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Abstract

In this paper we present a generalized Deep Learning-based approach to solve
ill-posed large-scale inverse problems occurring in medical imaging. Recently,
Deep Learning methods using iterative neural networks and cascaded neural net-
works have been reported to achieve excellent image quality for the task of im-
age reconstruction in di�erent imaging modalities. However, the fact that these
approaches employ the forward and adjoint operators repeatedly in the network
architecture requires the network to process the whole images or volumes at once,
which for some applications is computationally infeasible. In this work, we follow
a di�erent reconstruction strategy by decoupling the regularization of the solution
from ensuring consistency with the measured data. The regularization is given in
the form of an image prior obtained by the output of a previously trained neural
network which is used in a Tikhonov regularization framework. By doing so, more
complex and sophisticated network architectures can be used for the removal of
the artefacts or noise than it is usually the case in iterative networks. Due to the
large scale of the considered problems and the resulting computational complex-
ity of the employed networks, the priors are obtained by processing the images
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or volumes as patches or slices. We evaluated the method for the cases of 3D
cone-beam low dose CT and undersampled 2D radial cine MRI and compared it
to a total variation-minimization-based reconstruction algorithm as well as to a
method with regularization based on learned overcomplete dictionaries. The pro-
posed method outperformed all the reported methods with respect to all chosen
quantitative measures and further accelerates the regularization step in the re-
construction by several orders of magnitude.

Keywords: Deep Learning, Neural Networks, Inverse Problems, Low-Dose CT, Radial
Cine MRI

1 Introduction

In inverse problems, the goal is to recover an object of interest from a set of indirect
and possibly incomplete observations. In medical imaging, for example, a classical
inverse problem is given by the task of reconstructing a diagnostic image from a certain
number of measurements, e.g. X-ray projections in computed tomography (CT) or the
spatial frequency information (k-space data) in magnetic resonance imaging (MRI).
The reconstruction from the measured data can be an ill-posed inverse problem for
di�erent reasons. In low-dose CT, for example, the reconstruction from noisy data
is ill-posed because of the ill-posedeness of the inversion of the Radon transform.
In accelerated MRI, on the other hand, the reconstruction from incomplete data is
ill-posed since the underlying problem is underdetermined and therefore no unique
solution exists without integrating prior information.

In order to constrain the space of possible solutions, a typical approach is to im-
pose speci�c a-priori chosen properties on the solution by adding a regularization
(or penalty) term to the problem. Well known choices for the regularization are for
example given by the popular total variation-minimization and sparse regularization
approaches, where the solution is transformed using a sparsifying transform such as
the Wavelet-transform or the Fourier-transform [19] or a �nite-di�erences �lter [5]
and the L1-norm of the latter is minimized. While the aforementioned methods use
hand-crafted priors, other methods learn the regularization directly within the recon-
struction of the images where the regularization is imposed patch-wise by the sparse
approximation using a dictionary which is learned in an unsupervised manner during
the reconstruction [33], [36]. However, these learning-based methods are usually time
consuming since the regularization is adaptive and learned during an iterative recon-
struction scheme. Further, in the speci�c dictionary learning framework, the regular-
ization requires training of a dictionary and sparse coding of all patches of the current
image estimate at each iteration. This is computationally demanding and makes the
application in the clinical routine challenging.

Recently, Convolutional Neural Networks (CNNs) have been applied in the �eld of in-
verse problems, either as direct full inversion methods [38], as post processing meth-
ods [14], [27], [11], as learned iterative schemes [2], [3], or as learned regularizers [25],
[17], [18], [4], [21]. When used as post-processing methods, the networks are trained to
denoise or remove artefacts from images obtained by the direct reconstruction of the
noisy or incomplete data. Although a wide range of di�erent network architecture has
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been proposed, e.g. [11], [37], a major concern is that the estimated output of the CNN
might lack data-consistency. In order to ensure the obtained image is consistent with
the acquired raw data, methods have been proposed where the constructed networks
de�ne unrolled iterative schemes which employ the forward and the adjoint opera-
tors. These methods can be interpreted as learned iterative schemes and have been
successfully applied to di�erent imaging modalities [2], [3], [9], [13], [25], [17], [4], [21].
Thereby, the subnetworks containing trainable parameters can be thought of regular-
izers which are learned by end-to-end training of the whole network cascade. Due to
the integration of the forward and the adjoint operators, iterative or cascaded net-
works seem to be the natural network of choice for any image reconstruction task.
However, the main advantage of all these methods at the same time represents the
computational bottleneck of the approaches. The fact that the forward and the adjoint
operators are integrated as layers in the networks requires that the whole object of
interest has to be processed at once. Since CNNs typically increase the input size by
extracting several feature maps per layer, end-to-end training might be infeasible for
some high-dimensional problems, including high-resolution 3D CT volumes or non-
Cartesian MR acquisitions.

In order to overcome these limitations, we propose to decouple the regularization of
the solution from ensuring consistency with the measured data. We present a general
framework to use CNNs as learned regularizers and still ensure data-consistency of the
obtained solution. In particular, we consider high-dimensional problems where either
the object of interest or the measured data are high-dimensional (high-resolution
3D CT) or the evaluation of the forward or the adjoint operators is computationally
expensive (dynamic 2D non-Cartesian radial MR acquisition).

This paper is organized as follows. In Section 2, we formally introduce the inverse prob-
lem of image reconstruction and motivate our proposed approach for the solution of
large-scale ill-posed inverse problems. We demonstrate the feasibility of our method
by applying it to 3D low-dose cone beam CT and 2D radial cine MRI in Section 3. We
further compare the proposed approach to an iterative reconstruction method given
by total variation-minimization (TV) and a learning-based method (DIC) using Dictio-
nary Learning-based priors in Section 4. We then conclude the work with a discussion
and conclusion in Section 5 and Section 6.

2 Iterative Image Reconstruction with CNN-Priors

In this Section, we present the proposed deep learning scheme for solving large-scale,
possibly non-linear, inverse problems. For the sake of clarity, we do not focus on a
functional analytical setting but consider discretized problems of the form

Ax = y, (1)

where A : X → Y is a discrete forward operator, y ∈ Y is the measured data and
x ∈ X the unknown object to be recovered, i.e. the diagnostic image. The operator
A could for example model the measurement process in di�erent imaging modalities
such as the X-ray projection in CT or the Fourier encoding in MRI. Depending on the
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nature of the underlying problem one is considering, problem (1) can be ill-posed for
di�erent reasons. For example, in low-dose CT, the measurement data is inherently
contaminated by noise. In cardiac MRI, k-space data is often undersampled in order
to speed up the acquisition process. This leads to incomplete data and therefore to
an undetermined problem with an in�nite number of theoretically possible solutions.
In order to constrain the space of solutions of interest, a typical approach is to impose
speci�c a-priori chosen properties on the solution x by adding a regularization (or
penalty) termR(x) and using Lagrangemultipliers. Then, we solve the relaxed problem

D(Ax,y) + λR(x)→ min, (2)

where D( · , · ) is an appropriately chosen data-discrepancy measure and λ > 0 con-
trols the strength of the regularization. The choice of D( · , · ) depends on the con-
sidered problem. Clearly, the regularization term R(x) signi�cantly a�ects the quality
and the characteristics of the solution x. Here, we propose a generalized approach
for solving high-dimensional inverse problems by the following three steps: First, an
initial guess of the solution is provided by a direct reconstruction from the measured
data, i.e. xη = A†y, where A† denotes some reconstruction operator. Then, a CNN is
used to remove the noise or the artefacts from the direct reconstruction xη in order
to obtain another intermediate reconstruction xCNN which is used as a CNN-prior in
a Tikhonov functional

Fy,xCNN,λ(x) := D(Ax,y) + λ‖x− xCNN‖22 → min. (3)

As a third and �nal step, the CNN-Tikhonov functional (3) is minimized resulting in the
proposed CNN-based reconstruction.

Note that the regularization of the problem, i.e. obtaining the CNN-prior, is decoupled
from the step of ensuring data-consistency of the solution via minimization of (3). This
allows to use deeper and more sophisticated CNNs as the ones typically used in it-
erative networks. Given the high-dimensionality of the considered problems, network
training is further carried out on sub-portions of the image samples, i.e. on patches or
slices which are previously extracted from the images or volumes. This is motivated by
the fact that in most medical imaging applications, one has typically access to datasets
with only a relatively small number of subjects. The images or volumes of these sub-
jects, on the other hand, are elements of a high-dimensional space. Therefore, one
is concerned with the problem of having topologically sparse training data with only
very few data points in the original high-dimensional image space. Working with sub-
portions of the image samples increases the number of available data points and at
the same time decreases its ambient dimensionality.

Let xf denote some ground truth image or volume and xest an estimate of xf . Then, we
can always �nd a decomposition of xf and xest in Np,s possibly overlapping patches
using the operators Rp,s

j and (Rp,s
j )ᵀ, i.e.

xf = Wp,s

Np,s∑
j=1

(Rp,s
j )ᵀRp,s

j xf , (4)

xest = Wp,s

Np,s∑
j=1

(Rp,s
j )ᵀRp,s

j xest, (5)
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where Rp,s
j and (Rp,s

j )ᵀ extract and reposition the patches at the original position,
respectively and the diagonal operator Wp,s accounts for weighting of regions con-
taining overlaps. The tuples p and s specify the size of the patches and the strides
and therefore the number Np,s of patches extracted from a single image. Since the
operator norm ofWp,s is less or equal to one, by the triangle inequality, we have

‖xf − xest‖2 ≤
Np,s∑
j=1

‖(Rp,s
j )ᵀ

(
Rp,s
j xf −Rp,s

j xest

)
‖2. (6)

Assuming we have access to a �nite set of N ground truth samples (xf,k)
N
k=1 and cor-

responding estimates (xest,k)
N
k=1, it analogously holds

eN :=
N∑
k=1

‖xf,k − xest,k‖2 ≤
N∑
k=1

Np,s∑
j=1

‖(Rp,s
j )ᵀ

(
Rp,s
j xf,k −Rp,s

j xest,k

)
‖2 =: eN,Np,s . (7)

Now assume that N is relatively small, which is usually the case for most medical
imaging applications, and the considered samples xf,k have a relatively large size (for
example, 3D CT image volumes). At this point, we see that it might be bene�cial trying
to estimate Rp,s

j xjf,k with a neural network uθ with trainable parameters θ, i.e. to �nd
θ such that (Rp,s

j xjest,k)(θ) ≈ Rp,s
j xjf,k for all k and j, rather than trying to predict

the whole sample at once, i.e. xest,k(θ) ≈ xf,k for all k. By doing so, one has the
advantage of having access to Np,s · N training samples of smaller size instead of N
samples of larger size. If there exists a θ∗ which minimizes eN,Np,s for (R

p,s
j xest,k)(θ) =

uθ(R
p,s
j xη,k) for some input xη,k , then clearly, if eN,Np → 0 for θ → θ∗, also eN → 0.

Using (5) we can obtain xest,k for all k by estimating the single patches (Rp,s
j xest,k)(θ).

More precisely, we denote by fθ the composite function which decomposes an image
or volume into patches, applies a neural network uθ to all patches, and reassembles
the sample from them. This results in the proposed CNN-prior xCNN given by

xCNN := fθ(xη) = Wp,s

∑
j

(Rp,s
j )ᵀ(uθ(R

p,s
j (xη))), (8)

where xη is the initial reconstruction obtained from the measured data yη ≈ Ax. The
network uθ is trained on a subset of pairs

D =
{(

Rp,s
j (xη,k),R

p,s
j (xf,k)

)
: (k, j) ∈ IN,Np,s

}
, (9)

of all possible patches extracted from the N samples in the dataset, where IN,Np,s :=
{1, . . . , N}×{1, . . . , Np,s}. During training, we optimize the set of parameters θ to mini-
mize the L2-error between the estimated output of the patches and the corresponding
ground truth patch, i.e. we solve the following optimization problem

L(θ) = 1

Ntrain

∑
(zη ,z)∈D

‖uθ(zη)− z‖22 → min, (10)

whereNtrain is the number of samples used for training the network uθ . The inequality
in (7) guarantees that the set of parameters θ∗ found by minimizing (10) is also suitable
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for obtaining the prior xCNN. Therefore, uθ is powerful enough to deliver a CNN-prior to
regularize the solution of (3). Figure 1 illustrates the processing of extracting a patch
from a volume using the operator Rp,s

j , processing it with a neural network uθ and
repositioning it at the original position using the transposed operator (Rp,s

j )ᵀ. The
example is shown for a 2D cine MR image sequence.

Figure 1: Work�ow for obtaining a CNN-prior by patch-based processing: First, the
initial reconstruction is divided into patches, then the network uθ is applied to all
patches. Reassembling all processed patches results in the CNN-prior which is then
used for regularization of the inverse problem.

Finally, the optimality condition for problem (3) is solved with an iterative method
which is typically dependent on the application. The solution of (3) is then the �-
nal CNN-based reconstruction. Algorithm 1 summarizes the complete reconstruction
scheme. Note that the strategy for minimizing (3) depends on the speci�c application.
In the case of an inverse problem with noisy measurements, (3) is only minimized ap-
proximately. For example, for the case of low-dose CT, early stopping of the Landweber
iteration is already considered to be a regularization method which is applied due to
the semi-convergence property of the Landweber iteration [29].

Algorithm 1 CNNs-based Regularized Reconstruction
Data: trained network uθ , function fθ , noisy or incomplete measured data yη ≈ Ax,
regularization parameter λ > 0
Output: reconstruction xREC

1) xη ← A†yη
2) xCNN ← fθ(xη)
3) xREC ← argminx D(Ax,yη) + λ‖x− xCNN‖22
Return xREC

3 Experiments

In the following, we evaluated our proposed method on two di�erent examples of
large-scale inverse problems given by 3D low-dose CT and 2D undersampled radial
cine MRI. We compared our proposed method to the well-known TV-minimization-
based and dictionary learning-based approaches presented in [5], [33] and [31], [36],
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which we abbreviate by TV and DIC, respectively. Further details about the comparison
methods are discussed later in the paper.

3.1 2D Radial Cine MRI

Here we applied our method to image reconstruction in undersampled 2D radial cine
MRI. Typically, MRI is performed using multiple receiver coils and therefore, the inverse
problem is given by

EIx = yI , (11)

where x ∈ CN with N = Nx ·Ny ·Nt is an unknown complex-valued image sequence.
The encoding operator EI is given by EI = S ◦E ◦C where

C = [C1, . . . ,Cnc ]
ᵀ, (12)

E = diag(F, . . . ,F), (13)
S = diag(SI , . . . ,SI).

Here,Ci denotes the i-th coil sensitivity map, nc is the number of coil-sensitivity maps,
F the 2D frame-wise operator and SI with I ⊂ J = {1, . . . , Nrad}, |I| := m ≤ Nrad, a
binary mask which models the undersampling process of the Nrad Fourier coe�cients
sampled on a radial grid. The vector yI ∈ CM with M = m · nc corresponds to the
measured data. Here, we sampled the k-space data along radial trajectories chosen
according to the golden-angle method [35]. Note that problem (11) is mainly ill-posed
not due to the presence of noise in the acquisition, but because the data acquisition
is accelerated and hence only a fraction of the required measurements is acquired.

If we assume a radial data-acquisition grid, problem (11) is a large-scale inverse prob-
lem mainly because of two reasons. First, the measurement vector yI corresponds
to nc copies of the Fourier encoded image data multiplied by the corresponding coil
sensitivity map. Second, the adjoint operator EHI consists of two computationally de-
manding steps. The radially acquired k-space data is �rst properly re-weighted and
interpolated to a Cartesian grid, for example by using Kaiser-Bessel functions [22].
Then, a 2D inverse Fourier operation is applied to the image of each cardiac phase
and the �nal image sequence is obtained by weighting the images from each estimated
coil-sensitivity map and combining them to a single image sequence. We refer to the
reconstruction obtained by xI = EHI yI as the non-uniform fast Fourier-transform
(NUFFT) reconstruction. Therefore, in radial multi-coil MRI, the measured k-space data
is high-dimensional and the application of the encoding operators EI and EHI is fur-
ther more computationally demanding than sampling on a Cartesian grid, see e.g [28].
This makes the construction of cascaded networks which also process the k-space
data [10] or by repeatedly employing the forward and adjoint operators [25], [21] com-
putationally challenging. Therefore, decoupling the regularization given by the CNNs
from the data-consistency step is necessary in this case.

We solve a regularized version of problem (11) by considering

FyI ,xCNN,λ(x) = ‖EIx− yI‖22 + λ‖x− xCNN‖22 → min, (14)
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where xCNN is obtained a-priori by using an already trained network. For this example,
for obtaining the CNN-prior xCNN, we adopted the XT,YT approach presented in [16],
where a modi�ed version of the 2D U-net is used to process spatio-temporal slices
which can be extracted from the image sequence. Since the XT,YT method was pre-
viously introduced to only process real-valued data (i.e. the magnitude images), we
followed a similar strategy by processing the real and imaginary parts of the image se-
quences separately but using the same real-valued network uθ . This further increases
the amount of training data by a factor of two.

More precisely, let Rxt
j and Ryt

j denote the operators which extract the j-th two-
dimensional spatio-temporal slices in xt- and yt-direction from a 3D volume. As-
suming Nx = Ny , we denote by Rxt,yt

j the composition Rxt,yt
j = (Rxt

j + Ryt
j ) and

by (Rxt,yt
j )ᵀ its transposed operation which repositions the spatio-temporal slices at

their original position. By uθ we denote a 2D U-net as the one described in [16] which
is trained on spatio-temporal slices, i.e. on a dataset of pairs which consist of the
spatio-temporal slices in xt- and yt-direction of both the real and imaginary parts
of the complex-valued images. The network uθ was trained to minimize the L2-error
between the ground truth image and the estimated output of the CNN. Our dataset
consists of radially acquired 2D cine MR images from n = 19 subjects (15 healthy vol-
unteers and 4 patients with known cardiac dysfunction) with 30 images covering the
cardiac cycle. The ground truth images were obtained by kt-SENSE reconstruction us-
ing Nθ = 3400 radial lines. We retrospectively generated the radial k-space data yI by
sampling the k-space data along Nθ = 1130 radial spokes using nc = 12 coils. Note
that sampling Nθ = 3400 already corresponds to an acceleration factor of approxi-
mately ∼ 3 and therefore, Nθ = 1130 corresponds to an accelerated data-acquisition
by an approximate factor of ∼ 9. The forward and the adjoint operators EI and EHI
were implemented using the ODL library [1]. The CNN-regularized (complex-valued)
image sequence xCNN was obtained by

xCNN = fθ(xI) =
1

4

∑
j

(Rxt,yt
j )ᵀ

(
uθ(R

xt,yt
j (RexI))

)
+ i
(
(Rxt,yt

j )ᵀ
(
uθ(R

xt,yt
j (ImxI))

))
Given xCNN, functional (14) was minimized by setting the derivative with respect to x to
zero and applying the pre-conditioned conjugate gradient (PCG) method to iteratively
solve the resulting system. Since 1

4

∑
j(R

xt,yt
j )ᵀRxt,yt

j = I, where I is the identity-
operator, PCG was used to solve the system Hx = b with

H = EHI EI + λ I, (15)
b = xI + λxCNN.

Since the XT,YT method gives access to a large number of training samples, training
the network uΘ for 12 epochs was su�cient. The CNN was trained by minimizing the
L2-norm of the error between labels and output by using the Adam optimizer [15]. We
split our dataset in 12/3/4 subjects for training, validation and testing and performed
a 4-fold cross-validation. For the experiment, we performed niter = 16 subsequent
iterations of PCG and we empirically chose λ = 0.1. The obtained results can be found
in Subsection 4.1.
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3.2 3D Low-Dose Computed Tomography

The current generation of CT scanners performs the data-acquisition by emitting X-
rays along trajectories in the form of a cone-beam for each angular position of the
scanner. Therefore, for each angle φ of the rotation, one obtains an X-ray image which
is measured by the detector array and thus, the complete sinogram data can be iden-
ti�ed with a 3D array of shape (Nφ, Nrx , Nry). Thereby, Nφ corresponds to the number
of angles the rotation of the scanner is discretized by and Nrx and Nry denote the
number of elements of the detector array. The values of these parameters vary from
scanner to scanner but are in the order of Nφ ≈ 1000 for a full rotation of the scanner
and Nrx × Nry ≈ 320 × 800 for a 320-row detector array, which is for example used
for cardiac CT scans [8]. The volumes obtained from the reconstructions are typically
given by an in-plane number of pixels of Nx × Ny = 512 × 512 and varying number
of slices Nz , dependent on the speci�c application. For this example, we consider a
similar set-up as in [2]. The non-linear problem is given by

yη = Tx+ η = p exp{−µRx}+ η, (16)

where p denotes the average number of photons per pixel, µ is the linear attenuation
coe�cient of water, R corresponds to the discretized version of a ray-transform with
cone-beam geometry and the vector η denotes the Poisson-distributed noise in the
measurements. Following our approach, we are interested in solving the following
problem:

Fyη ,xCNN,λ(x) = DKL(Tx,yη) + λ‖x− xCNN‖22 → min, (17)

where DKL denotes the Kullback-Leibler divergence which corresponds to the log-
likelihood function for Poisson-distributed noise. According to the previously intro-
duced notation, the prior xCNN is given by xCNN = fθ(xη), where fθ denotes a CNN-
based processing method with trainable parameters θ and xη = R†(−µ−1ln(p−1yη))
with R† being the �ltered back-projection (FBP) reconstruction. Since our object of
interest x is a volume, it is intuitive to choose a NN which involves 3D convolutions in
order to learn the �lters by exploiting the spatial correlation of adjacent voxels in x-,
y- and z-direction. In this particular case, uθ denotes a 3D U-net similar to the one
presented in [12]. Due to the large dimensionality of the volumes x, the network uθ
cannot be applied to the whole volume. Instead, following our approach, the volume
was divided into patches to which the network uθ is applied. Therefore, the output
xCNN was obtained as described in (8), where uθ operates on 3D patches given by the
vector p = (128, 128, 16), which denotes the maximal size of 3D patches which we were
able to process by a 3D U-net. The strides used for the extraction and the reassembling
of the volumes used in (8) is empirically chosen to be s = (16, 16, 8).

Training of the network uθ was performed on a dataset of pairs according to (9), where
we retrospectively generated the measurements yη by simulating a low-dose scan on
the ground truth volumes. For the experiment, we used 16 CT volumes from the ran-
domized DISCHARGE trial [20] which we cropped to a �xed size of 512 × 512 × 128.
The simulation of the low-dose scan was performed as described in [2] by setting
p = 10 000 and µ = 0.02. The operator R is assumed to perform Nφ = 1000 projec-
tions which are measured by a detector array of shape Nrx × Nry = 320 × 800. For
the implementation of the operators, we used the ODL library [1]. The source-to-axis
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and source-to-detector distances were chosen according to the DICOM �les. Since the
dataset is relatively small, we performed a 7-fold cross-validation where for each fold
we split the dataset in 12 patients for training, 2 for validation and 2 for testing. The
number of training samplesNtrain results from the number of patches times the num-
ber of volumes contained in the training set. We trained the network uθ for 115 epochs
by minimizing the L2-norm of the error between labels and outputs. For training, we
used the Adam optimizer [15]. With the described con�guration of p and s, the result-
ing number of patches to be processed in order to obtain the prior xCNN is therefore
given by Np,s = 9375. In this example, the solution xREC to problem (17) was then
obtained by performing niter = 4 iterations of Landweber’s method where we further
used the �ltered-back projectionR† as a left-preconditioner to accelerate the conver-
gence of the scheme. For the derivation of the gradient of (17) with respect to x, we
refer to [2]. The regularization parameter was empirically set to λ = 1. The results can
be found in Subsection 4.2.

3.3 Reference Methods

Here we discuss the methods of comparison in more detail and report the times
needed to process and reconstruct the images or volumes. The data-discrepancy
term D( · , · ) was again chosen according to the considered examples as previously
discussed. The TV-minimization approach used for comparison is given by solving

argminxD(Ax,y) + λ‖Gx‖1, (18)

where G denotes the discretized version of the isotropic �rst order �nite di�erences
�lter in all three dimensions. The solution of problem (18) was obtained by introducing
an auxiliary variable z and alternating between solving for x and z. For the solution
of one of the sub-problems, an iterative shrinkage method was used, see [7] for more
details. The second resulting sub-problem was solved by iteratively solving a system
of linear equations, either by Landweber for the CT example or by PCG for the MRI
example, as mentioned before.

The dictionary learning-based method used for comparison is given by the solution
of the problem

argminxD(Ax− y) + λ‖x− xDIC‖22, (19)

where, in contrast to our proposed method, xDIC was obtained by the patch-wise
sparse approximation of the initial image estimate using an already trained dictio-
nary D. Therefore, using a similar notation as in (8), the prior xDIC is given by

xDIC = Wp,s

∑
j

(Rp,s
j )ᵀDγj , , (20)

where the dictionary D was previously trained by 15 iterations of the iterative thresh-
olding and K residual means algorithm (ITKRM) [26] on a set of ground truth images
which were given by the high-dose images for the CT example and the kt-SENSE re-
constructions fromNθ = 3400 radial lines for the MRI example. Note that for each fold,
for training the dictionary D, we only used the data which we included in the training
set for our method. This means we trained a total of seven dictionaries for the CT
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example and four dictionaries for the MRI example. For each iteration of ITKRM, we
randomly selected a subject to extract 10 000 3D training patches. The corresponding
sparse codes γj were then obtained by solving

min{γj}j

∑
j

(
‖Rj,(p,s)x0 −Dγj‖22 + ‖γj‖0

)
, (21)

which is a sparse coding problem and was solved using orthogonal matching pursuit
(OMP) [32]. Thereby, the image x0 corresponds to either the FBP-reconstruction xη for
the CT example or to the NUFFT-reconstruction xI for the MRI example. In both cases,
we used patches of shape given by p = (4, 4, 4) and strides given by s = (2, 2, 2). The
number of atoms K and the sparsity levels were set to K = 4 · d, with d = 4 · 4 · 4 and
S = 16. Note that, in contrast to [36] and [34], [6], the dictionary and the sparse codes
were not learned during the reconstruction, as the sparse coding step of all patches
would be too time consuming for very large-scale inverse problems, such as the CT
example. Instead, the dictionary and the sparse codes were used to generate the prior
xDIC which makes the method also more similar and comparable to ours.

3.4 Quantitative Measures

For the evaluation of the reconstructions we report the normalized root mean squared
error (NRMSE) and the peak signal-to-noise ratio (PSNR) as error-based measures and
the structural similarity index measure (SSIM) [34] and the Haar Wavelet-based per-
ceptual similarity index measure (HPSI) [23] as image-similarity-based measures. The
reported statistics were obtained by calculating the measures of the images in the
xy-plane and averaging them over the di�erent folds.

4 Results

4.1 Results for 2D Radial Cine MRI

Figure 2 shows an example of the results obtained with our proposed method. Figure
2A shows the initial NUFFT-reconstruction xI obtained from the undersampled k-space
data yI . The CNN-prior xCNN obtained by the XT,YT network can be seen in Figure 2B
and shows a strong reduction of undersampling artefacts but also blurring of small
structures as indicated the yellow arrows. The CNN-prior xCNN is then used as a prior
in functional (14) which is subsequently minimized in order to obtain the solution xREC

which can be seen in Figure 2C. Figure 2D shows the kt-SENSE reconstruction from the
complete sampling pattern using Nθ = 3400 radial spokes for the acquisition. From
the point-wise error images, we clearly see that the NRMSE is further reduced after
performing the further iterations to minimize the CNN-prior-regularized functional.
Further, �ne details are recovered as can be seen from the yellow arrows in Figure 2C.

Figure 3 shows a comparison of all di�erent reported methods. As can be seen from
the point-wise error in Figure 3B, the TV-minimization [5] method was able to eliminate
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Figure 2: Results for a healthy volunteer showing two slices with di�erent orienta-
tions. A: Initial NUFFT-reconstruction xI using Nθ = 1130 radial spokes, B: estimated
output xCNN using the spatio-temporal 2D XT,YT U-net, C: solution of the CNNs-based
regularized functional xREC, D: ground truth image reconstruction with kt-SENSE and
Nθ = 3400 radial spokes. All images are displayed in the same scale. For better visi-
bility, the point-wise error images are magni�ed by a factor of ×3. The yellow arrows
point at details which are smoothed out in the CNN-prior xCNN but are visible again
in the �nal reconstruction xREC.

some artefacts but less accurately compared to both learning-based methods, see Fig-
ure 3C and Figure 3D. Table 1 lists the obtained quantitative measures for all methods
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Figure 3: Results for a patient (left panel) and a healthy volunteer (right panel). A:
Initial NUFFT-reconstruction xI using Nθ = 1130 radial spokes, B: solution of the TV-
minimization approach (TV), C: dictionary learning-based regularization solution (DIC),
D: CNN-regularized solution xREC, E: ground truth images obtained by kt-SENSE using
Nθ = 3400 radial spokes. All images are displayed in the same scale. For better visibil-
ity, the point-wise error images are magni�ed by a factor of ×5. The point-wise error
is the lowest for the reconstruction xREC.

averaged over the 4 di�erent folds. From Table 1, we see that the DIC method yielded
better results than TV with respect to all reported measures. Our proposed solution
xREC further surpassed the dictionary learning-basedmethod, by additionally increas-
ing the PSNR and SSIM by approximately 3dB and 0.04, respectively. The di�erence
with respect to HPSI, on the other hand, is relatively small. Our method also reduced
the NRMSE by about 0.014 compared to the DIC method. In addition, from Table 1,
we see that for this example, even though processing the initial NUFFT-reconstruction
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with a CNN improved image quality with respect to all reported measures, further it-
erations to minimize the CNN-prior regularized functional increased data-consistency
and additionally improved the PSNR, SSIM, HPSI and NRMSE. In fact, the statistics of
the CNN-prior show that only post-processing the initial NUFFT-reconstruction leads
to results which are inferior to the DIC method with respect to all reported measures.

NUFFT xCNN xREC TV DIC

PSNR 36.8023 42.5647 48.7752 41.6968 45.4743
NRMSE 0.1228 0.0612 0.0302 0.0693 0.0442
SSIM 0.6649 0.7876 0.952 0.8635 0.9175
HPSI 0.9679 0.9910 0.9985 0.9878 0.9959

Table 1: Quantitative measures of the intermediate steps of our proposed framework,
the TV-minimizationmethod and the dictionary learning-basedmethod. Themeasures
are obtained as averages over the four di�erent folds.

4.2 Results for 3D Low-Dose CT

Figure 4 shows all the intermediate results obtained with the proposed method. Figure
4A shows the initial FBP-reconstruction which is contaminated by noise. The FBP-
reconstruction was then processed using the function fθ described in (8) to obtain
the prior xCNN which can be seen in Figure 4B. From the point-wise error, we see
that patch-wise post-processing with the 3D U-net removed a large portion of the
noise resulting from the low-dose acquisition. Solving problem (17) increases data-
consistency since we make use of the measured data yη . Note that in contrast to
the previous example of undersampled radial MRI, the minimization of the functional
increased data-consistency of the solution but also contaminated the solution with
noise, since the measured data is noisy due to the simulated low-dose scan protocol.

Table 2 summarizes the obtained quantitative measures for all intermediate recon-
structions of our approach as well as for the TV and the DIC method. In the �rst
three columns of Table 2 we see the results obtained for all three intermediate recon-
structions of our proposed scheme. The reconstructionmetrics improved substantially
from the FBP-reconstruction to the estimated prior xCNN. The di�erence in terms of
PSNR was almost 10 dB, while the NRMSE decreased by approximately 0.11. Further,
the similarity measures SSIM and HPSI were increased by about 0.14 and 0.04, respec-
tively. Finally, the estimated solution given by xREC which was obtained by performing
niter = 4 iterations of Landweber to minimize (17) showed a slight decrease in PSNR
and NRMSE which is related to the use of the noisy-measured data. However, �ne di-
agnostic details as the coronary arteries are still visible in the prior xCNN and in the
solution xREC as indicated by the yellow arrows. SSIM slightly increased while HPSI
stayed approximately the same.

Figure 5 shows a comparison of images obtained by the di�erent reconstruction meth-
ods. In Figure 5A, we see again the FBP-reconstruction obtained from the noisy data.
Figure 5B shows the result obtained by the TV-minimization method which removed
some of the noise as can be taken from the point-wise error image. The result ob-
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Figure 4: Axial view of image reconstructions of low-dose 3D CT data of a 55 years old
female patient. A: Low-dose FBP-reconstruction xη , B: estimated output xCNN using a
3D U-net, C: solution of the CNNs-based regularized functional xREC, D: ground truth
image. The yellow arrow points at the right coronary artery, which is visible in the
prior xCNN as well as in the �nal reconstruction xREC. All images are windowed and
displayed on the scale with C = 0HU,W = 850HU.

tained by the DIC method can be seen in Figure 5C which further reduced image noise
compared to the TV method and surpasses TV with respect to the reported statistics,
as can be seein in Table 2 . Finally, Figure 5D shows the solution xREC obtained with
our proposed scheme and Figure 5E shows the ground truth image. The reconstruc-
tion using the CNN output as a prior further increased the PSNR, SSIM and HPSI by
also reducing the NRMSE as can be taken from Table 2.
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Figure 5: Axial view of image reconstructions of low-dose 3D CT data of a 76 years old
female patient. A: Low-dose FBP-reconstruction xη , B: TV-minimization based recon-
struction (TV), C: DIC-regularization based reconstruction (DIC), D: CNN-regularization
based reconstruction xREC, E: ground truth image. All images are windowed and dis-
played on the same scale with C = 0HU,W = 800HU.
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FBP xCNN xREC TV DIC

PSNR 30.0052 40.3546 39.6264 33.946 34.7807
NRMSE 0.1657 0.0498 0.0538 0.1051 0.0938
SSIM 0.425 0.5755 0.5813 0.4985 0.5465
HPSI 0.9394 0.9821 0.9819 0.9503 0.9581

Table 2: Quantitative measures of the intermediate steps of our proposed framework,
the TV-minimizationmethod and the dictionary learning-basedmethod. Themeasures
are obtained as averages over the seven di�erent folds.

4.3 Reconstruction Times

Table 3 summarizes the times for the di�erent components of the reconstructions
using all di�erent approaches for both examples. The abbreviations "SHRINK" and
"LS1" stand for "shrinkage" and "linear system - one iteration" and denote the times
which are needed to apply the iterative shrinkage method for the TV approach and to
solve the sub-problems which are solved using iterative schemes, respectively.

3D Low Dose CT 2D Radial Cine MRI

A†yη ≈ 23 s (FBP) ≈ 11 s (NUFFT)

TV SHRINK � 1 s � 1 s
LS1 ≈ 40 s ≈ 1 : 20m
Total ≈ 11 m ≈ 42 m

DIC xDIC ≈ 1:24 h ≈ 7 m
LS1 ≈ 40 s ≈ 1:20 m
Total ≈ 1:28 h ≈ 28 m

Proposed xCNN ≈ 4 m ≈ 5 s
LS1 ≈ 40 s ≈ 1:20 m
Total ≈ 8 m ≈ 21 m

Table 3: Reconstruction and processing times for the di�erent methods for one 3D CT
volume and a 2D cine MR image sequence.

Obviously, in terms of achieved image quality, the advantage of the DIC- and the CNN-
based Tikhonov regularization are given by obtaining stronger priors which allow to
use a smaller number of iterations to regularize the solution. The advantage of our
proposed approach compared to the dictionary learning-based is the highly reduced
time to compute the prior which is used for regularization. The reason lies in the fact
that the DIC-based method requires to solve problem (21) to obtain the prior xDIC,
while in our method a CNN is used to obtain the prior xCNN. Since problem (21) is
separable, OMP is applied for each image/volume patch which is prohibitive as the
number of overlapping patches in a 3D volume is in the order of O(Nx · Ny · Nz) or
O(Nx ·Ny ·Nt), respectively. Obtaining xCNN, on the other hand, does not involve the
solution of any minimization problem but only requires the application of the network
uθ to the di�erent patches. As this corresponds to matrix-vector multiplications with
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sparse matrices, its computational cost is lower and the calculations are further highly
accelerated by performing the computations on a GPU.

5 Discussion

The proposed three-steps reconstruction scheme provides a general framework for
solving large-scale inverse problems. The method is motivated by the observations
stated in the ablation study [17], where the performance of cascades of CNNs with dif-
ferent numbers of intercepting data-consistency layers but approximately �xed num-
ber of trainable parameters was studied. First, it was noted that the replacement of
simple blocks of convolutional layers by multi-scale CNNs given by U-nets had a vi-
sually positive impact on the obtained results. Further, it was empirically shown that
the results obtained by cascades of U-nets of di�erent length but with approximately
the same number of trainable parameters were all visually and quantitatively compa-
rable in terms of all reported measures. This suggests that, for large-scale problems,
where the construction of cascaded networks might be infeasible, investing the same
computational e�ort and expressive power in terms of number of trainable parame-
ters in one single network might be similarly bene�cial to intercepting several smaller
sub-networks by data-consistency layers as for example in [25], [21].

Due to the large sizes of the considered objects of interest, the prior xCNN is obtained
by processing patches of the images. Training the network on patches or slices of the
images further has the advantage of reducing the computational overhead while nat-
urally enlarging the available training data and therefore being able to successfully
train neural networks even with datasets coming from a relatively small number of
subjects. Further, as demonstrated in [16], for the case of 2D radial MRI, one can also
exploit the low topological complexity of 2D spatio-temporal slices for training the
network uθ . This allows to reduce the network complexity by using 2D- instead of 3D-
convolutional layers and still exploiting spatio-temporal correlations and therefore to
prevent over�tting. Note that the network architectures we are considering are CNNs
and, since they mainly consist of convolutional and max-pooling layers, we can ex-
pect the networks to be translation-equivariant and therefore, patch-related artefacts
arising from the re-composition of the processed overlapping patches are unlikely to
occur in the CNN-prior. We have tested and evaluated our method on two examples of
large-scale inverse problems given by 2D undersampled radial MRI and 3D low-dose
CT. For both examples, our method outperformed the TV-minimization method and the
dictionary learning-based method with respect to all reported quantitative measures.
For the case of 2D undersampled radial cine MRI, using the CNN-prior as a regularizer
in the subsequent iterative reconstruction increased the achieved image quality with
respect to all reported measures, as can be taken from Table 1. For the CT example,
due to the inherent presence of noise in the measured data, the quantitative measures
of the �nal reconstruction are only similar to the ones obtained by post-processing
the FBP-reconstruction. However, performing a few iterations to minimize functional
(17), increased data-consistency of the obtained solution and resulted in a slight re-
enhancement of the edges and gave back the CT images their characteristic texture.
Future work to qualitatively assess the achieved image quality with respect to clinically
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relevant features, e.g. the visibility of coronary arteries for the assessment of coronary
artery disease in cardiac CT, is already planned.

Using the CNN for obtaining a learning-based prior is faster by several orders of mag-
nitude compared to the dictionary learning-based approach. This is because obtaining
the prior with a CNN reduces to a forward pass of all patches, i.e. to multiplications of
vectors with sparse matrices, where instead, the sparse coding of all patches involves
the solution of an optimization problem for each patch. Further, the time needed for
OMP is dependent on the sparsity level and the number of atoms of the dictionary,
see [30]. In our comparison, for the 2D radial MRI example, the total reconstruction
times of our proposed method and the DIC-based regularization method mainly dif-
fer in the step of obtaining the priors xDIC and xCNN. Note that, in contrast to [33]
and [6], in our comparison, the prior xDIC was only calculated once. In the original
works, however, the proposed reconstruction algorithms use an alternating direction
method of multipliers (ADMM) which alternates between �rst training the dictionary
D and sparse coding with OMP and then updating the image estimate. Therefore, the
realistic time needed to reconstruct the 2D cine MR images according to [34] and [6] is
given by the product of the seven minutes needed for one sparse approximation and
the number of iterations in the ADMM algorithm and the total time used for PCG for
solving the obtained linear systems. Note that for the 3D low-dose CT example, even
one patch-wise sparse approximation of the whole volume already takes about one
hour and therefore, applying an ADMM type of reconstruction method is computation-
ally prohibitive. Also, note that, even if the size of the image sequences for the MRI
example is smaller than the one of the 3D CT volumes, the reconstruction of the 2D
cine MR images takes relatively long compared to the CT example due to the fact that
we use two di�erent iterative methods (Landweber and PCG) for two di�erent systems
with di�erent operators. Further, the number of iterations for the CT example is on
purpose smaller than for the MR example, as the measurement data is noisy and early
stopping of the iteration can already be thought of as a proper regularization method,
see for example [29]. Also, the operators used for the CT examples were implemented
by using the operators provided by the ODL library and are therefore optimized for per-
forming calculations on the GPU. On the other hand, for the MRI example, we used our
own implementation of a radial encoding operator E which could be further improved
and accelerated.

Clearly, one di�culty of the proposed method is the di�culty which is shared by all
iterative reconstruction schemes with regularization: the need to choose the hyper-
parameter λ which controls the strength of the regularization compared to the data-
�delity term can highly a�ect the achieved image quality, especially when the data
is contaminated by noise. In cascaded networks, the parameter λ can on the other
hand be learned as well during training. Further, some other hyper-parameters as the
number of iterations to minimize Tikhonov functional have to be chosen as well.

The proposed method is related to the one presented in [25], [21], [17] in the sense
that steps 2 and 3 in Algorithm 1 are iterated in a cascaded network which represents
the di�erent iterations. However, in [25] and [21], the encoding operator is given by a
Fourier transform sampled on a Cartesian grid and therefore is an isometry. Thus, as-
suming a single-coil data-acquistion, given xCNN, the solution of (3) has a closed-form
solution which is also fast and cheap to compute since it corresponds to performing
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a linear combination of the acquired k-space data and the one estimated from the
CNN outputs and subsequently applying the inverse Fourier transform. In the case
where the operator A is not an isometry, one usually needs to either solve a system
of linear equations in order to obtain a solution which matches the measured data
or, alternatively, rely on another formulation of the functional (3) which is suitable for
more general, also non-orthogonal operators [17]. However, if the operator A and its
adjointAH are computationally demanding to apply as in the case of radial multi-coil
MRI, or if the objects of interest are high-dimensional, e.g. 3D volumes in low-dose
CT, the construction of cascaded or iterative networks is prohibitive with nowadays
available hardware. In contrast, in the proposed approach, since the regularization is
separated from the data-consistency step, large-scale problems can be tackled as well.
Hence, by decoupling the regularization from further iteration of the reconstruction,
one can also choose to employ more complex and sophisticated neural networks to
obtain the prior xCNN as it is typically the case for cascaded or iterative networks. For
example, in [25] or [2], the CNNs were given by simple blocks of fully convolutional
neural networks with residual connection. In contrast, in [17], the CNNs were replaced
by more sophisticated U-nets [24], [14]. However, the examples in [17], [2] or [3] all use
two-dimensional CT geometries, which do not correspond to the ones used in clinical
practice. Therefore, particularly for large-scale inverse problems where the construc-
tion of iterative networks is infeasible, our method represents a valid alternative to
obtain accurate reconstructions.

While in this work we used a relatively simple neural network architecture given by a
plain U-net as in [14], further focus could be put on the choice of the network uθ , also
by using more sophisticated approaches, e.g. improved versions of the U-net [11] or
generative adversarial networks for obtaining a more accurate prior to be further used
in the proposed reconstruction scheme.

6 Conclusion

In this work, we have presented a general framework for the solution of high-dimensional
ill-posed inverse problems in medical imaging. The reconstruction strategy consists in
decoupling the regularization of the solution from ensuring data-consistency by solv-
ing the problem in three stages. First, an initial guess of the solution is obtained by the
direct reconstruction from the measured data. As a second step, the initial solution
is patch-wise processed by a previously trained CNN in order to obtain a prior which
is then used in a Tikhonov-regularized functional to obtain the �nal reconstruction in
a third step. The decoupling of the steps of obtaining a CNN-prior and minimizing a
Tikhonov-functional allows to tackle large-scale problems. For both shown examples
of 2D undersampled radial MRI and 3D low-dose CT, the proposed method outper-
formed the total variation-minimization method and the dictionary learning-based
approach with respect to all reported quantitative measures. Since the reconstruction
scheme is a general one, we expect the proposedmethod to be successfully applicable
to other imaging modalities as well.
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