y�(x) := Φ��(�;y�)(x);

R�(z) := Φ��(�;z)G��(�;z)(z);

for x 2 X and z 2 Y.

Assumption 3.3 (Convergence rate conditions). Let X0 � G0F(D) satisfy the fol-

lowing for some r 2 (0; 1]

(R1) E(G�; �;X0) = O(�r) as � ! 0.

(R2) sup fkG�(y�)�G�F(x)k j x 2 X0 ^ y
� 2 B�(F(x))g = O(�r).

(R3) sup fkΦ�;y�(x)�Φ0(x)k j x 2 X0 ^ y
� 2 B�(F(x))g = O(�r).

The �rst condition (R1) means that (G��(�;y�))�>0 converges at rate �r. Condition (R2)
is a stability estimate for G��(�;y�). Condition (R3) gives a relation between Φ��(�;y�),
applied in noisy cases, and Φ0, applied in the noiseless case.

Theorem 3.4 (Convergence rate for regularizing networks). Let M0 = Φ0(X0). Under
Assumption 3.3 we have E(R�; �;M0) = O(�r).

Proof. Let x 2M0, kF(x)� y�k � �, and z 2 X0 s.t. Φ0(z) = x. Then

kR�(y�)� xk � kR�(y�)�R�F(x)k+ kR�F(x)� xk

� LkG�(y�)�G�F(x)k+ kΦ0G
�F(z)�Φ0(z)k

+ kR�F(x)�Φ0G
�F(z)k

� LkG�(y�)�G�F(x)k+ LkG�F(z)� zk

+ kΦ�;F(x)G�F(x)�Φ0G
�F(x)k

� LkG�(y�)�G�F(x)k+ LkG�F(z)� zk

+ kΦ�;F(x)G�F(x)�Φ�;F(x)G0F(x)k

+ kΦ�;F(x)G0F(x)�Φ0G0F(x)k

+ kΦ0G0F(x)�Φ0G
�F(x)k

� LkG�(y�)�G�F(x)k+ LkG�F(z)� zk

+ kΦ�;F(x)G0F(x)�Φ0G0F(x)k+ 2LkG�F(x)�G0F(x)k:

Each of the above terms are O(�r): the �rst term due to the stability estimate (R2),
the second term due to (R1), and the third term due to (R3). For the fourth term we
use that G0F(x) = G0F(z) = G0FG0F(w) = G0F(w) = z 2 X0 for some w 2 D. This
implies that the fourth term is O(�r), due to (R1) again.
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In the following we give an explicit example of a classical regularization method com-
bined with a sequence of regularizing networks, where Assumption 3.3 is satis�ed and
therefore Theorem 3.4 can be applied.

Example 3.5 (Regularizing networks combined with Tikhonov regularization). Given
a Gâteaux di�erentiable forward operator F we consider (G�)�>0 de�ned by clas-

sical Tikhonov regularization (2.1), a data-consistent network Φ0 : X ! X and a

sequence of regularizing networks (Φ� : X! X)�>0 satisfying (R3) for r = 1=2.

Corollary 3.6. If we consider the set M0 := Φ0(X0) where X0 is the source set

of classical Tikhonov reguarlization and we assume that the networks Φ��(�;y�)

converge pointwise to Φ0 on X at rate O(�1=2) as � ! 0, then E(R�; �;M0) = O(�1=2)

Proof. The convergence rate condition (R1) holds according to [8]. Since for x =
Φ0(z) 2M0 we have F(x) = F(z) (De�nition 2.2) and because of the stability estimate
for Tikhonov regularization [8] we have

sup fkG�(y�)�G�(F(x))k j x 2M0 ^ y
� 2 B�(F(x))g

= sup fkG�(y�)�G�(F(z))k j z 2 X0 ^ y
� 2 B�(F(x))g = O(�1=2) ; (3.2)

which shows (R2). Finally (R3) holds by assumption and therefore the conditions of
Theorem 3.4 are satis�ed for r = 1=2.

This shows one of the main bene�ts of the concept of regularizing networks, namely
transforming the set X0 on which the basic regularization converges at a certain rate,
to a di�erent data dependent set Φ0(X0) with possibly less regularity, while preserving
the convergence rate.

4 Considered inverse problems

In this section we provide the general mathematical description of inverse problems
that are considered in the simulation experiments. We de�ne nonlinear mappings F
and derive formulations of right inverses G0 and data-consistent networks Φ0.

4.1 Projection on convex set

We consider the nonlinear inverse problem, where F := PC : D! C is a metric projec-
tion on a closed convex set C � D, i.e.

y = PC(x) := argmin
�x2C

fk�x� xkg : (4.1)

The a�ne normal cone to C at x is de�ned as

NC(x) := f~x 2 D j PC(~x) = xg :

9



It is easily shown that any mapping that maps x 2 C to an element in the normal cone
NC(x) is a right inverse of PC . In particular, the projection PNC(x) : D! D,

PNC(x)(x̂) := argmin
~x2NC(x)\D

fk~x� x̂kg ; (4.2)

combined with any function H0 : C ! D de�nes a right inverse G0 : C ! D : x 7!
PNC(x)(H0(x)). This follows because 8x 2 C : PC(PNC(x)(H0(x))) = x. We assume,
that (4.2) is well de�ned for all x 2 C and x̂ 2 D. According to De�nition 2.2, a
data-consistent network Φ0 satis�es 8z 2 G0F(D) : FΦ0(z) = F(z). We de�ne

Φ0(z) := PNC(PC(z))(U(z)); (4.3)

so this requirement is satis�ed. Here U : X ! X is any Lipschitz continuous trained
neural network (c.f. de�nition 2.2). See Figure 4.1 for a visual illustration.

C NC(PC(z))
z

PC
(z)

U(z)

Φ0(z)

Figure 4.1: Visualization of the data-consistent network for the projection problem. It
can be seen that PC(Φ0(z)) = PC(z), as required by the de�nition of a data-consistent
network.

4.2 Composition of mappings

As a second inverse problem, we consider the mapping F : D ! Y that is de�ned as a
composition of two (possibly nonlinear) mappings:

F(x) := F2(F1(x)); where F1 : D! E and F2 : E! Y ;

where E is a Banach space. Furthermore we impose the restriction that the mapping
F2 provides a data-consistent network that can be written as a projection

Φ
(2)
0 (z) := PS\Im(F1)(U2(z));

where S � E. In particular, this is true for the mapping described in Section 4.1, when
the projection on a normal cone also maps into the range of the operator F1. The
projection onto the intersection in the data-consistent network can be implemented by
an alternating projection algorithm 5.2. If we assume that S \ Im(F1) 6= ;, then we
de�ne the data-consistent network Φ0 for the full mapping as

Φ0(z) = Φ
(1)
0 G

(1)
0 Φ

(2)
0 G

(2)
0 F2F1(z) (4.4)
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where Φ
(i)
0 and G

(i)
0 are de�ned as the data-consistent network for Fi and the right

inverse for Fi respectively. We check the data-consistent property (De�nition 2.2) by

FΦ0(z) = F2F1Φ
(1)
0 G

(1)
0 Φ

(2)
0 G

(2)
0 F2F1(z)

= F2F1G
(1)
0 Φ

(2)
0 G

(2)
0 F2F1(z)

= F2Φ
(2)
0 G

(2)
0 F2F1(z)

= F2G
(2)
0 F2F1(z)

= F2F1(z)

= F(z);

where we used in order: the data-consistent property of Φ
(1)
0 ; the de�nition of a right-

inverse G
(1)
0 in combination with the projection on the range of F1; the data-consistent

property of Φ
(2)
0 ; and the de�nition of the right-inverse G

(2)
0 .

We note that this is not the only data-consistent network possible for such an inverse
problem: one could also design a network that only makes use of either Φ

(1)
0 or Φ

(2)
0 .

However, (4.4) provides a network that is intuitively clear: an initial solution z is ob-
tained by a classical regularization method, after which �rst a better `guess' is made by
applying a neural network on E, followed by a neural network that makes a better guess
on the reconstruction space D, while keeping the solutions data-consistent throughout.

5 Simulation experiments

In this section, we �rst specify two examples of the inverse problems described in section
4. After that, we explain all neural networks that will be compared for these exam-
ples, among which are the derived data-consistent networks. Finally, we provide the
implementation details for all simulation experiments.

5.1 Spatially dependent saturation of multivariate Gaussians

In the �rst simulation experiment, we consider the inverse problem of recovering images
of multivariate Gaussians which have been nonhomogeneously saturated. Formally we
de�ne the domain D = X := `2(
) and we de�ne the saturation mapping as a projection
on a convex set, as described in section 4.1. This means F(x) := PC(x), where

C :=
n
x 2 `2(
) j x(r) �M(r); 8r 2 
;

o

where M(r) � 0 is the saturation value at location r. The corresponding right inverse
for y 2 C is de�ned as G0(y) = PNC(y)(y) = Id(y). The projection de�ned by (4.1) is
explicitly given by

�
PC(x)

�
(r) := min fx(r);M(r)g :
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Since NC(PC(z)) = fx j PC(x) = PC(z)g, (4.3) can be written pointwise as

�
Φ0(z)

�
(r) =

(
z(r) for z(r) < M(r);

max
��

U(z)
�
(r);M(r)

	
for z(r) �M(r):

(5.1)

We consider the square domain 
 := [�1; 1]� [�1; 1]. The spatially dependent satura-
tion function is de�ned

M(r) :=

(
0:6 if krk � 1

2 ;

0 if krk > 1
2 :

(5.2)

Each image in the training or test set contains one centered multivariate Gaussian with
diagonal covariance matrix, having standard deviations (�1; �2) independently randomly
chosen in the interval [0:24; 0:32]. All images in the training and test set are scaled to
obtain maximum values randomly chosen in the interval [0:75; 1]. Opposed to standard
networks, one of the bene�ts of using a data-consistent network is that it is more robust
to changes in the data. For this reason, a modi�ed test set has been created, where the
Gaussians have standard deviations in the interval [0:12; 0:20] with maximum intensities
in the interval [0:6; 0:8]. For the numerical implementation we consider the discretized
domain �
 := R128�128 as discretization of 
.

The data-consistent network Φ0(z), as described in (5.1), is compared with the neural
network U(z) without data-consistency. We compare reconstruction quality for both the
regular test set and modi�ed test set. A description of the neural network architecture
and training details are provided in section 5.3.

5.2 Saturation of Radon transformed human chest images

In the second simulation experiment, we consider the inverse problem of reconstructing
images of the human chest, from saturated and highly limited angle Radon measure-
ments. We consider the composition of two mappings as described in section 4.2, where
F1 is a linear mapping that acts as the discrete Radon transform and F2 is a nonlinear
saturation mapping that saturates the Radon signals at a constant value M . For con-
ciseness, we de�ne our domains and mappings in the discretized setup: D := Rnx�nx ,
Y = Rn��

3

2
nx , where nx = 192 is the number of pixels in each direction of the image

and n� = 8 is the number of angles in the Radon transform, uniformly sampled in the
interval [0; �].

We now de�ne all elements that are needed to obtain the data-consistent network (4.4),
which we repeat here for completeness:

Φ0(z) = Φ
(1)
0 G

(1)
0 Φ

(2)
0 G

(2)
0 F2F1(z): (5.3)

A matrix representation F1 2 Rn��
3

2
nx�n2x of the Radon transform is obtained as de-

scribed in [17]. Its right inverse is taken as the pseudo-inverse of F1, i.e. G
(1)
0 := F

y
1.

Since the mapping is linear, the corresponding data-consistent network is a null-space
network [26], i.e. Φ

(1)
0 (z) = z + Pker(F1)U(z), where Pker(F1) = Id�F

y
1F1. The satu-

ration mapping F2 = PC , its right inverse G
(2)
0 and the data-consistent network Φ

(2)
0
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are chosen as described in section 5.1, this time with constant saturation level M = 8.
Finally, for this particular choice of F2, the projection on the intersection of convex sets
reads PNC(PC(z))\Im(F1), which can be achieved by the `projection onto convex sets'

(POCS) algorithm [5]: by alternatingly performing PNC(PC(z)) and PIm(F1) = F1F
y
1,

the resulting iteration converges linearly to a point on the intersection.

Training and test images were obtained from the LoDoPaB-CT dataset [16], which on
its turn makes use of the LIDC/IDRI dataset [3]. In our work, we only make use
of the high quality CT reconstructions in the LoDoPaB-CT dataset that we use as
`ground truth' for our setup. The images are scaled to 192� 192 pixels, after which the
mappings F1 and F2 are applied to obtain simulated sinograms. After that, pseudo-
inverses G

(2)
0 and G

(1)
0 are applied to obtain the input for our data-consistent network.

For this simulation experiment we have also created a modi�ed test set to investigate
how the trained networks generalize towards slightly modi�ed data. For conciseness,
the procedure to get from the regular test data to the modi�ed test data is not explained
in full detail. In short, the test set consists of images in the range of F

y
1 that produce

sinograms that have a maximum below or around the saturation level. This means that
the saturation mapping F2 will not have a big e�ect on the unsaturated sinograms.
Images in the modi�ed test set look very similar to the ones in the regular test set, but
they often show a small gradient at locations where the regular images show a piecewise
constant structure. Some samples from the modi�ed test set are shown in Figure 6.4
and appendix B.2.

The data-consistent network Φ0(z), as described in (4.4), is compared with two other
networks: the �rst one applies a single neural network to the pseudo-inverse reconstruc-
tion; the second one �rst applies a neural network in the sinogram domain, then applies
the pseudo-inverse of the Radon-transform, followed by a neural network in the image
domain. For completeness, we summarize the three networks below:

� One neural network: N1(z) = U1(z):

� Two neural networks: N2(z) = U1G
(1)
0 U2F1(z):

� Data-consistent network: Φ0(z) = Φ
(1)
0 G

(1)
0 Φ

(2)
0 G

(2)
0 F2F1(z):

We emphasize that the data-consistent networks, in terms of architecture, make use
of the same neural networks U1 and U2 as the �rst two networks, i.e. Φ

(1)
0 (z) = z +

Pker(F1)U1(z) and Φ
(2)
0 makes use of U2 as de�ned in (5.1). A more detailed description

of the neural network architecture and training details are provided in section 5.3.

Ideally, the data-consistent network is trained `end-to-end', meaning that both U1 which
is used in Φ

(1)
0 , and U2 which is used in Φ

(2)
0 , are trained at the same time. However,

the application of the POCS algorithm is computationally intensive, since it requires
iterative application of the mappings F1 and F

y
1. For this reason, we have chosen to

�rst train Φ
(2)
0 to output the unsaturated sinogram, then perform the POCS algorithm

and �nally train Φ
(1)
0 to output the reconstructed image.
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5.3 Neural network architecture and training details

In this work, the popular U-Net [24, 11] is implemented as a neural network. By using
standard nonlinearities such as recti�ed linear units (ReLUs) and convolutions, the
network is Lipschitz continuous, which is a requirement as described in De�nition 2.2.
The Lipschitz constant can be controlled by weight regularization, such as adding an
L2-loss on the weights in the loss function.

Exp. 1 (U=Φ0): Exp. 2 (U1=Φ
(1)
0 ): Exp. 2 (U2=Φ

(2)
0 ):

image domain image domain sinogram domain

#training samples 1024 35584 35584
#validation samples 256 3522 3522
#test samples 1024 3553 3553

depth 4 4 4
width 2 2 2
#channels in top layer 8 16 16
convolution size 3� 3 3� 3 3� 3

nonlinearity ReLU ReLU ReLU

start learning rate 10�3 10�3 10�3

�nal learning rate 10�4 2 � 10�4 2 � 10�4

batch size 64 32 32
#epochs 1000 25 25

Table 1: U-Net parameter details for all simulation experiments.

The U-Net was implemented as described in [11], although for each experiment some
parameters were chosen slightly di�erent to obtain optimal results. For all experiments,
the network has a `depth' of four, meaning four times max-pooling and upsampling. The
U-Nets in the image domain perform the regular max-pooling and upsampling in two
directions, while the U-Net in the sinogram domain performs these only in one direction,
leaving the number of angles constant at 8. This is done because the neighboring angles
in the sinogram show very little resemblance to each other and there are only 8. The
`width', or the amount of convolutions at every depth is chosen to be two. As in [11] the
number of convolution channels doubles after each max-pooling; the number of channels
at the start is stated in Table 1, since this was chosen di�erently for every simulation
experiment. In all experiments a residual structure that is also apparent in [11] is used.
The U-Net uses 3 � 3 convolutions with biases and applied a ReLU-activation after
each convolution, except the last one. In all experiments, an L2-loss function on the
di�erence between output and ground truth is minimized. For optimization, the ADAM
optimizer with exponentially decaying learning rate is chosen. The learning rates and
batch sizes are stated in Table 1.
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6 Numerical results

In this section, the reconstruction quality of data-consistent networks is compared with
the U-Nets that are not data-consistent. Besides visual comparison, the quality will
be compared by means of peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM). For both experiments this will be done for the regular test set as well as the
modi�ed test set in order to investigate the generalization capacity of the networks.

6.1 Spatially dependent saturation of multivariate Gaussians

Multivariate Gaussians are saturated with a spatially dependent saturation function
(5.2), as described in section 5.1. Results for one sample from the regular test set are
shown in Figure 6.1. Here it can be seen that both U-Net and the data-consistent
network provide a very accurate reconstruction. This is also re�ected in the PSNR and
SSIM values shown in Table 2. The pseudo-inverse reconstruction, which in this case is
just the measurement, is not a good one, since a lot of information is lost by applying
the saturation mapping.
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Figure 6.1: Reconstructions of a sample from the regular test set. In the bottom the
horizontal central slice is shown. Both U-Net and data-consistent network provide an
almost perfect reconstruction.

In Figure 6.2 the results for one sample are shown for the modi�ed test set, which
contains smaller Gaussians with a slightly lower intensity. Both U-Net and the data-
consistent network are not perfectly able to �ll in the missing information in the small
Gaussians. This can be expected, since Gaussians of this size were not included in the
training set. However, the data-consistent network does not deform the Gaussian at the
location where it is not saturated, while U-Net does this slightly; for instance around
�0:5 in the slice plot. This behaviour is also re�ected in the PSNR and SSIM values in
Table 2. Interestingly, the pseudo-inverse behaves very well if we just look at the values
in the table, because the saturation mapping did not destroy a lot of the information in
the Gaussian. Visual results of three more samples in the modi�ed test set are shown
in appendix A. It can be seen that U-Net tends to widen the Gaussians, since it was
trained on Gaussians in the training set that were wider. Although the modi�ed test
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set shows a very speci�c modi�cation, it illustrates that a data-consistent network is
bene�cial over using an arbitrary neural network: by making use of the information
that we have from the mapping F, we obtain generalization capacity.
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Figure 6.2: Reconstructions of a sample from the modi�ed test set. In the bottom the
horizontal central slice is shown. Data consistency makes sure that intensity is only
changed above the saturation level.

PSNR SSIM

Pseudo- Data- Pseudo- Data-
inverse U-Net consistent inverse U-Net consistent

Regular set 24:2� 2:2 60:6� 2:1 66:7� 1:6 0:56� 0:08 1:00� 0:00 1:00� 0:00
Modi�ed set 48:0� 7:8 36:9� 2:9 48:0� 4:4 0:99� 0:01 0:92� 0:03 0:97� 0:01

Table 2: Comparison of PSNR and SSIM for all reconstruction methods.

6.2 Saturation of Radon transformed human chest images

For one selected sample in the regular test set and one in the modi�ed test set, all
reconstructions are shown in Figures 6.3 and 6.4. These speci�c samples were selected
because their PSNR values for the U-Nets and the data-consistent network show a
similar relation to each other as the average PSNR values of the whole test set (c.f.
Table 3).

In the top of Figure 6.3, the inputs of the right inverse G
(1)
0 are shown. This corresponds

to the saturated sinograms in case no or only one neural network is trained, and this
corresponds to the output of the neural network in the sinogram domain in case two
neural networks are trained. The sinogram signals are plotted in a di�erent color for
each angle. The data-consistent network does not change the values of the sinogram
that are below the saturation level (M = 8). Interestingly, the U-Net in the sinogram
domain has learned not to do this as well to a large extent: some values just below
the saturation level are changed (for instance the purple line around �0:5), but values
much lower are not changed at all. In the bottom of Figure 6.3, all reconstructions
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Figure 6.3: Reconstructions of a typical sample from the regular test set. Top: recon-
structed sinograms with all 8 angles in di�erent colors. Bottom: reconstructed images.

for this sample are shown. It can be seen that although PSNR values are similar,
there is a clear visual di�erence: the data-consistent network shows more artefacts that
are typical for limited-angle Radon reconstructions, while the standard U-Nets provide
over-smoothed reconstructions. In other words, the data-consistent reconstruction does
not smooth out potential details, while the other networks do. However, all networks
perform rather similarly, since there are no clear structures that can be seen in one of
the reconstructions and not in the others. This is also re�ected in Table 3. Moreover,
since only 8 angles were used in the Radon transform, only larger structures can be
reconstructed. Some extreme samples, for which the PSNR value of the data-consistent
solution is high, similar or low compared to the U-Net solutions, are shown in Appendix
B.1.
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Figure 6.4: Reconstructions of a typical sample from the modi�ed test set. Top: recon-
structed sinograms with all 8 angles in di�erent colors. Bottom: reconstructed images.

In the top of Figure 6.4, again all sinogram reconstructions are plotted, now for the
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modi�ed test set. As the modi�ed sinograms contain many values just below or around
the saturation level (M = 8), this is challenging for the regular U-Net. Indeed it can be
seen that the data-consistent network does not change the saturated sinogram much,
while the U-Net on the sinogram increases the purple line well beyond the saturation
level. In the bottom of Figure 6.3, it can be seen that the ground truth possesses
some `smooth' regions, especially in the background on the left and right of the two
dark inclusions. While both U-Nets create piecewise constant reconstructions that com-
pletely remove this gradient, the data-consistent network keeps these smooth regions:
it generalizes better to test images that are not found in the training set by making
use of the information in the operator. More extreme samples, where the PSNR value
of the data-consistent solution is high, similar or low compared to the U-Net solutions,
are shown in Appendix B.2. The same e�ect on smooth regions can be seen in these
visualizations. In Table 3, it can be seen that for all networks the quality drops when
the regular test set is replaced by the modi�ed test set; however, this drop is only very
small for the data-consistent network and is much bigger for the regular U-Nets. Note
that the pseudo-inverse gives an increased PSNR for the modi�ed test set, because the
modi�ed images were constructed to lie in the range of F.

PSNR

Pseudo-inverse One U-Net Two U-Nets Data-consistent

Regular set 23:1� 2:3 30:5� 1:5 31:0� 1:5 30:1� 1:9
Modi�ed set 29:1� 1:6 27:5� 1:7 28:3� 1:4 29:9� 1:2

SSIM

Pseudo-inverse One U-Net Two U-Nets Data-consistent

Regular set 0:50� 0:07 0:82� 0:04 0:83� 0:04 0:74� 0:07
Modi�ed set 0:71� 0:07 0:74� 0:05 0:73� 0:05 0:75� 0:05

Data-�delity

Pseudo-inverse One U-Net Two U-Nets Data-consistent

Regular set 6:1� 3:3 4:8� 1:5 3:9� 1:1 0:9� 0:4
Modi�ed set 0:4� 0:2 11:9� 5:4 8:5� 2:8 0:6� 0:2

Table 3: Comparison of PSNR, SSIM and data-�delity for all reconstruction methods.

Finally in Table 3 we check the data-�delity of the solutions from all networks by
computing kF(~x) � F(x)k, where ~x is the solution of the respective reconstruction
method and x is the ground truth. Ideally, the data-�delity should be zero for the
pseudo-inverse and the data-consistent network. It can be seen that indeed the data-
�delity is much lower for these solutions than for the U-Nets, although not completely
zero. This is most probably due to numerical issues (especially for the pseudo-inverse
of the regular set) and due to the fact that we needed to save and load images from disc
while training because of the size of the data set.
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7 Conclusion

In this paper we introduced data consistent networks for nonlinear inverse problems.
We presented a convergent regularization method by combining deep neural networks
that converge to a data-consistent network with classical regularization methods. With
the proposed data-driven regularization methods we are able to preserve convergence
rates of classical methods over a transformed source set, which is adapted to some data
set. This yields improved reconstructions for elements close to the training set, but at
the same time data-consistent networks make use of the information from the forward
mapping F, which provides increased generalization capacity. This is particularly useful
when the physics process is understood, but exact knowledge on real data is not available
or when it is not possible to create a training set that is similar to the real data. We
showed that on a test set similar to the training set, our approach shows reconstruction
results comparable to a classical post-processing network, whereas for instances not
represented in the training set, the loss of performance is much less present. This
demonstrates the generalization ability of our approach.
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A Additional results for saturated Gaussians

In this appendix, three more samples from the modi�ed test set of the saturated Gaus-
sians are shown. It can be seen in Figures A.1 and A.2 that U-Net tends to slightly
widen the Gaussian in some cases, since this was necessary for the wider Gaussians in
the training set. Moreover it can be seen in Figures A.2 and A.3 that both U-Net and the
data-consistent network sometimes fail to restore the top of the Gaussian adequately:
the training on wider Gaussians is not directly generalised for smaller Gaussians.
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B Additional results for saturated Radon transform

In this appendix, three additional samples from the regular and the modi�ed test set of
human chest images are shown. The samples have been selected based on their PSNR
values: we show the samples in the test set for which the data-consistent network yields
the highest relative PSNR value (Figures B.1 and B.4), a similar PSNR value (Figures
B.2 and B.5), and the lowest relative PSNR value (Figures B.3 and B.6) when compared
to the U-Nets.

B.1 Regular test set

(a) Ground truth (b) Pseudo-inverse
PSNR = 29:01

(c) One U-Net
PSNR = 31:50

(d) Two U-Nets
PSNR = 32:29

(e) Data-consistent
PSNR = 34:10

Figure B.1: Sample for which the data-consistent PSNR value is relatively high com-
pared to the U-Net PSNR values.

(a) Ground truth (b) Pseudo-inverse
PSNR = 25:33

(c) One U-Net
PSNR = 30:09

(d) Two U-Nets
PSNR = 29:94

(e) Data-consistent
PSNR = 30:09

Figure B.2: Sample for which the data-consistent PSNR value is approximately the
same as the U-Net PSNR values.
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(a) Ground truth (b) Pseudo-inverse
PSNR = 22:87

(c) One U-Net
PSNR = 29:78

(d) Two U-Nets
PSNR = 28:36

(e) Data-consistent
PSNR = 24:52

Figure B.3: Sample for which the data-invariant PSNR value is relatively low compared
to the U-Net PSNR values.

B.2 Modi�ed test set

The ground truth images in the modi�ed test set contain more regions which are non-
constant, as opposed to the regular test set, which consists of piecewise constant images.
The data-consistent network is better able to deal with these modi�cations in the im-
ages, as can be seen particularly well in Figure B.4: The U-Nets create a piecewise
constant dark structure in the middle, while the data-consistent network keeps it more
smooth.

(a) Ground truth (b) Pseudo-inverse
PSNR = 34:76

(c) One U-Net
PSNR = 25:96

(d) Two U-Nets
PSNR = 27:61

(e) Data-consistent
PSNR = 33:61

Figure B.4: Sample for which the data-invariant PSNR value is relatively high compared
to the U-Net PSNR values.

(a) Ground truth (b) Pseudo-inverse
PSNR = 28:43

(c) One U-Net
PSNR = 31:50

(d) Two U-Nets
PSNR = 31:52

(e) Data-consistent
PSNR = 31:47

Figure B.5: Sample for which the data-invariant PSNR value is approximately the same
as the U-Net PSNR values.
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(a) Ground truth (b) Pseudo-inverse
PSNR = 28:62

(c) One U-Net
PSNR = 31:05

(d) Two U-Nets
PSNR = 31:30

(e) Data-consistent
PSNR = 30:89

Figure B.6: Sample for which the data-invariant PSNR value is relatively low compared
to the U-Net PSNR values.
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