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Abstract

n this paper we present a generalized Deep Learning-based approach for solv-
ing ill-posed large-scale inverse problems occuring in medical image reconstruc-
tion. Recently, Deep Learning methods using iterative neural networks and cas-
caded neural networks have been reported to achieve state-of-the-art results with
respect to various quantitative quality measures as PSNR, NRMSE and SSIM across
different imaging modalities. However, the fact that these approaches employ the
forward and adjoint operators repeatedly in the network architecture requires the
network to process the whole images or volumes at once, which for some appli-
cations is computationally infeasible. In this work, we follow a different recon-
struction strategy by decoupling the regularization of the solution from ensuring
consistency with the measured data. The regularization is given in the form of an
image prior obtained by the output of a previously trained neural network which
is used in a Tikhonov regularization framework. By doing so, more complex and
sophisticated network architectures can be used for the removal of the artefacts
or noise than it is usually the case in iterative networks. Due to the large scale

1



of the considered problems and the resulting computational complexity of the
employed networks, the priors are obtained by processing the images or volumes
as patches or slices. We evaluated the method for the cases of 3D cone-beam low
dose CT and undersampled 2D radial cine MRI and compared it to a total variation-
minimization-based reconstruction algorithm as well as to a method with reg-
ularization based on learned overcomplete dictionaries. The proposed method
outperformed all the reported methods with respect to all chosen quantitative
measures and further accelerates the regularization step in the reconstruction by
several orders of magnitude.

Keywords: Deep Learning, Neural Networks, Inverse Problems, Low-Dose CT, Ra-
dial Cine MRI

1 Introduction

In inverse problems, the goal is to recover an object of interest from a set of indirect
and possibly incomplete observations. In medical imaging, for example, a classical
inverse problem is given by the task of reconstructing a diagnostic image from a certain
number of measurements, e.g. X-ray projections in computed tomography (CT) or the
spatial frequency information (k-space data) in magnetic resonance imaging (MRI).
The reconstruction from the measured data can be an ill-posed inverse problem for
different reasons. In low-dose CT, for example, the reconstruction from noisy data
is ill-posed because of the ill-posedeness of the inversion of the Radon transform.
In accelerated MRI, on the other hand, the reconstruction from incomplete data is
ill-posed since the underlying problem is underdetermined and therefore no unique
solution exists without integrating prior information.

In order to constrain the space of possible solutions, a typical approach is to im-
pose specific a-priori chosen properties on the solution by adding a regularization
(or penalty) term to the problem. Well known choices for the regularization are for
example given by the popular total variation-minimization and sparse regularization
approaches, where the solution is transformed using a sparsifying transform such as
the Wavelet-transform or the Fourier-transform [21] or a finite-differences filter [5]
and the L1-norm of the latter is minimized. While the aforementioned methods use
hand-crafted priors, other methods learn the regularization directly within the recon-
struction of the images where the regularization is imposed patch-wise by the sparse
approximation using a dictionary which is learned in an unsupervised manner during
the reconstruction [36], [39]. However, these learning-based methods are usually time
consuming since the regularization is adaptive and learned during an iterative recon-
struction scheme. Further, in the specific dictionary learning framework, the regular-
ization requires training of a dictionary and sparse coding of all patches of the current
image estimate at each iteration. This is computationally demanding and makes the
application in the clinical routine challenging.

Recently, Convolutional Neural Networks (CNNs) have been applied in the field of in-
verse problems, either as direct full inversion methods [41], as post processing meth-
ods [16], [30], [13], as learned iterative schemes [2], [3], or as learned regularizers [28],
[19], [20], [4], [23]. When used as post-processing methods, the networks are trained to
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denoise or remove artefacts from images obtained by the direct reconstruction of the
noisy or incomplete data. Although a wide range of different network architecture has
been proposed, e.g. [13], [40], a major concern is that the estimated output of the CNN
might lack data-consistency. In order to ensure the obtained image is consistent with
the acquired raw data, methods have been proposed where the constructed networks
define unrolled iterative schemes which employ the forward and the adjoint opera-
tors. These methods can be interpreted as learned iterative schemes and have been
successfully applied to different imaging modalities [2], [3], [11], [15], [28], [19], [4], [23].
Thereby, the subnetworks containing trainable parameters can be thought of regulariz-
ers which are learned by end-to-end training of the whole network cascade. Due to the
integration of the forward and the adjoint operators, iterative or cascaded networks
seem to be a choice for various image reconstruction task. However, the main advan-
tage of these methods at the same time represents the computational bottleneck of
the approaches. The fact that the forward and the adjoint operators are integrated as
layers in the networks requires that the whole object of interest has to be processed at
once. Since CNNs typically increase the input size by extracting several feature maps
per layer, end-to-end training might be infeasible for some high-dimensional prob-
lems, including high-resolution 3D CT volumes or non-Cartesian MR acquisitions.
In order to overcome these limitations, we propose to decouple the regularization of
the solution from ensuring consistency with the measured data. We present a general
framework to use CNNs as learned regularizers and still ensure data-consistency of the
obtained solution. In particular, we consider high-dimensional problems where either
the object of interest or the measured data are high-dimensional (high-resolution 3D
CT) or the evaluation of the forward or the adjoint operators is computationally ex-
pensive (dynamic 2D non-Cartesian radial MR acquisition).
This paper is organized as follows. In Section 2, we formally introduce the inverse
problem of image reconstruction and motivate our proposed approach for the solu-
tion of large-scale ill-posed inverse problems. We demonstrate the feasibility of our
method by applying it to 3D low-dose cone beam CT and 2D radial cine MRI in Section
3. We further compare the proposed approach to an iterative reconstruction method
given by total variation-minimization (TV) and a learning-based method (DIC) using
Dictionary Learning-based priors in Section 4. We then conclude the work with a dis-
cussion and conclusion in Section 5 and Section 6.

2 Iterative Image Reconstruction with CNN-Priors

In this Section, we present the proposed deep learning scheme for solving large-scale,
possibly non-linear, inverse problems. For the sake of clarity, we do not focus on a
functional analytical setting but consider discretized problems of the form

y = Ax + z, (1)

where A : X → Y is a discrete possibly non-linear forward operator between finite
dimensional Hilbert spaces, y ∈ Y is the measured data, z ∈ Y the noise and x ∈ X
the unknown object to be recovered. The operator A could for example model the
measurement process in various imaging modalities such as the X-ray projection in
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CT or the Fourier encoding in MRI. Depending on the nature of the underlying imaging
modality one is considering, problem (1) can be ill-posed for different reasons. For ex-
ample, in low-dose CT, the measurement data is inherently contaminated by noise. In
cardiac MRI, k-space data is often undersampled in order to speed up the acquisition
process. This leads to incomplete data and therefore to an undetermined problem
with an infinite number of theoretically possible solutions.
In order to constrain the space of solutions of interest, a typical approach is to im-
pose specific a-priori chosen properties on the solution x by adding a regularization
(or penalty) term R(x) and using Lagrange multipliers. Then, we solve the relaxed
problem

D(Ax,y) + λR(x)→ min, (2)

where D( · , · ) is an appropriately chosen data-discrepancy measure and λ > 0 con-
trols the strength of the regularization. The choice of D( · , · ) depends on the consid-
ered problem. For the examples presented in Sections 3 and 4 we choose the discrep-
ancy measure as the squared norm distance in the case of radial cine MRI and the
Kullback-Leibler divergence in the case of low dose CT, respectively.

2.1 CNN-based Regularization

Clearly, the regularization term R(x) significantly affects the quality and the char-
acteristics of the solution x. Here, we propose a generalized approach for solving
high-dimensional inverse problems by the following three steps: First, an initial guess
of the solution is provided by a direct reconstruction from the measured data, i.e.
xini = A†y, where A† : Y → X denotes some reconstruction operator. Then, a CNN is
used to remove the noise or the artefacts from the direct reconstruction xini in order
to obtain another intermediate reconstruction xCNN which is used as a CNN-prior in
a Tikhonov functional

Fy,xCNN,λ(x) := D(Ax,y) + λ‖x− xCNN‖22 → min. (3)

As a third and final step, the CNN-Tikhonov functional (3) is minimized resulting in the
proposed CNN-based reconstruction.
Note that the regularization of the problem, i.e. obtaining the CNN-prior, is decoupled
from the step of ensuring data-consistency of the solution via minimization of (3). This
allows to use deeper and more sophisticated CNNs as the ones typically used in it-
erative networks. Given the high-dimensionality of the considered problems, network
training is further carried out on sub-portions of the image samples, i.e. on patches
or slices which are previously extracted from the images or volumes. This is moti-
vated by the fact that in most medical imaging applications, one has typically access
to datasets with only a relatively small number of subjects. The images or volumes of
these subjects, on the other hand, are elements of a high-dimensional space. There-
fore, one is concerned with the problem of having topologically sparse training data
with only very few data points in the original high-dimensional image space. Working
with sub-portions of the image samples increases the number of available data points
and at the same time decreases its ambient dimensionality.
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2.2 Large-Scale CNN-Prior

Suppose we have access to a finite set of N ground truth samples (xk)
N
k=1 and corre-

sponding initial estimates (xini,k)
N
k=1. We are in particular interested in the case where

N is relatively small and the considered samples xk have a relatively large size, which
is the case for most medical imaging applications. For any sample x ∈ X we consider
its decomposition in Np,s possibly overlapping patches

x = Wp,s

Np,s∑
j=1

(Rp,s
j )TRp,s

j x, (4)

where Rp,s
j and (Rp,s

j )T extract and reposition the patches at the original position,
respectively, and the diagonal operator Wp,s accounts for weighting of regions con-
taining overlaps. The entries of the tuples p and s specify the size of the patches and
the strides in each dimension and therefore the number of patches Np,s which are
extracted from a single image.

We aim for improved estimates xCNN,k = fθ(xini,k) ≈ xk via a trained network function
fθ to be constructed. Since the operator norm ofWp,s is less or equal to one, by the
triangle inequality, we can estimate the average error

eN :=

N∑
k=1

‖xk − xCNN,k‖2 ≤
N∑
k=1

Np,s∑
j=1

∥∥Rp,s
j xk −Rp,s

j xCNN,k

∥∥
2

=: eN,Np,s . (5)

Inequality (5) suggests that it is beneficial estimating each patch of the sample xk by
a neural network uθ applied to Rp,s

j xini,k rather than estimating the whole sample at
once. The neural network uθ is trained on a subset of pairs

D =
{(

Rp,s
j (xini,k),R

p,s
j (xk)

)
: (k, j) ∈ IN,Np,s

}
, (6)

of all possible patches extracted from the N samples in the dataset, where IN,Np,s :=
{1, . . . , N}×{1, . . . , Np,s}. During training, we optimize the set of parameters θ to mini-
mize the L2-error between the estimated output of the patches and the corresponding
ground truth patch by minimizing

L(θ) =
1

Ntrain

∑
(zini,z)∈D

‖uθ(zini)− z‖22 , (7)

where Ntrain is the number of training patches.

Denote by fθ the composite function which decomposes a sample image or volume x
into patches, applies a neural network uθ to each patch, and reassembles the sample
from them. This results in the proposed CNN-prior xCNN given by

xCNN := fθ(xini) = Wp,s

∑
j

(Rp,s
j )T(uθ(R

p,s
j (xini))), (8)

where xini = A†y is the initial reconstruction obtained from the measured data.
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Remark 1. The inequality in (5) guarantees that the set of parameters found by min-
imizing (7) is also suitable for obtaining the prior xCNN. Therefore, uθ is powerful
enough to deliver a CNN-prior to regularize the solution of (3). Figure 1 illustrates the
process of extracting patches from a volume using the operatorRp,s

j , processing it with
a neural network uθ and repositioning it at the original position using the transposed
operator (Rp,s

j )T. The example is shown for a 2D cine MR image sequence.

Figure 1: Workflow for obtaining a CNN-prior by patch-based processing: First, the
initial reconstruction is divided into patches, then the network uθ is applied to all
patches. Reassembling all processed patches results in the CNN-prior which is then
used for regularization of the inverse problem.

2.3 Reconstruction Algorithm

After having found the CNN prior (8), as a final reconstruction step, the optimality
condition for problem (3) is solved with an iterative method dependent on the specific
application. The solution of (3) is then the final CNN-based reconstruction. Algorithm
1 summarizes the proposed three-step reconstruction scheme.

Algorithm 1 Proposed CNNs-based large scale image reconstruction algorithm.
Data: trained network uθ , function fθ , noisy or incomplete measured data y, regu-
larization parameter λ > 0
Output: reconstruction xREC

1) xini ← A†y
2) xCNN ← fθ(xini)
3) xREC ← arg minxD(Ax,y) + λ‖x− xCNN‖22
Return xREC

Note that the regularizer R(x) = ‖x − xCNN‖22 is strongly convex. Therefore, if the
discrepancy term D(Ax,y) is convex, then the Tikhonov functional (3) is strongly
convex and can be efficiently minimized by most gradient based iterative schemes
including Landweber’s iteration and Conjugate Gradient type methods. The specific
strategy for minimizing (3) depends on the considered application. In the case of an
ill-conditioned inverse problem with noisy measurements, it might be beneficial that
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(3) is only approximately minimized. For example, for the case of low-dose CT, early
stopping of the Landweber iteration is applied as additional regularization method
due to the semi-convergence property of the Landweber iteration [32]. Such a strat-
egy is used for the numerical results presented in Section 4.

2.4 Convergence Analysis

Another benefit of our approach is that minimization of the Tikhonov functional (3)
corresponds to convex variational regularization with a quadratic regularizer. There-
fore, one can use well known stability, convergence and convergence rates results
[9, 10, 20, 27]. Consequently, opposed to most existing neural network based recon-
struction algorithms, the proposed framework is build on the solid theoretical fun-
dament for regularizing inverse problems. As example of such results we have the
following theorem.

Theorem 2 (Convergence of CNN-based regularization). Let A : X → Y be linear,
xCNN ∈ X , y0 ∈ A(X), and yδ ∈ Y satisfy ‖yδ − y0‖ ≤ δ. Then the following hold:

(a) For all δ, λ > 0, the quadratic Tikhonov functional

Fyδ,xCNN,λ(x) := ‖Ax− yδ‖22 + λ‖x− xCNN‖22 (9)

has a unique minimizer xδ,λ.

(b) The equationAx = y0 has a unique xCNN-minimizing solution x0 ∈ arg min{‖x−
xCNN‖2 : Ax = y0}.

(c) If the parameter choice λ = λ(δ) satisfies λ, δ2/λ→ 0 as δ → 0, then limδ→0 ‖x0−
xδ,λ‖ = 0.

Proof. The change of variables

• x̄ := x− xCNN

• ȳ0 := y0 −AxCNN

• ȳδ := yδ −AxCNN

reduces (9) to standard Tikhonov regularization ‖Ax̄ − ȳδ‖2 + λ‖x̄‖22 → minx for the
inverse problem Ax̄ = ȳ0. Therefore, Items (a) - (c) follow from standard results that
can be found for example in [9, Section 5].

Theorem 2 also holds in the infinite-dimensional setting [9, Section 5] reflecting the
stability of the proposed CNN regularization. Similar results hold for nonlinear prob-
lems and general discrepancy measures [10]. Moreover, one can derive quantitative
error estimates similar to [10, 20, 27]. Such theoretical investigations, however, are
beyond the scope of this paper.
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3 Experiments

In the following, we evaluated our proposed method on two different examples of
large-scale inverse problems given by 3D low-dose CT and 2D undersampled radial
cine MRI. We compared our proposed method to the well-known TV-minimization-
based and dictionary learning-based approaches presented in [5], [36] and [34], [39],
which we abbreviate by TV and DIC, respectively. Further details about the comparison
methods are discussed later in the paper.

3.1 2D Radial Cine MRI

Here we applied our method to image reconstruction in undersampled 2D radial cine
MRI. Typically, MRI is performed using multiple receiver coils and therefore, the inverse
problem is given by

EIx = yI , (10)

where x ∈ CN with N = Nx ·Ny ·Nt is an unknown complex-valued image sequence.
The encoding operator EI is given by EI = S ◦E ◦C where

C = [C1, . . . ,Cnc ]
T, (11)

E = diag(F, . . . ,F), (12)
S = diag(SI , . . . ,SI). (13)

Here,Ci denotes the i-th coil sensitivity map, nc is the number of coil-sensitivity maps,
F the 2D frame-wise operator and SI with I ⊂ J = {1, . . . , Nrad}, |I| := m ≤ Nrad, a
binary mask which models the undersampling process of theNrad Fourier coefficients
sampled on a radial grid. The vector yI ∈ CM with M = m · nc corresponds to the
measured data. Here, we sampled the k-space data along radial trajectories chosen
according to the golden-angle method [38]. Note that problem (10) is mainly ill-posed
not due to the presence of noise in the acquisition, but because the data acquisition
is accelerated and hence only a fraction of the required measurements is acquired.

If we assume a radial data-acquisition grid, problem (10) is a large-scale inverse prob-
lem mainly because of two reasons. First, the measurement vector yI corresponds to
nc copies of the Fourier encoded image data multiplied by the corresponding coil
sensitivity map. Second, the adjoint operator EH

I consists of two computationally de-
manding steps. The radially acquired k-space data is first properly re-weighted and
interpolated to a Cartesian grid, for example by using Kaiser-Bessel functions [24].
Then, a 2D inverse Fourier operation is applied to the image of each cardiac phase and
the final image sequence is obtained by weighting the images from each estimated
coil-sensitivity map and combining them to a single image sequence. We refer to
the reconstruction obtained by xI = EH

I yI as the non-uniform fast Fourier-transform
(NUFFT) reconstruction. Therefore, in radial multi-coil MRI, the measured k-space data
is high-dimensional and the application of the encoding operators EI and EH

I is fur-
ther more computationally demanding than sampling on a Cartesian grid, see e.g [31].
This makes the construction of cascaded networks which also process the k-space
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data [12] or repeatedly employ the forward and adjoint operators [28], [23] computa-
tionally challenging. Therefore, decoupling the regularization given by the CNNs from
the data-consistency step is necessary in this case.

As proposed in Section 2, we solve a regularized version of problem (10) by minimizing

FyI ,xCNN,λ(x) = ‖EIx− yI‖22 + λ‖x− xCNN‖22, (14)

where xCNN is obtained a-priori by using an already trained network. For this ex-
ample, for obtaining the CNN-prior xCNN, we adopted the XT,YT approach presented
in [18], where a modified version of the 2D U-net is used to process spatio-temporal
slices which can be extracted from the image sequence. Since the XT,YT method was
previously introduced to only process real-valued data (i.e. the magnitude images), we
followed a similar strategy by processing the real and imaginary parts of the image se-
quences separately but using the same real-valued network uθ . This further increases
the amount of training data by a factor of two. More precisely, let Rxt

j and Ryt
j de-

note the operators which extract the j-th two-dimensional spatio-temporal slices in
xt- and yt-direction from a 3D volume (Rxt

j )T and (Ryt
j )T their respective transposed

operations which reposition the spatio-temporal slices at their original position.

By uθ we denote a 2D U-net as the one described in [18] which is trained on spatio-
temporal slices, i.e. on a dataset of pairs which consist of the spatio-temporal slices
in xt- and yt-direction of both the real and imaginary parts of the complex-valued
images. The network uθ was trained tominimize theL2-error between the ground truth
image and the estimated output of the CNN. Our dataset consists of radially acquired
2D cine MR images from n = 19 subjects (15 healthy volunteers and 4 patients with
known cardiac dysfunction) with 30 images covering the cardiac cycle. The ground
truth images were obtained by kt-SENSE reconstruction using Nθ = 3400 radial lines.
We retrospectively generated the radial k-space data yI by sampling the k-space data
along Nθ = 1130 radial spokes using nc = 12 coils. Note that sampling Nθ = 3400
already corresponds to an acceleration factor of approximately ∼ 3 and therefore,
Nθ = 1130 corresponds to an accelerated data-acquisition by an approximate factor
of ∼ 9. The forward and the adjoint operators EI and EH

I were implemented using
the ODL library [1]. The complex-valued CNN-regularized image sequence xCNN was
obtained by

xCNN = fθ(xI)

=
1

2

[∑
j

(Rxt
j )T

(
uθ(R

xt
j (RexI))

)
+(Ryt

j )T
(
uθ(R

yt
j (RexI))

)
+i
(

(Rxt
j )T

(
uθ(R

xt
j (ImxI))

))
+i
(

(Ryt
j )T

(
uθ(R

yt
j (ImxI))

))]
(15)

Given xCNN, functional (14) was minimized by setting its derivative with respect to x to
zero and applying the pre-conditioned conjugate gradient (PCG) method to iteratively
solve the resulting system. PCG was used to solve the system Hx = b with

H = EH
I EI + λ I,
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b = xI + λxCNN. (16)

Since the XT,YT method gives access to a large number of training samples, training
the network uΘ for 12 epochs was sufficient. The CNN was trained by minimizing the
L2-norm of the error between labels and output by using the Adam optimizer [17]. We
split our dataset in 12/3/4 subjects for training, validation and testing and performed
a 4-fold cross-validation. For the experiment, we performed niter = 16 subsequent
iterations of PCG and empirically set λ = 0.1. Note that due to strong convexity, (14)
has a unique minimizer and solving system (16) yields the desired minimizer. The
obtained results can be found in Subsection 4.1.

3.2 3D Low-Dose Computed Tomography

The current generation of CT scanners performs the data-acquisition by emitting X-
rays along trajectories in the form of a cone-beam for each angular position of the
scanner. Therefore, for each angle φ of the rotation, one obtains an X-ray image which
is measured by the detector array and thus, the complete sinogram data can be iden-
tified with a 3D array of shape (Nφ, Nrx , Nry). Thereby, Nφ corresponds to the number
of angles the rotation of the scanner is discretized by and Nrx and Nry denote the
number of elements of the detector array. The values of these parameters vary from
scanner to scanner but are in the order of Nφ ≈ 1000 for a full rotation of the scanner
and Nrx × Nry ≈ 320 × 800 for a 320-row detector array, which is for example used
for cardiac CT scans [8]. The volumes obtained from the reconstructions are typically
given by an in-plane number of pixels of Nx × Ny = 512 × 512 and varying number
of slices Nz , dependent on the specific application. For this example, we consider a
similar set-up as in [2]. The non-linear problem is given by

yη = Tx + η = p exp{−µRx}+ η, (17)

where p denotes the average number of photons per pixel, µ is the linear attenuation
coefficient of water, R corresponds to the discretized version of a ray-transform with
cone-beam geometry and the vector η denotes the Poisson-distributed noise in the
measurements. Following our approach, we are interested in solving

Fyη ,xCNN,λ(x) = DKL(Tx,yη) + λ‖x− xCNN‖22 → min, (18)

where DKL denotes the Kullback-Leibler divergence which corresponds to the log-
likelihood function for Poisson-distributed noise. According to the previously intro-
duced notation, the prior xCNN is given by xCNN = fθ(xη), where fθ denotes a CNN-
based processing method with trainable parameters θ and xη = R†(−µ−1ln(p−1yη))
with R† being the filtered back-projection (FBP) reconstruction.

Since our object of interest x is a volume, it is intuitive to choose a NN which involves
3D convolutions in order to learn the filters by exploiting the spatial correlation of
adjacent voxels in x-, y- and z-direction. In this particular case, uθ denotes a 3D
U-net similar to the one presented in [14]. Due to the large dimensionality of the
volumes x, the network uθ cannot be applied to the whole volume. Instead, following
our approach, the volume was divided into patches to which the network uθ is applied.
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Therefore, the output xCNN was obtained as described in (8), where uθ operates on
3D patches given by the vector p = (128, 128, 16), which denotes the maximal size of
3D patches which we were able to process by a 3D U-net. The strides used for the
extraction and the reassembling of the volumes used in (8) is empirically chosen to
be s = (16, 16, 8).

Training of the network uθ was performed on a dataset of pairs according to (6), where
we retrospectively generated the measurements yη by simulating a low-dose scan on
the ground truth volumes. For the experiment, we used 16 CT volumes from the ran-
domized DISCHARGE trial [22] which we cropped to a fixed size of 512 × 512 × 128.
The simulation of the low-dose scan was performed as described in [2] by setting
p = 10 000 and µ = 0.02. The operator R is assumed to perform Nφ = 1000 projec-
tions which are measured by a detector array of shape Nrx × Nry = 320 × 800. For
the implementation of the operators, we used the ODL library [1]. The source-to-axis
and source-to-detector distances were chosen according to the DICOM files. Since
the dataset is relatively small, we performed a 7-fold cross-validation where for each
fold we split the dataset in 12 patients for training, 2 for validation and 2 for testing.
The number of training samples Ntrain results from the number of patches times the
number of volumes contained in the training set. We trained the network uθ for 115
epochs by minimizing the L2-norm of the error between labels and outputs. For train-
ing, we used the Adam optimizer [17]. With the described configuration of p and s,
the resulting number of patches to be processed in order to obtain the prior xCNN is
therefore given by Np,s = 9 375. In this example, the solution xREC to problem (18)
was then obtained by performing niter = 4 iterations of Landweber’s method where
we further used the filtered-back projection R† as a left-preconditioner to accelerate
the convergence of the scheme. For the derivation of the gradient of (18) with respect
to x, we refer to [2]. The regularization parameter was empirically set to λ = 1. The
results can be found in Subsection 4.2.

3.3 Reference Methods

Here we discuss the methods of comparison in more detail and report the times
needed to process and reconstruct the images or volumes. The data-discrepancy
term D( · , · ) was again chosen according to the considered examples as previously
discussed. The TV-minimization approach used for comparison is given by solving

D(Ax,y) + λ‖Gx‖1 → min
x

(19)

where G denotes the discretized version of the isotropic first order finite differences
filter in all three dimensions. The solution of problem (19) was obtained by introducing
an auxiliary variable z and alternating between solving for x and z. For the solution
of one of the sub-problems, an iterative shrinkage method was used, see [7] for more
details. The second resulting sub-problem was solved by iteratively solving a system
of linear equations, either by Landweber for the CT example or by PCG for the MRI
example, as mentioned before.

The dictionary learning-based method used for comparison is given by the solution
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of the problem
D(Ax,y) + λ‖x− xDIC‖22 → min

x
(20)

where, in contrast to our proposed method, xDIC was obtained by the patch-wise
sparse approximation of the initial image estimate using an already trained dictionary
D. Therefore, using a similar notation as in (8), the prior xDIC is given by

xDIC = Wp,s

∑
j

(Rp,s
j )TDγj , (21)

where the dictionary D was previously trained by 15 iterations of the iterative thresh-
olding and K residual means algorithm (ITKRM) [29] on a set of ground truth images
which were given by the high-dose images for the CT example and the kt-SENSE re-
constructions fromNθ = 3400 radial lines for the MRI example. Note that for each fold,
for training the dictionary D, we only used the data which we included in the training
set for our method. This means we trained a total of seven dictionaries for the CT
example and four dictionaries for the MRI example. For each iteration of ITKRM, we
randomly selected a subject to extract 10 000 3D training patches. The corresponding
sparse codes γj were then obtained by solving

min{γj}j

∑
j

(
‖(Rp,s

j )xini −Dγj‖22 + ‖γj‖0
)
, (22)

which is a sparse coding problem and was solved using orthogonal matching pursuit
(OMP) [35]. Thereby, the image xini corresponds to either the FBP-reconstruction xη for
the CT example or to the NUFFT-reconstruction xI for the MRI example. In both cases,
we used patches of shape given by p = (4, 4, 4) and strides given by s = (2, 2, 2). The
number of atomsK and the sparsity levels were set toK = 4·d, with d = 4·4·4 and S =
16. Note that, in contrast to [39] and [37], [6], the dictionary and the sparse codes were
not learned during the reconstruction, as the sparse coding step of all patches would
be too time consuming for very large-scale inverse problems, such as the CT example.
Instead, the dictionary and the sparse codes were used to generate the prior xDIC

which makes the method also more similar and comparable to ours. The parameter λ
is set as previously stated in the manuscript, depending on the considered example.

3.4 Quantitative Measures

For the evaluation of the reconstructions we report the normalized root mean squared
error (NRMSE) and the peak signal-to-noise ratio (PSNR) as error-based measures
and the structural similarity index measure (SSIM) [37] and the Haar Wavelet-based
perceptual similarity index measure (HPSI) [25] as image-similarity-based measures.
The reported statistics were obtained by calculating the measures of the images in
the xy-plane and averaging them over the different folds.
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4 Results

4.1 Results for 2D Radial Cine MRI

Figure 2 shows an example of the results obtained with our proposed method. Fig-
ure 2A shows the initial NUFFT-reconstruction xI obtained from the undersampled
k-space data yI . The CNN-prior xCNN obtained by the XT,YT network can be seen in
Figure 2B and shows a strong reduction of undersampling artefacts but also blur-
ring of small structures as indicated the yellow arrows. The CNN-prior xCNN is then
used as a prior in functional (14) which is subsequently minimized in order to ob-
tain the solution xREC which can be seen in Figure 2C. Figure 2D shows the kt-SENSE
reconstruction from the complete sampling pattern using Nθ = 3400 radial spokes
for the acquisition. From the point-wise error images, we clearly see that the NRMSE
is further reduced after performing the further iterations to minimize the CNN-prior-
regularized functional. Further, fine details are recovered as can be seen from the
yellow arrows in Figure 2C. Figure 3 shows a comparison of all different reported meth-

Table 1: Quantitative measures for the 2D radial cine MRI example. The measures are
obtained as averages over the four different folds.

NUFFT xCNN xREC TV DIC

PSNR 36.8023 42.5647 48.7752 41.6968 45.4743
NRMSE 0.1228 0.0612 0.0302 0.0693 0.0442
SSIM 0.6649 0.7876 0.952 0.8635 0.9175
HPSI 0.9679 0.9910 0.9985 0.9878 0.9959

ods. As can be seen from the point-wise error in Figure 3B, the TV-minimization [5]
method was able to eliminate some artefacts but less accurately compared to both
learning-based methods, see Figure 3C and Figure 3D. Table 1 lists the obtained quan-
titative measures for all methods averaged over the 4 different folds. From Table 1,
we see that the DIC method yielded better results than TV with respect to all reported
measures. Our proposed solution xREC further surpassed the dictionary learning-
based method, by additionally increasing the PSNR and SSIM by approximately 3dB
and 0.04, respectively. The difference with respect to HPSI, on the other hand, is rela-
tively small. Our method also reduced the NRMSE by about 0.014 compared to the DIC
method. In addition, from Table 1, we see that for this example, even though process-
ing the initial NUFFT-reconstruction with a CNN improved image quality with respect to
all reported measures, further iterations to minimize the CNN-prior regularized func-
tional increased data-consistency and additionally improved the PSNR, SSIM, HPSI and
NRMSE. In fact, the statistics of the CNN-prior show that only post-processing the ini-
tial NUFFT-reconstruction leads to results which are inferior to the DIC method with
respect to all reported measures.
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Figure 2: Results for a healthy volunteer showing two slices with different orienta-
tions. A: Initial NUFFT-reconstruction xI using Nθ = 1130 radial spokes, B: estimated
output xCNN using the spatio-temporal 2D XT,YT U-net, C: solution of the CNNs-based
regularized functional xREC, D: ground truth image reconstruction with kt-SENSE and
Nθ = 3400 radial spokes. All images are displayed in the same scale. For better visi-
bility, the point-wise error images are magnified by a factor of ×3. The yellow arrows
point at details which are smoothed out in the CNN-prior xCNN but are visible again
in the final reconstruction xREC.

4.2 Results for 3D Low-Dose CT

Figure 4 shows all the intermediate results obtained with the proposed method. Fig-
ure 4A shows the initial FBP-reconstruction which is contaminated by noise. The FBP-14
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Figure 3: Results for a patient (left panel) and a healthy volunteer (right panel). A:
Initial NUFFT-reconstruction xI using Nθ = 1130 radial spokes, B: solution of the TV-
minimization approach (TV), C: dictionary learning-based regularization solution (DIC),
D: CNN-regularized solution xREC, E: ground truth images obtained by kt-SENSE using
Nθ = 3400 radial spokes. All images are displayed in the same scale. For better
visibility, the point-wise error images are magnified by a factor of ×5. The point-wise
error is the lowest for the reconstruction xREC.

reconstruction was then processed using the function fθ described in (8) to obtain
the prior xCNN which can be seen in Figure 4B. From the point-wise error, we see
that patch-wise post-processing with the 3D U-net removed a large portion of the
noise resulting from the low-dose acquisition. Solving problem (18) increases data-
consistency since we make use of the measured data yη . Note that in contrast to
the previous example of undersampled radial MRI, the minimization of the functional
increased data-consistency of the solution but also contaminated the solution with
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noise, since the measured data is noisy due to the simulated low-dose scan protocol.
Table 2 summarizes the obtained quantitative measures for all intermediate recon-
structions of our approach as well as for the TV and the DIC method. In the first three
columns of Table 2 we see the results obtained for all three intermediate reconstruc-
tions of our proposed scheme. The reconstruction metrics improved substantially
from the FBP-reconstruction to the estimated prior xCNN. The difference in terms of
PSNR was almost 10 dB, while the NRMSE decreased by approximately 0.11. Further,
the similarity measures SSIM and HPSI were increased by about 0.14 and 0.04, respec-
tively. Finally, the estimated solution given by xREC which was obtained by performing
niter = 4 iterations of Landweber to minimize (18) showed a slight decrease in PSNR
and NRMSE which is related to the use of the noisy-measured data. However, fine di-
agnostic details as the coronary arteries are still visible in the prior xCNN and in the
solution xREC as indicated by the yellow arrows. SSIM slightly increased while HPSI
stayed approximately the same.
Figure 5 shows a comparison of images obtained by the different reconstruction meth-
ods. In Figure 5A, we see again the FBP-reconstruction obtained from the noisy data.
Figure 5B shows the result obtained by the TV-minimization method which removed
some of the noise as can be taken from the point-wise error image. The result ob-
tained by the DIC method can be seen in Figure 5C which further reduced image noise
compared to the TV method and surpasses TV with respect to the reported statistics,
as can be seein in Table 2. Finally, Figure 5D shows the solution xREC obtained with
our proposed scheme and Figure 5E shows the ground truth image. The reconstruc-
tion using the CNN output as a prior further increased the PSNR, SSIM and HPSI by
also reducing the NRMSE as can be taken from Table 2.

Table 2: Quantitative measures for the 3D low-dose CT example. The measures are
obtained as averages over the seven different folds.

FBP xCNN xREC TV DIC

PSNR 30.0052 40.3546 39.6264 33.946 34.7807
NRMSE 0.1657 0.0498 0.0538 0.1051 0.0938
SSIM 0.425 0.5755 0.5813 0.4985 0.5465
HPSI 0.9394 0.9821 0.9819 0.9503 0.9581

4.3 Reconstruction Times

Table 3 summarizes the times for the different components of the reconstructions
using all different approaches for both examples. The abbreviations "SHRINK" and
"LS1" stand for "shrinkage" and "linear system - one iteration" and denote the times
which are needed to apply the iterative shrinkage method for the TV approach and to
solve the sub-problems which are solved using iterative schemes, respectively.

Obviously, in terms of achieved image quality, the advantage of the DIC- and the CNN-
based Tikhonov regularization are given by obtaining stronger priors which allow to
use a smaller number of iterations to regularize the solution. The advantage of our
proposed approach compared to the dictionary learning-based is the highly reduced
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Figure 4: Axial view of image reconstructions of low-dose 3D CT data of a 55 years old
female patient. A: Low-dose FBP-reconstruction xη , B: estimated output xCNN using a
3D U-net, C: solution of the CNNs-based regularized functional xREC, D: ground truth
image. The yellow arrow points at the right coronary artery, which is visible in the
prior xCNN as well as in the final reconstruction xREC. All images are windowed and
displayed on the scale with C = 0HU,W = 850HU.

time to compute the prior which is used for regularization. The reason lies in the fact
that the DIC-based method requires to solve problem (22) to obtain the prior xDIC,
while in our method a CNN is used to obtain the prior xCNN. Since problem (22) is
separable, OMP is applied for each image/volume patch which is prohibitive as the
number of overlapping patches in a 3D volume is in the order of O(Nx · Ny · Nz) or
O(Nx ·Ny ·Nt), respectively. Obtaining xCNN, on the other hand, does not involve the
solution of any minimization problem but only requires the application of the network
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Figure 5: Axial view of image reconstructions of low-dose 3D CT data of a 76 years old
female patient. A: Low-dose FBP-reconstruction xη , B: TV-minimization based recon-
struction (TV), C: DIC-regularization based reconstruction (DIC), D: CNN-regularization
based reconstruction xREC, E: ground truth image. All images are windowed and dis-
played on the same scale with C = 0HU,W = 800HU.
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Table 3: Reconstruction and processing times for the different methods for one 3D CT
volume and a 2D cine MR image sequence.

3D Low Dose CT 2D Radial Cine MRI

A†yη ≈ 23 s (FBP) ≈ 11 s (NUFFT)
TV SHRINK � 1 s � 1 s

LS1 ≈ 40 s ≈ 1 : 20m
Total ≈ 11 m ≈ 42 m

DIC xDIC ≈ 1:24 h ≈ 7 m
LS1 ≈ 40 s ≈ 1:20 m
Total ≈ 1:28 h ≈ 28 m

Proposed xCNN ≈ 4 m ≈ 5 s
LS1 ≈ 40 s ≈ 1:20 m
Total ≈ 8 m ≈ 21 m

uθ to the different patches. As this corresponds to matrix-vector multiplications with
sparse matrices, its computational cost is lower and the calculations are further highly
accelerated by performing the computations on a GPU.

5 Discussion

The proposed three-steps reconstruction scheme provides a general framework for
solving large-scale inverse problems. The method is motivated by the observations
stated in the ablation study [19], where the performance of cascades of CNNs with dif-
ferent numbers of intercepting data-consistency layers but approximately fixed num-
ber of trainable parameters was studied. First, it was noted that the replacement of
simple blocks of convolutional layers by multi-scale CNNs given by U-nets had a vi-
sually positive impact on the obtained results. Further, it was empirically shown that
the results obtained by cascades of U-nets of different length but with approximately
the same number of trainable parameters were all visually and quantitatively compa-
rable in terms of all reported measures. This suggests that, for large-scale problems,
where the construction of cascaded networks might be infeasible, investing the same
computational effort and expressive power in terms of number of trainable parame-
ters in one single network might be similarly beneficial to intercepting several smaller
sub-networks by data-consistency layers as for example in [28], [23].
Due to the large sizes of the considered objects of interest, the prior xCNN is obtained
by processing patches of the images. Training the network on patches or slices of
the images further has the advantage of reducing the computational overhead while
naturally enlarging the available training data and therefore being able to success-
fully train neural networks even with datasets coming from a relatively small number
of subjects. Further, as demonstrated in [18], for the case of 2D radial MRI, one can
also exploit the low topological complexity of 2D spatio-temporal slices for training
the network uθ . This allows to reduce the network complexity by using 2D- instead of
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3D-convolutional layers and still exploiting spatio-temporal correlations and there-
fore to prevent overfitting. Note that the network architectures we are considering
are CNNs and, since they mainly consist of convolutional and max-pooling layers, we
can expect the networks to be translation-equivariant and therefore, patch-related
artefacts arising from the re-composition of the processed overlapping patches are
unlikely to occur in the CNN-prior.
We have tested and evaluated our method on two examples of large-scale inverse
problems given by 2D undersampled radial MRI and 3D low-dose CT. For both examples,
our method outperformed the TV-minimization method and the dictionary learning-
based method with respect to all reported quantitative measures. For the case of
2D undersampled radial cine MRI, using the CNN-prior as a regularizer in the sub-
sequent iterative reconstruction increased the achieved image quality with respect
to all reported measures, as can be taken from Table 1. For the CT example, due
to the inherent presence of noise in the measured data, the quantitative measures
of the final reconstruction are only similar to the ones obtained by post-processing
the FBP-reconstruction. However, performing a few iterations to minimize functional
(18), increased data-consistency of the obtained solution and resulted in a slight re-
enhancement of the edges and gave back the CT images their characteristic texture.
Future work to qualitatively assess the achieved image quality with respect to clin-
ically relevant features, e.g. the visibility of coronary arteries for the assessment of
coronary artery disease in cardiac CT, is already planned.
Using the CNN for obtaining a learning-based prior is faster by several orders of magni-
tude compared to the dictionary learning-based approach. This is because obtaining
the prior with a CNN reduces to a forward pass of all patches, i.e. to multiplications of
vectors with sparse matrices, where instead, the sparse coding of all patches involves
the solution of an optimization problem for each patch. Further, the time needed for
OMP is dependent on the sparsity level and the number of atoms of the dictionary,
see [33]. In our comparison, for the 2D radial MRI example, the total reconstruction
times of our proposed method and the DIC-based regularization method mainly dif-
fer in the step of obtaining the priors xDIC and xCNN. Note that, in contrast to [36]
and [6], in our comparison, the prior xDIC was only calculated once. In the original
works, however, the proposed reconstruction algorithms use an alternating direction
method of multipliers (ADMM) which alternates between first training the dictionary
D and sparse coding with OMP and then updating the image estimate. Therefore, the
realistic time needed to reconstruct the 2D cine MR images according to [37] and [6] is
given by the product of the seven minutes needed for one sparse approximation and
the number of iterations in the ADMM algorithm and the total time used for PCG for
solving the obtained linear systems. Note that for the 3D low-dose CT example, even
one patch-wise sparse approximation of the whole volume already takes about one
hour and therefore, applying an ADMM type of reconstruction method is computation-
ally prohibitive. Also, note that, even if the size of the image sequences for the MRI
example is smaller than the one of the 3D CT volumes, the reconstruction of the 2D
cine MR images takes relatively long compared to the CT example due to the fact that
we use two different iterative methods (Landweber and PCG) for two different systems
with different operators. Further, the number of iterations for the CT example is on
purpose smaller than for the MR example, as the measurement data is noisy and early
stopping of the iteration can already be thought of as a proper regularization method,
see for example [32]. Also, the operators used for the CT examples were implemented
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by using the operators provided by the ODL library and are therefore optimized for
performing calculations on the GPU. On the other hand, for the MRI example, we used
our own implementation of a radial encoding operator E which could be further im-
proved and accelerated.
Clearly, one difficulty of the proposed method is the one shared by all iterative re-
construction schemes with regularization: the need to choose the hyper-parameter λ
which balances the contribution of the regularization and the data-fidelity term can
highly affect the achieved image quality, especially when the data is contaminated
by noise. In cascaded networks, the parameter λ can on the other hand be learned
as well during training. Further, some other hyper-parameters as the number of it-
erations to minimize Tikhonov functional have to be chosen as well. In this work, we
empirically chose λ but point out that an exhaustive parameter search might yield
superior results.
The proposed method is related to the ones presented in [28], [23], [19] in the sense
that steps 2 and 3 in Algorithm 1 are iterated in a cascaded network which represents
the different iterations. However, in [28] and [23], the encoding operator is given by a
Fourier transform sampled on a Cartesian grid and therefore is an isometry. Thus, as-
suming a single-coil data-acquistion, given xCNN, the solution of (3) has a closed-form
solution which is also fast and cheap to compute since it corresponds to performing
a linear combination of the acquired k-space data and the one estimated from the
CNN outputs and subsequently applying the inverse Fourier transform. In the case
where the operator A is not an isometry, one usually needs to either solve a system
of linear equations in order to obtain a solution which matches the measured data
or, alternatively, rely on another formulation of the functional (3) which is suitable for
more general, also non-orthogonal operators [19]. However, if the operator A and its
adjointAH are computationally demanding to apply as in the case of radial multi-coil
MRI, or if the objects of interest are high-dimensional, e.g. 3D volumes in low-dose
CT, the construction of cascaded or iterative networks is prohibitive with nowadays
available hardware. In contrast, in the proposed approach, since the regularization
is separated from the data-consistency step, large-scale problems can be tackled as
well. Hence, by decoupling the regularization from further iteration of the reconstruc-
tion, one can also choose to employ more complex and sophisticated neural networks
to obtain the prior xCNN as it is typically the case for cascaded or iterative networks.
For example, in [28] or [2], the CNNs were given by simple blocks of fully convolutional
neural networks with residual connection. In contrast, in [19], the CNNs were replaced
by more sophisticated U-nets [26], [16]. However, the examples in [19], [2] or [3] all use
two-dimensional CT geometries, which do not correspond to the ones used in clinical
practice. Therefore, particularly for large-scale inverse problems where the construc-
tion of iterative networks is infeasible, our method represents a valid alternative to
obtain accurate reconstructions.
While in this work we used a relatively simple neural network architecture given by
a plain U-net as in [16], further focus could be put on the choice of the network uθ ,
also by using more sophisticated approaches, e.g. improved versions of the U-net [13]
or generative adversarial networks for obtaining a more accurate prior to be further
used in the proposed reconstruction scheme.
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6 Conclusion

We have presented a general framework for solving large-scale ill-posed inverse prob-
lems in medical image reconstruction. The strategy consists in decoupling the regu-
larization of the solution from ensuring data-consistency by solving the problem in
three stages. First, an initial guess of the solution is obtained by the direct recon-
struction from the measured data. As a second step, the initial solution is patch-wise
processed by a previously trained CNN in order to obtain a prior which is then used
in a Tikhonov-regularized functional to obtain the final reconstruction in a third step.
The decoupling of the steps of obtaining a CNN-prior and minimizing a Tikhonov-
functional allows to tackle large-scale problems. For both shown examples of 2D un-
dersampled radial MRI and 3D low-dose CT, the proposed method outperformed the
total variation-minimization method and the dictionary learning-based approach with
respect to all reported quantitative measures. Since the reconstruction scheme is a
general one, we expect the proposed method to be successfully applicable to other
imaging modalities as well.
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