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Abstract

Block coordinate descent (BCD) methods approach optimization problems
by performing gradient steps along alternating subgroups of coordinates. This
is in contrast to full gradient descent, where a gradient step updates all coor-
dinates simultaneously. BCD has been demonstrated to accelerate the gradi-
ent method in many practical large-scale applications. Despite its success no
convergence analysis for inverse problems is known so far. In this paper, we
investigate the BCD method for solving linear inverse problems. As main the-
oretical result, we show that for operators having a particular tensor product
form, the BCD method combined with an appropriate stopping criterion yields
a convergent regularization method. To illustrate the theory, we perform nu-
merical experiments comparing the BCD and the full gradient descent method
for a system of integral equations. We also present numerical tests for a non-
linear inverse problem not covered by our theory, namely one-step inversion in
multi-spectral X-ray tomography.

Keywords: ill-posed problems, convergence analysis, regularization theory,
coordinate descent, multi-spectral CT
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1 Introduction

We consider the solution of inverse problems of the form

y� = A(x[1]; : : : ; x[B]) + z (1.1)

by block coordinate gradient descent (BCD) methods. Here A : X ! Y is a linear
forward operator between Hilbert spaces X = X1 � � � � � XB and Y. Moreover,
x = (x[1]; : : : ; x[B]) 2 X is the vector of blocks x[b] 2 Xb of unknown variables,
y� 2 Y are the given noisy data, and z denotes the data perturbation that satisfies
kzk � � for some noise level � � 0.

For many inverse problems, the individual blocks x[b] arise in a natural manner
and might correspond to x[b] = f [b], where f [b] : 
b ! R are functions modeling
unknown spatially varying parameter distributions. The blocks might also be formed
by applying domain decomposition 
 = 
1 [ 
2 [ : : : [ 
B to a single function
f : 
! R, and defining x[b] = f j
b as the restriction of f to 
b.

1.1 Iterative regularization methods

The characteristic feature of inverse problems is their ill-posedness which means
that the solution of (1.1) is unstable with respect to data perturbations. In such
a situation, one has to apply regularization methods to obtain solutions in a sta-
ble way. There are at least two basic classes of regularization methods: iterative
regularization and variational regularization [6,23]. In this paper we consider itera-
tive regularization and introduce and analyze BCD as new member of this class of
regularization methods.

The most established iterative regularization approaches for inverse problems are
the Landweber iteration and its variants [9, 11,14,19]

x�k+1 := x�k � s�kA
�
�
A(x�k)� y�

�
; (1.2)

where x�0 := x0 2 X is an initial guess, s�k is the step size and A� denotes the adjoint
of A. If the step size is taken constant, then (1.2) is the Landweber iteration [9,14].
Other step size rules yield the steepest descent and the minimal error method [20] or
a more recent variant analyzed in [19]. Kaczmarz type variants of (1.2) for systems
of ill-posed equations have been analyzed in [5, 7, 8, 13, 15, 16]. Kaczmarz methods
make use of a product structure of the image space Y, and are in this sense dual to
BCD methods which exploit the product structure of the pre-image space X .

We consider the product form X = X1 � � � � �XB, where the forward operator can
be written as A = [A1; : : : ;AB]. As a consequence, the Landweber iteration takes
the form 0

BBBB@
x�k+1[1]
x�k+1[2]

...
x�k+1[B]

1
CCCCA =

0
BBBB@
x�k[1]
x�k[2]
...

x�k[B]

1
CCCCA� s�k

0
BBBB@
A�1
A�2
...
A�B

1
CCCCA
�
A(x�k)� y�

�
: (1.3)

We see that each iterative update requires computing B separate updates, one for
each of the blocks.
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1.2 Block coordinate descent (BCD)

In order to simplify the iterative update in (1.3), a natural idea is to update only a
single block in each iteration. This results in the BCD iteration

x�k+1[b] := x�k[b]� s�k

8<
:A

�
b

�
A(x�k)� y�

�
if b = b(k)

0 otherwise ;
(1.4)

where the control b(k) 2 f1; : : : ; Bg selects the block that is updated in the kth
iteration. If we apply the BCD iteration to exact data where � = 0, we write xk
instead of x�k. Rigorously studying the iteration (1.4) in the context of ill-posed
problems is the main aim of this paper. To guarantee convergence in the noisy case
we will slightly modify the update rule of the BCD iteration by including a loping
strategy which skips the kth iterative step if a certain residual term is sufficiently
small (see Definition 2.4). Under the reasonable assumption that the complexity of
evaluating A is essentially B-times the complexity M of evaluating A�b , then one
step of the Landweber Method has complexity O(2BM), whereas one step of the
BCD method has complexity O((B+1)M). For the special form of A considered in
the following section, the complexity of one step of the BCD method even reduces
to O(2M); see Remark 2.2.

Note that the iteration (1.4) arises by applying the block gradient descent method,
well known in optimization [3, 18, 22, 24], to the residual functional 1

2ky
� �A(x)k2.

In a finite dimensional setting, BCD and other coordinate descent type methods
are well studied. However, existing convergence results mostly analyze convergence
in the objective value. This only implies convergence in pre-image space, if the
residual functional is strongly convex. Strong convexity does not hold for ill-posed
problems. Therefore, existing convergence results and methods cannot be applied
to ill-posed inverse problems. Note that removing the strict convexity assumption
can also also be achieved by coupling the BCD method with a proximal term; see [4]
and the references therein.

To the best of our knowledge, no convergence result for (1.4) in the ill-posed setting
is available. As the main contribution in this paper we will present a convergence
analysis of BCD applicable to the ill-posed case. We show that under assumptions
specified in Section 2, for operators having a particular tensor product form, the
BCD iteration yields a regularization method for solving ill-posed linear problems.

1.3 Outline

This paper is organized as follows. In Section 2 we present the main assumptions
made in this paper, derive an auxiliary results and introduce the loping strategy.
In Section 3 we present the convergence analysis. In the exact data case, we show
that the BCD iteration converges to a solution x� of the given equation as k !1.
In the noisy data case we show that the stopping index of the loping BCD iteration
is finite and the corresponding iterates converge to x� as � ! 0. To illustrate the
theory, in Section 4 we compare the BCD method with the gradient method for a
system of integral equations. Additionally, in Section 5 we consider a non-linear
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example not covered by our theory, namely one-step inversion in multi-spectral X-
ray tomography [1,2,12,21]. The paper concludes with a short discussion presented
in Section 6.

2 Preliminaries

In this section we formulate the main assumptions and derive basic results that we
will use in the convergence analysis presented in Section 3.

Note that for any Hilbert spaceX we can writeXB ' RB
X. For any b 2 f1; : : : ; Bg
we define the projection operators

Pb = (ebe
T
b )
 IdX : XB ! XB :

0
BBBBBBB@

x[1]
...

x[b]
...

x[B]

1
CCCCCCCA
7!

0
BBBBBBB@

0
...

x[b]
...
0

1
CCCCCCCA
; (2.1)

where eb denotes the bth standard basis vector in RB, defined by eb[b] = 1 and
eb[b

0] = 0 for b0 6= b. Using (2.1), the BCD method (1.4) can be written in the
compact form

x�k+1 := x�k � s�kPb(k)A
�(A(x�k)� y�) : (2.2)

Here b(k) 2 f1; : : : ; Bg is the selected block at the kth iteration, s�k > 0 is the step
size, and x�0 := x0 2 X is some initial guess. Recall that in the case of exact data
we write xk instead of x�k.

2.1 Main assumptions

We note that the main difficulty we encountered in the convergence analysis of the
BCD method for ill-posed problems is that even for exact data y = A(x�), the
error kxk � x�k is not monotonically decreasing, except for some very special cases.
This can be easily verified for linear operators in RB. On the other hand, the
BCD is monotonically decreasing in the objective value, which is used in existing
convergence theory for optimization problems [3, 18, 22, 24]. However, this cannot
be used directly for the convergence analysis in the ill-posed setting where the value
of the residual functional gives no bounds for the error kxk � x�k.

We present a complete convergence analysis under the following assumption that
allows to separate the difficulties due to the ill-posedness and due to the non-
monotonicity.

Assumption 2.1 (Main conditions for the convergence analysis).

(A1) X , Y are Hilbert spaces of the form X = XB, Y = Y D with D;B 2 N.

(A2) A : X ! Y has the form A = V 
K, where

� K : X ! Y is bounded linear;
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� V 2 RD�B has rank B and non-vanishing columns vb 2 RD;

(A3) The control b : N! f1; : : : ; Bg satisfies
9p 2 N 8k 2 N : fb(k); : : : ; b(k + p� 1)g = f1; : : : ; Bg.

Let us introduce the operators

KB := IdRB 
K : X ! Y :

0
B@
x[1]
...

x[B]

1
CA 7!

0
B@
K(x[1])

...
K(x[B])

1
CA

VY := V 
 IdY : Y ! Y : y 7!
BX
b=1

vb y[b] :

In a similar manner we denote KD := IdRD 
K and VX := V 
 IdX . Then we have
A = VY � KB = KD � VX .

To overcome the above mentioned obstacles in the convergence analysis we will
study the auxiliary sequence (VXx

�
k)k2N which, by linearity, satisfies

VXx
�
k+1 = VXx

�
k � s�kVXPb(k)A

�(A(x�k)� y�)

= VXx
�
k � s�kkvb(k)k

2QX
b(k)K

�
D(A(x

�
k)� y�) : (2.3)

Here we have set
QX
b :=

1

kvbk
2 (vbv

T
b )
 IdX : X ! X : (2.4)

We will also use the notation QY
b := kvbk

�2(vbv
T
b )
 IdY . As an important auxiliary

result we will show monotonicity for (VXx
�
k)k2N. This allows us to show that the

BCD method combined with a loping strategy is a convergent regularization method.
In fact, this is the reason for requiring the forward operator A to have the particular
tensor product form specified in assumption (A2). The convergence analysis in the
more general setting is still an open and challenging problem.

Note that the assumption rank(V ) = B is only necessary for the convergence of
(VXxk)k2N implying convergence of (xk)k2N. In the case that V has arbitrary rank,
the main convergence results still hold true for the semi-norm kVX( � )k in place of
the norm k � k.

Remark 2.2 (Numerical complexity). For the considered form A = V 
K and
a cyclic control b(k) = ((k � 1)modB) + 1, one cycle of updates with the BCD
method for k 2 f`B; : : : ; (`+ 1)B � 1g has essentially the same numerical com-
plexity as one iteration with the Landweber iteration. To see this, we implement
the BCD method in the following manner:

(S1) Initialization: 8b = 1; : : : ; B do

� xBCD[b] x0[b]

� hBCD[b] K(xBCD[b]).

(S2) Updates: 8i0 = 1; : : : ; Ncycle8b = 1; : : : ; B do

� xBCD[b] xBCD[b]� skK
�((V�Y (VY hBCD � y�))[b])
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� hBCD[b] K(xBCD[b]).

Complexity of the above procedure is dominate by the evaluation of K, K�

and the evaluation of VY , V�Y . Unless B is very large (or evaluating K, K�

is cheap), for typical inverse problems, the dominating parts are K, K�. This
shows that the complexity of one cycle of the BCD iteration in fact is similar
to the complexity of one iteration of the Landweber iteration.

2.2 Monotonicity

The following lemma is an important auxiliary result, which will be used at several
places throughout this article.

Lemma 2.3 (Monotonicity). Let x� 2 X satisfy A(x�) = y and set

r�k :=
QY

b(k)

�
y� �A(x�k)

� : (2.5)

Then, the following estimate holds:

1

2

VXx�k+1 � VXx�2 � 1

2

VXx�k � VXx�2 � �s�kr�kkvb(k)k2 �r�k � �b(k)
�

+
(s�k)

2

2

VXPb(k)A� �y� �A(x�k)�2 : (2.6)

In particular, if kQY
b (y � y�)k � �b and r�k � �b(k) and if the step size is chosen

such that

0 � s�k �
2r�kkvb(k)k

2
�
r�k � �b(k)

�
VXPb(k)A�(y� �A(x�k))2

; (2.7)

then kVXx�k+1 � VXx
�k2 � kVXx

�
k � VXx

�k2.

Proof. Equation (2.3) implies

1

2

VXx�k+1 � VXx�2 � 1

2

VXx�k � VXx�2 � DVXx�k � VXx�;VXx�k+1 � VXx�kE

+
(s�k)

2

2

VXPb(k)A� �y� �A(x�k)�2 : (2.8)

We have D
VXx

�
k � VXx

�;VXx
�
k+1 � VXx

�
k

E
= s�kkvb(k)k

2
D
VX(x

�
k � x�);QY

b(k)K
�
D

�
y� �A(x�k)

�E
= s�kkvb(k)k

2
D
KBVX(x

�
k � x�);QY

b(k)

�
y� �A(x�k)

�E
= s�kkvb(k)k

2
D
A(x�k)�A(x

�);QY
b(k)

�
y� �A(x�k)

�E
= s�kkvb(k)k

2
D
A(x�k)� y� + y� �A(x�);QY

b(k)

�
y� �A(x�k)

�E
� s�kkvb(k)k

2
�
�kQY

b(k)(y
� �A(x�k))k

2 + �b(k)kQ
Y
b(k)(y

� �A(x�k))k
�

6



By combining (2.8) with the above estimate, we obtain

1

2

VXx�k+1 � VXx�2 � 1

2

VXx�k � VXx�2 � s�kr
�
kkvb(k)k

2
�
�b(k) � r�k

�

+
(s�k)

2

2

VXPb(k)A� �y� �A(x�k)�2 ;
which is the desired estimate (2.6). If s�k is chosen according to (2.7), then the right
hand side in inequality (2.6) is less or equal to 0, which implies kVXx�k+1�VXx

�k2 �
kVXx

�
k � VXx

�k2.

2.3 Loping BCD and discrepancy principle

From Lemma 2.3 we see that if the residual term r�k = kQ
Y
b(k)(y

� �A(x�k))k satisfies
(2.5), then the error kVXx�k � VXx

�k is decreasing. In the case that (2.5) does
not hold, then an iterative update might increase the value of kVXx�k � VXx

�k.
Following a similar strategy introduced in [5,8] for Kaczmarz type iterative method
we therefore modify (2.2) by introducing a loping strategy as follows.

Definition 2.4 (Loping BCD). We define the loping BCD method by

x�k+1 := x�k � d�ks
�
kPb(k)A

�(A(x�k)� y�) (2.9)

d�k :=

(
1 if r�k � ��b(k)

0 otherwise ;
(2.10)

where r�k = kQ
Y
b(k)(y

� �A(x�k))k is as in Equation (2.5), and

� > 1 : (2.11)

In the case of exact data, we have d�k = 1 and the loping BCD iteration reduces to the
standard BCD. In the noisy data case the loping parameters d�k ensure that no update
is made if we cannot guarantee that an update would decrease kVXx�k�VXx

�k. Note
that the choice of � as in (2.11) implies that condition (2.5) is satisfied whenever
we have d�k = 1. For the loping BCD, Lemma 2.3 therefore implies that the error
term kVXx�k � VXx

�k is in fact monotonically decreasing. Moreover, we can show
the following.

Lemma 2.5 (Summability of squared residuals). Let x� 2 X satisfy A(x�) = y.
Then the residuals r�k := kQ

Y
b(k)(y

� �A(x�k))k of the loping BCD iteration (2.9),
(2.10) satisfy X

k2N
d�ks

�
kkvb(k)k

2(r�k)
2 �
kVXx0 � VXx

�k2

min(2� �max)
; (2.12)

where, s�k, min, �max are chosen such that

(S1) 8k 2 N : d�k = 1) s�k 2 (0; 2A�
k) with A�

k :=
kvb(k)k

2r�
k
(r�
k
��b(k))

kVXPb(k)A�(y��A(x�
k
))k

2 ;

(S2) 8k 2 N : d�k = 1) �k := s�k=A
�
k � �max < 2;
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(S3) 1� 1=� � min > 0.

Proof. We first show

VXx�k � VXx�2 � VXx�k+1 � VXx�2
� (2� �max)d

�
ks

�
kkvb(k)k

2(r�k)
2 (1� 1=� ) : (2.13)

If r�k < ��, then d�k = 0 and x�k+1 = x�k and therefore (2.13) holds with equality. If
r�k � ��, application of Lemma 2.3, (S2) and (S1) yield

kVXx
�
k � VXx

�k2 � kVXx
�
k+1 � VXx

�k2

� 2s�kkvb(k)k
2r�k(��b(k) + r�k)� (s�k)

2kVXPb(k)A
�(y� �A(x�k))k

2

� 2s�kkvb(k)k
2r�k(��b(k) + r�k)� s�k�maxA

�
kkVXPb(k)A

�(y� �A(x�k))k
2

= 2s�kkvb(k)k
2r�k(��b(k) + r�k)� s�k�maxkvb(k)k

2r�k(��b(k) + r�k)

= (2� �max)s
�
kkvb(k)k

2r�k(r
�
k � �b(k))

� (2� �max)s
�
kkvb(k)k

2(r�k)
2 (1� 1=� ) :

This shows (2.13) with d�k = 1 in (2.10).

Summing (2.13) over all k 2 N and using (S3) we obtain

kVXx0 � VXx
�k2 � (2� �max)min

X
k2N

dks
�
kkvb(k)k

2(r�k)
2 ;

which shows (2.12) after dividing by (2� �max)min.

Remark 2.6. Note the conditions for the step sizes in Lemma 2.5 are inspired
by [19], where a new step size rule for the gradient method for ill-posed problems
has been introduced. From the definitions of r�k; d

�
k we obtain r�k � �b(k) �=

(1� 1=� )r�k. Moreover, recall that VXPb(k)V�X = kvb(k)k
2QX

b(k). Consequently,

A�
k =

kvb(k)k
2r�k(r

�
k � �b(k))

kVXPb(k)V
�
XK

�
D(y

� �A(x�k))k
2
�

�
1�

1

�

� kQY
b(k)(y

� �A(x�k))k
2

kQX
b(k)K

�
D(y

� �A(x�k))k
2

� min

kQY
b(k)(y

� �A(x�k))k
2

kK�BQ
Y
b(k)(y

� �A(x�k))k
2
�

min

kK�Bk
2
:

This implies that we can choose the step sizes bounded from below. In partic-
ular, (2.12) holds for any constant step size choice s�k = s? 2 (0; min=kK

�
Bk

2].

3 Convergence Analysis of the BCD method

Throughout the following, let Assumption 2.1 be satisfied. Moreover, we assume
that the step sizes satisfy smin � s�k � smax for some numbers smin � smax indepen-
dent of the iteration index k 2 N and the noise level � � 0, and that (S1)-(S3) in
Lemma 2.5 hold.
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3.1 Convergence for exact data

In this subsection we show convergence of the BCD iteration in the noise free case.
The proof closely follows [5, 13].

Theorem 3.1 (Convergence of BCD for exact data). In the exact data case � = 0,
the BCD iteration (xk)k2N defined by (2.2), satisfies xk ! x+, where x+ is the
solution of A(x) = y with minimal distance to x0.

Proof. Let x� 2 X satisfy A(x�) = y and define �k := VXxk � VXx�. We will show
that (�k)k2N is a Cauchy sequence. For k = k0p+k1 and l = l0p+ l1 with k � l and
k1; l1 2 f0; : : : ; p� 1g, let n0 2 fk0; : : : ; l0g be such that

p�1X
i1=0

QY
b(pn0+i1)

(y �A(xpn0+i1))
 (3.1)

�
p�1X
i1=0

QY
b(pi0+i1)

(y �A(xpi0+i1))
 for all i0 2 fk0; : : : ; l0g :

With n := pn0 + p� 1 we have

k�k � �lk � k�k � �nk+ k�l � �nk (3.2)

and

k�n � �kk
2 = 2 h�n � �k; �ni+ k�kk

2 � k�nk
2 ; (3.3)

k�n � �lk
2 = 2 h�n � �l; �ni+ k�lk

2 � k�nk
2 : (3.4)

According to Lemma 2.3, the nonnegative sequence (k�kk)k2N is monotonically de-
creasing and therefore converges to some � � 0. Consequently, the last two terms
in equations (3.3) and (3.4) converge to "2 � "2 = 0 for k ! 1. In order to show
that also h�n � �k; �ni and h�n � �l; �ni converge to zero, we set i� := pn0+ i1. Then
using the definition of the BCD method in (2.2) for i 2 f0; : : : ; p� 1g we obtain

jh�n � �k; �nij = jhVXxn � VXxk;VXx
� � VXxnij (3.5)

=

�����
n�1X
i=k

si
D
VXPb(i)A

�(A(xi)� y);VY (x
� � xn)

E�����
� v2max

n�1X
i=k

si
���DQX

b(i)A
�(A(xi)� y); x� � xn

E���
= v2max

n�1X
i=k

si
���DA(xi)� y;QY

b(i)A(x
� � xn)

E���
= v2max

n�1X
i=k

si
���DA(xi)� y;QY

b(i)A(x
� � xi�) +Q

Y
b(i)A(xi� � xn)

E���
� v2max

n�1X
i=k

si
QY

b(i)(A(xi)� y)
 QY

b(i)A(x
� � xi�)


+ v2max

n�1X
i=k

si
QY

b(i)(A(xi)� y)
 QY

b(i)A(xi� � xn)
 ;
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with vmax := max fkv1k; : : : ; kvBkg. Further we obtainQY
b(i)A(xi� � xn)

 (3.6)

=
QY

b(i)KDVX(xi� � xn)


� kKDk kVX(xi� � xn)k

� kKDk
p�2X
j=i1

sj
VXPb(pn0+j)A

�(y �A(xpn0+j))


= kKDk
p�2X
j=i1

sj
VXPb(pn0+j)V

�
XK

�
D(y �A(xpn0+j))



= kKDk
p�2X
j=i1

sj
vb(pn0+j)

2 QX
b(pn0+j)

K�D(y �A(xpn0+j))


� kKDk
p�2X
j=i1

sj
vb(pn0+j)

2 K�D(QY
b(pn0+j)

(y �A(xpn0+j)))


� kKDk
2smaxv

2
max

p�1X
j=0

QY
b(pn0+j)

(y �A(xpn0+j))
 : (3.7)

Substituting the estimate in (3.5), using the inequality (
Pp�1

i=0 ai)
2 � p

Pp�1
i=0 a

2
i and

(3.1) one concludes

jh�n � �k; �nij (3.8)

� 2psmaxv
2
max

n0�1X
i0=k0

p�1X
i1=0

QY
b(pi0+i1)

(y �A(xpi0+i1))
2

+ s2maxkKBk
2v4max

n0�1X
i0=k0

p�1X
i1=0

QY
b(pi0+i1)

(y �A(xpi0+i1))
 p�1X
j=0

QY
b(pi0+j)

(y �A(xpi0+j))


� 2psmaxv
2
max

n0�1X
i0=k0

p�1X
i1=0

QY
b(pi0+i1)

(y �A(xpi0+i1))
2

+ s2maxkKBk
2v4max

n0�1X
i0=k0

� p�1X
i1=0

QY
b(pi0+i1)

(y �A(xpi0+i1))
�2

� C
n0�1X
i0=k0

p�1X
i1=0

QY
b(pi0+i1)

(y �A(xpi0+i1))
2 ;

where we defined C := smaxv
2
max(2p+ smaxkKBk

2v2maxp). Finally, we have

jh�n � �k; �nij �
C

smin

n0�1X
i0=k0

p�1X
i1=0

spi0+i1

QY
b(i1)

(y �A(xpi0+i1))
2 :

Because of Lemma 2.5, the last sum converges to zero for k = pk0 + k1 !1 which
implies jh�n � �k; �nij ! 0. Similarly, one shows jh�n � �l; �nij ! 0. Therefore, �k is
Cauchy sequence and VXxk = VXx

� � �k tends to an element VXx+ with x+ 2 X .
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Because V has rank B and kQY
b(i)(y �A(xi))k ! 0, the element x+ is a solution of

A(x) = y. Further,

xk+1 � xk 2 ran(A�) � ker(A)? for all k 2 N :

Because ker(A)? is closed, its follows that x� � x0 2 ker(A)?. Since x+ is the only
solution for which the latter holds true, we obtain xk ! x+.

3.2 Convergence for noisy data

In the noisy data case, we consider the loping version of the BCD. The iteration is
terminated when for the first time all x�k are equal within a cycle. That is, we stop
the iteration at

k�� := argmin
n
k 2 N j x�k = x�k+1 = � � � = x�k+p�1

o
: (3.9)

To simplify the notation, we assume that �b = � for all b 2 f1; : : : ; Bg. We first
show that the stopping index is always finite.

Proposition 3.2 (Existence of stopping index). If � > 0, then the stopping index
k�� defined in (3.9) is finite, and we have

8b = 1; : : : ; B :
QY

b

�
y� �A

�
x�
k�
�

�� < �� : (3.10)

Proof. If for every k 2 N, there exists ` 2 f0; : : : ; p� 1g such that xk+` 6= xk, then
from Lemma 2.5 we obtain

8n 2 N : kVXx0 � VXx
�k2 � (2� �max)min

np�1X
k=0

d�ks
�
kkvb(k)k

2(r�k)
2

� (2� �max)minCnp�� ; (3.11)

where C > 0 is a lower bound of s�kkvb(k)k
2. The right hand side of (3.11) tends to

infinity, which gives a contradiction. Consequently, the set fk 2 N j x�k = x�k+1 =
� � � = x�k+p�1g is nonempty and therefore contains a finite minimal element.

To prove (3.10) note that the finiteness of the stopping index and the definition of
the loping BCD implies kQY

b(k�
�
+`)

(y� � A(x�
k�
�

))k < �� for ` = 0; : : : ; p � 1. The
assumption (A3) on the control sequence b(k) thus gives (3.10).

We call the step size selection (s�k)k2N continuous at � = 0 if for all k 2 N we have

lim
�!0

supfks�k � skk j y
� 2 Y ^ ky � y�k � �g = 0 : (3.12)

An example for a continuous step size selection is the constant strep size s�k =
min=kKBk

2. The next auxiliary result shows that the continuity of the step size
selection implies continuity of x�k at � = 0.

11



Lemma 3.3 (Continuity of the BCD iteration at � = 0). Suppose the step selection
is continuous at � = 0, and define

�k(�; y; y
�) := d�ks

�
kVXPb(k)A

�(A(x�k)� y�)� skVY Pb(k)A
�(A(xk)� y) :

Then, for all k 2 N, we have

lim
�!0

sup
n
k�k(�; y; y

�)k j y� 2 Y ^ ky � y�k � �
o
= 0 : (3.13)

Moreover, x�k+1 ! xk+1, as � ! 0.

Proof. We prove Lemma 3.3 by induction. Assume k � 0 and that (3.13) holds for
all k0 < k. First we note that (3.13) implies x�k+1 ! xk+1, as � ! 0. For the proof
of (3.13) we consider two cases. In the first case, d�k = 1, we have

�k(�; y; y
�)
 = s�kVXPb(k)A�(A(x�k)� y�)� skVXPb(k)A

�(A(xk)� y))
 :

In the second case, d�k = 0, we have
QY

b(k)(y
� �A(x�k))

 < ��. Consequently,

k�k(�; y; y
�)k

=
skVXPb(k)A�(A(xk)� y))


=
skVXPb(k)V�XK�D(A(xk)� y))


= kvbk

2
QY

b(k)K
�
D(A(xk)� y))


� kvbk

2 kKDk
�QY

b(k)(A(x
�
k)�A(xk))

+ QY
b(k)(A(x

�
k)� y�)


+
QY

b(k)(y
� � y)

�
� kvbk

2 kKDk
�QY

b(k)(A(x
�
k)�A(xk))

+ (kQY
b(k)k+ � )�

�
:

Now (3.13) follows from the continuity of A, and the induction hypothesis implying
x�k ! xk.

Theorem 3.4 (Convergence of the loping BCD for noisy data). Suppose the step
selection (s�k)k2N is continuous at � = 0. Let (�j)j2N 2 (0;1)N converge to 0 and
let (yj) 2 YN be a sequence of noisy data with kQY

b (yj�y)k � �j. Let (xj;k)k2N be
defined by the loping BCD iteration with data yj and stopped at kj := k�(�j ; yj)
according to (3.9). Then (xj;kj )j2N ! x+, where x+ is the solution of A(x) = y
with minimal distance to x0.

Proof. From Lemma 3.3 and the continuity of A we have, for any k 2 N, that
xj;k ! xk and A(xj;k)! A(xk) as j !1.

To show that xj;kj ! x+, we first assume that kj has a finite accumulation point
k�. Without loss of generality we may assume that kj = k� for all j 2 N. From
Proposition 3.2 we know that kQY

b (yj � A(xj;k�))k < ��j . By taking the limit
j ! 1, we obtain y = A(xk�). Consequently, xk� = x+ and xj;k� ! x� as j ! 1.
It remains to consider the case where kj ! 1 as j ! 1. To that end let � > 0.

12



Without loss of generality we assume that kj is monotonically increasing. According
to Theorem 3.1 we can choose n 2 N such that kVXxkn � VXx+k < �=2. Equation
(3.13) implies that there exists j0 > n such that kVXxj;kn � VXxknk < �=2 for all
j � j0. Together with the monotonicity we obtain
VXxj;kj � VXx+ � kVXxj;kn � VXx+k

� kVXxj;kn � VXxknk+ kVXxkn � VXx
+k <

�

2
+

�

2
= � for j � j0 :

Because VY is non-singular, this shows xj;kj ! x+ as j !1.

4 Example: System of linear integral equation

In this section we compare the BCD method to the standard Landweber method
for an elementary system of linear integral equations.
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Figure 4.1: Test phantoms and noisy data for a system of two integral equa-
tions. Top: The two components f�[1] (left) and f�[2] (right) of the true unknown.
Bottom: The two components g�[1] (left) and g�[2] (right) of the computed noisy
data.

4.1 Forward problem

Consider the integration operator K : L2([0; 1])! L2([0; 1]) defined by

K(f) : [0; 1]! R : s 7!

Z s

0
f(t)dt : (4.1)
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According to the Cauchy-Schwarz inequality, we have

kK(f)k2 =

Z 1

0

�Z s

0
f(t)dt

�2
ds �

Z 1

0
s

Z 1

0
f(t)2dtds =

1

2
kfk2 (4.2)

for all f 2 L2([0; 1]), which shows that K is a well-defined linear bounded operator.
Using the operator K we consider the following forward model applied to a vector
of functions (f [b])Bb=1 2 (L2([0; 1]))B.
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Figure 4.2: Reconstruction from exact data using the Landweber (LW) and
the BCD method. Top: Reconstruction after 5000 cycles. Bottom: Reconstruc-
tion errors in the standard 2-norm (left) and the V -norm (right) as a function of
the iteration number. For both error measures the reconstruction error of BCD is
smaller than the one of the Landweber method.

Definition 4.1. For D � B � 1 and given matrix V = (vd;b)d;b 2 RD�B of rank
B, we define the forward operator

A : (L2([0; 1]))B ! (L2([0; 1]))D : f 7!

 
BX
b=1

vb;cK(f [b])

!D
d=1

: (4.3)

According to our general notion we have A = V 
K and the theory presented in the
previous section can be applied for solving the inverse problem A(f) = g. Note that
this equation clearly is ill-posed because the range of K is non-closed (and equal
to the Sobolev space H1

� ([0; 1]) :=
�
g 2 L2([0; 1]) j g0 2 L2([0; 1]) ^ g(0) = 0

	
of all

weakly differentiable functions vanishing at 0.)

More generally, one could replace the integration operator by any bounded (integral)
operator K : L2([0; 1])! L2([0; 1]) with non-closed range.
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Figure 4.3: Reconstructions from noisy data using the Landweber (LW)
and the BCD method. Top: Reconstruction using the BCD iteration (with the
loping principle and the proposed stopping rule) and the Landweber method using
the discrepancy principle as stopping rule. Middle: Reconstruction errors in the
V -norm without (left) and with (right) loping. Bottom: reconstruction error for
the first iterates in the 2-norm (not monotonically decreasing) and in the V -norm
(right).

4.2 Reconstruction results

For all presented numerical results we use B = D = 2 and take V = ~V =k~V k2;2 with

~V :=

"
�3 1
�1 0

#
: (4.4)

We discretize K with the composite trapezoidal rule using p = 100 intervals such
that the data and the unknowns are elements in (Rp)2. The true unknown f� =
(f�[1]; f�[2]) and the noisy data g� = (g�[1]; g�[2]) are shown in Figure 4.1. The
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exact data g = Af� have been computed via numerical integration followed by
application of V . Subsequently we computed noisy data by adding random white
noise to y with a standard deviation of 0:001. The resulting relative data errors areg � g�

 = kgk ' 0:015,
Q1(g � g�)

 = kQ1gk ' 0:011 and
Q2(g � g�)

 = kQ2gk '

0:012, respectively.

Reconstruction using the BCD and Landweber methods from simulated data are
shown in Figure 4.2. For each case we have used the maximum constant step-size,
that lead to stable reconstruction. We evaluate the reconstruction error (norm of
fk � f�) in terms of the standard 2-norm k � k2 and in the V -norm k � kV ,

kfk22 := kf [1]k
2 + kf [2]k2 (4.5)

kfk2V := kv1;1f [1] + v1;2f [2]k
2 + kv2;1f [1] + v2;2f [2]k

2 ; (4.6)

respectively. As we can see from the bottom row in Figure 4.2, measured in both
norms, the reconstruction error of the BCD is smaller than the error of Landweber
iteration.

Figure 4.3 shows reconstruction results for nosy data. Again, the error in the BCD
method decreases faster than the one of the Landweber method. The BCD therefore
requires less cycles than the Landweber method. Moreover, in the middle column of
Figure 4.3 we illustrate the need for the loping (or another regularization strategy).
Without loping, the BCD iteration as well as the Landweber iteration start to diverge
after around 2000 iterations. With loping (for the BCD method) and the with
the discrepancy principle (for the Landweber method) both iterations stop. (Note
that here we only show the error in the V -norm and that the Landweber method
is monotonically decreasing in the 2-norm when using the discrepancy principle.)
Finally, the bottom row in Figure 4.3 shows that the reconstruction error for the
BCD iteration is not monotonically decreasing in the standard norm, whereas in the
V -norm it is.

5 A nonlinear test: Multi-spectral X-ray tomography

In this section we apply a nonlinear generalization of the BCD and the Landweber
iteration to one-step inversion in multi-spectral X-ray tomography. In particular,
for nonlinear operators A in place of linear ones, we use the following generalization
of the BCD iteration

x�k+1 := x�k � s�kPb(k)A
0(x�k)

�(A(x�k)� y�) : (5.1)

Note that such problems are not covered be our theoretical analysis. We consider
extending our theory to this class of examples a particularly interesting topic of
future research.

In the following we denote by DR � R2 the disc with radius R < 1 centered at the
origin. We define the fan beam Radon transform R� : S1 � S1 ! R of a function
� : R2 ! R supported in DR by

(R�)(�; �) :=

Z
R
�(�+ t�)dt : (5.2)
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It can be easily verified that the fan beam Radon transform R : L2(DR)! L2(S1 �
S1) is linear and continuous [17].

5.1 Mathematical modeling

We assume that the tissue is composed of B different materials each of them having
a different energy dependent X-ray attenuation coefficient �b(E) with b = 1; : : : ; B.
The combined X-ray attenuation coefficient is then given by

�(E; � ) =
BX
b=1

�b(E)f [b] ; (5.3)

where f [b] : R2 ! [0; 1] is the fractional density map of the bth material. Our goal is
to determine the fractional density maps f [b] from multi-spectral X-ray transmission
measurements.
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Figure 5.1: Normalized spectrum of a typical X-ray source [1, 2]. This spectral
energy distribution will be considered for our experiments.

The energy sensitive X-ray transmission measurements result in the intensity [2]

IW =

Z
W
s(E) exp (�R(�(E; � ))) dE : (5.4)

Here W � [0;1) denotes the energy window where the measurement is made and
s : [0;1)! R is the product of X-ray beam spectrum intensity and detector sensi-
tivity. We assume the detector sensitivity to be constant and that the spectrum s
is known for energies ranging from 20 keV to 120 keV covering any energy window.
The spectrum used for the numerical results is the same as in [1, 2] and shown in
Figure 5.1.

In order to recover multiple material densities, we use multiple energy windows.
We choose the same number B of spectral windows as we have different materials.
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Moreover, to simplify the mathematical formulation we uniformly discretize the en-
ergy variable, E0 = 20 keV < E1 < � � � < EN = 120 keV. The X-ray measurements
corresponding to the bth energy window is given by

I[b] =
X
i2Wb

si exp(�R(�i))�E =
X
i2Wb

si exp

 
�R

 
BX
b=1

�i;bf [b]

!!
�E : (5.5)

Here Wb � f1; : : : ; Ng model discrete energy windows, (si)Ni=1 is the discretized
beam spectrum intensity, and �E := (120 keV)=N . Summarizing the above we
define the following forward operator.

Definition 5.1 (Multi-spectral X-ray measurement operator). The measurement
operator A with respect to the energy windows W1; : : : ;WB is given by

A : (L2(DR))
B ! L2(S1 � S1)B

f 7!

0
@X
i2Wb

si exp

 
�R

 
BX
b=1

�i;bf [b]

!!1
A
B

b=1

: (5.6)

We can decompose the operator A in the form

A(f) = (VY � E � R � U) (f) (5.7)

where

� U : L2(DR)
B ! L2(DR)

N : f 7! (
PB

b=1 �i;bf [b])
N
i=1

� R : L2(DR)
N ! L2(DR)

N : (�i)
N
i=1 7! (R�i)

N
i=1

� E : L2(DR)
N ! L2(DR)

N : (gi)
N
i=1 7! (exp(�gi))

N
i=1

� VY : L2(DR)
N ! L2(DR)

B : (gi)
N
i=1 7! (

P
i2Wb

sigi)
B
b=1.

The operators VY ;R;U are linear and bounded. To show the continuity and differ-
entiability of A we have to verify that E is continuous and differentiable.

Proposition 5.2 (Continuity and differentiability of A). The operator A is con-
tinuous and Fréchet differentiable. For f; h 2 (L(DR)

2)B we have

A0(f)(h) =
�
VY � E

0(RUf) � R � U
�
(h) (5.8)

with
E 0(g)h = �(exp(�gi)hi)

N
i=1 : (5.9)

Proof. One only has to verify that f 7! exp(�f) is continuous and Fréchet differ-
entiable on L2(DR) with derivative given by E 0(g)h = exp(�g)h. For that purpose,
let khk2 ! 0 which in particular implies its point wise convergence. Therefore

kexp(�g � h)� exp(�g) + exp(�g)hk2
khk2

=
kexp(�g) exp(�h)� exp(�g) + exp(�g)hk2

khk2
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�
kexp(�h)� 1 + hk2

khk2

�

O(h2)2
khk2

�
O
�
khk22

�
khk2

= O(khk2) :

This shows (5.9), and (5.8) follows by the chain rule.

In the context of the BCD method, the fractional density maps f [b] play the roles of
the blocks x[b]. The form (5.7) of the forward operator A has some similarity with
the form that we used in the theoretical analysis of the BCD method, in the sense
that the infinite dimensional smoothing operator is applied to several channels of a
function. However, so far we have not been able to perform an analysis accounting
for the non-linearity. Additionally, we apply a preconditioning technique as outlined
in the following subsection. Extending the convergence analysis of BCD such that
it applies to multi-spectral CT is subject of future research.

5.2 Logarithmic scaling and preconditioning

The energy dependence of the mass-attenuation coefficient of different materials can
be quite similar. In order to enhance the dependence on the different materials we
propose a logarithmic scaling and preconditioning technique (different from [2]).
For simplicity we consider only the case B = 2, the general case can be treated in a
similar manner.

The proposed preconditioned logarithmic data take the form

H(f) :=

 
H1(f)
H2(f)

!
=

 
c1;1 c1;2
c2;1 c2;2

! 
log(A1(f))
log(A2(f))

!

=

 
c1;1 log(A1(f)) + c1;2 log(A2(f))
c2;1 log(A1(f)) + c2;2 log(A2(f))

!
; (5.10)

where f = (f [1]; f [2]) are the unknowns and c1;1, c1;2, c2;1, c2;2 are parameters.
Moreover, recall that A1(f) and A2(f) are the X-ray intensities defined by (5.6)
corresponding to W1;W2 � f1; : : : ; Ng modeling the discrete energy windows. The
preconditioned inverse problem consists in solving the system

v1 = H1(f [1]; f [2]) + z1 (5.11)
v2 = H2(f [1]; f [2]) + z2 ; (5.12)

where v1; v2 are data perturbed by noise (z1; z2).

In order to solve the equations in (5.11), (5.12) with the BCD method we define the
residual functionals

�1(f [1]; f [2]) :=
1

2
kH1(f [1]; f [2])� v1k

2 ;

�2(f [1]; f [2]) :=
1

2
kH2(f [1]; f [2])� v2k

2 :

Application of the BCD method requires the adjoint gradient of A1 and A2, that
we compute next.
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Proposition 5.3 (Derivative of the preconditioned residuals). Let f; h 2 L(DR)
2.

The directional derivatives of �1 and �2 at f in direction h are given by

�0b(f)(h)

= �
2X

m=1

2X
k=1

X
i2Wb

D
Hb(f)� vb;

cb;k
Ak(f)

si exp(�R(Uf)i)R(�i;mhm)
E
L2
: (5.13)

Proof. This follows from the chain rule.

From Proposition 5.3 we conclude that the partial gradients of the residual func-
tionals �b are given by

@m�b(f) = �
X
i2Wb

�i;mR
�
�
si exp(�R(Uf)i)(Hb(f)� vb)

cb;1
A1(f)

�

�
X
i2Wb

�i;mR
�
�
si exp(�R(Uf)i)(Hb(f)� vb)

cb;2
A2(f)

�
: (5.14)

These expressions will be used for the implementations of the BCD as well as the
Landweber method applied to the preconditioned system (5.11).
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Figure 5.2: Phantom f = (f [1]; f [2]) used for the numerical results. Left:
brain density map f [1]. Right: bone density map f [2]. Both are derived from the
FORBILD head phantom, where a uniformly absorbing disc of value 1=2 has been
added to both channels.

5.3 Numerical implementation

For all our experiments we used fan beam geometry. Each channel of the discrete
phantom has size 400 � 400. We discretized R using 300 detector positions �k
equidistantly distributed on S1. For each detector position we compute 481 line
integrals for uniformly distributed angles �` in the interval [��=3; �=3]. To actually
compute Rf(�k; �`) we used the trapezoidal rule and linear interpolation where we
discretized the line integral using 400 equidistant sampling points in the interval
[0; 2]. The adjoint R�g is evaluated using the standard backprojection algorithm
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Figure 5.3: Attenuation coefficients of brain and bone taken from NIST
tables [10]. Left: Attenuation spectrum for brain. Right: Attenuation spectrum
for bone.

with linear interpolation. We used N = 30 equidistant discrete energy positions
from 20 keV to 120 keV.

For our numerical studies we apply one-step inversion in multi-spectral CT tomogra-
phy to reconstruct a head phantom composed of two different material map derived
from FORBID head. The phantom is shown in Figure 5.2 and consists of the pair
f = (f [1]; f [2]), where f [1] corresponds to the fractional density of the brain and f [2]
to the fractional density of the bone material. We slightly modified the FORBID
head phantom by inserting a disk with value 1=2 in both components to demon-
strate that the method can actually reconstruct mixed material distributions. The
mass attenuation coefficients of the material maps (bone and brain) are taken from
NIST tables [10] and are shown in Figure 5.3.

Figure 5.4 shows the data used for image reconstruction. In the first row original
data A(f) = (A1(f));A2(f) according to Definition 5.1 are plotted, where the in-
dices 1 and 2 corresponds to energy windows [20 keV; 70 keV] and [70 keV; 120 keV],
respectively. One can observe, the data for both energy windows look quite similar.
This is because of the similar energy dependence of the mass attenuation coefficients
for f [1] and f [2]; compare Figure 5.3. For this reason, we make use of the proposed
scaling and preconditioning outlined in Section 5.2. The second row shows the pre-
conditioned data we use for the reconstruction. For comparison purpose, the last
row in Figure 5.4 shows the negative logarithm of the X-ray intensities for the full
energy window, with in each case containing only one of the material maps. We
have chosen the constants c1;1 = 1, c1;2 = �1:35, c2;1 = �1 and c2;2 = 2:3 in such a
way that each of the modified data blocks highlights different aspects of the material
maps. Note that we have selected the constants for data of a very different phantom
in order to avoid inverse crime.

5.4 Numerical results

For the following results we compare the performance of the BCD method with the
standard gradient method as reference method. We use a cyclic control b(k) = (k�1)
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Figure 5.4: Simulated multi-energy X-ray data. Top: Data for energy window
[20 keV; 70 keV] (left) and [70 keV; 120 keV] (right). Middle: Corresponding precon-
ditioned logarithmic data. Third row: Simulated data for the full energy window
[20 keV; 120 keV], where the tissue consists only of the brain map (left) and the bone
map (right).

mod B and constant step sizes for both methods. Note that for the BCD as well
as the Landweber method we included a positivity constraint. Figure 5.5 shows
reconstruction results for the bone and brain material map. Due to the applied
logarithmic scaling and preconditioning, both methods are able to separate the
materials after a reasonable number of iterations. One observes that even the mixed
part can be reconstructed as well.

22



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

Figure 5.5: Reconstruction results for simulated data. Top left: Recon-
structed brain density with Landweber method. Top right: Reconstructed bone
density with Landweber method. Bottom left: Reconstructed brain density with
BCD method. Bottom right: Reconstructed bone density with BCD method. For
the Landweber method we have used 300 iterations, for the BCD method 300 cycles.
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Figure 5.6: Relative reconstruction error for simulated data. Left: Recon-
structed brain density. Right: Reconstructed bone density. The Landweber method
is shown in dashed blue and the BCD method in solid red.

Figure 5.6 shows the relative squared reconstruction errors

e[b] :=
kf [b]� frec[b]k

2

kfrec[b]k
2
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of the bone and the brain map using the Landweber method and the BCD method.
The horizontal axes show the number of iterations in the Landweber method and
the number of cycles (number of iterations divided by the number of blocks) in the
BCD method. A cycle for the BCD method has the same numerical complexity as
one iteration for the Landweber method. The BCD method delivers a lower relative
error for the brain map, the relative error of the reconstruction for the bone map is
similar for both methods.

Reconstruction results for noisy data are shown in Figure 5.7. To generate the
noisy data, we added Gaussian white noise with standard deviation equal to 2%
of the maximal value of the exact data. In order to maintain stability of both
iterations we stopped the Landweber iteration after 116 iterations, accordingly the
BCD-method is stopped after 116 cycles. The relative squared reconstruction error
is shown in Figure 5.8. Again, the BCD method is roughly a factor two faster than
the Landweber method in recovering the brain map. For recovering the bone map,
both methods are equally fast. We associate this different behavior to the particular
form of preconditioning. As can be seen from the second line in Figure 5.4, both
preconditioned data pairs contain significant parts of the data corresponding to the
brain whereas the bone data is mainly contained in the second one. Investigating
optimal weights for the preconditioning is an interesting aspect of future work.
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Figure 5.7: Reconstruction results for noisy data. Top left: Reconstructed
brain density with Landweber method. Top right: Reconstructed bone density with
Landweber method. Bottom left: Reconstructed brain density with BCD method.
Bottom right: Reconstructed bone density with BCD method. The Landweber
method we have used 116 iterations and for the BCD method 116 cycles.
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Figure 5.8: Relative reconstruction error for noisy data. Left: Reconstructed
brain density. Right: Reconstructed bone density. The Landweber method is shown
in blue and the BCD method in red. We observed the typical semi-convergence
behaviour and therefore stopped the iterations at 116 cycles.

6 Conclusion

In this paper we analyzed the BCD (block coordinate descent) method for linear
inverse problems. For a particular tensor product form we have shown that the
BCD method combined with an appropriate loping and stopping strategy is a con-
vergent regularization method for ill-posed inverse problems. The analysis in the
present paper applies to operators having the tensor product form V 
 K(x) =
V (K(x[1]); : : : ;K(x[B])), where V 2 RD�B and K : X ! Y is linear. We presented
two examples for numerically solving ill-posed problems with the BCD method. The
first one is concerns a system of linear integral equations that is covered by our the-
ory. As an outlook we applied the BCD method to an example not covered by our
theory, namely one-step inversion in multi-spectral X-ray computed tomography.

Future work will be done to extend our analysis of the BCD method to more general
forward operators, in particular non-linear problems including examples like multi-
spectral CT. This is challenging as the BCD is not monotone in the reconstruction
error kxk � x�k. However, we believe that the technique introduced in this paper of
finding a suitable norm where monotonicity holds can be extended to more general
situations.
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