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Abstract

We discuss several methods for image reconstruction in compressed sensing photoa-
coustic tomography (CS-PAT). In particular, we apply the deep learning method of [H.
Li, J. Schwab, S. Antholzer, and M. Haltmeier. NETT: Solving Inverse Problems with
Deep Neural Networks (2018), arXiv:1803.00092], which is based on a learned regular-
izer, for the first time to the CS-PAT problem. We propose a network architecture and
training strategy for the NETT that we expect to be useful for other inverse problems
as well. All algorithms are compared and evaluated on simulated data, and validated
using experimental data for two different types of phantoms. The results on the one the
hand indicate great potential of deep learning methods, and on the other hand show that
significant future work is required to improve their performance on real-word data.

Keywords: Compressed sensing, photoacoustic tomography, deep learning, NETT, learned
regularizer, Tikhonov regularization, `1-regularization, neural networks, inverse problems

1 Introduction

Compressed Sensing (CS) is a promising tool to reduce the number spatial measurements
in photoacoustic tomography (PAT), while still keeping good image quality. Reducing the
number of measurements can be used to lower system costs, to speed up data acquisition, and
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to reduce motion artifacts [1, 2, 3]. In this work, we concentrate on 2D PAT, which arises in
PAT with integration line detectors [4, 5]. If one can use enough sensor locations such that
Shannon’s sampling theory is applicable, it is possible to get high resolution images using
analytic inversion methods [6]. In practice, however, the number of measurements is much
lower than required for high resolution images according to Shannon’s sampling theory. In
such a situation, standard reconstruction methods result in undersampling artifacts and low
resolution images.

To accelerate the data acquisition process, systems with 64 line detectors have been built [7, 8].
Such systems offer the possibility to collect 2D photoacoustic (PA) projection images of the
3D source images at a frame-rate of 20Hz or higher [9]. Using 64 spatial sampling positions
still results in highly under-sampled data. In order to get high resolution reconstructions from
such data, one has to exploit additional information available on the PA source images. In [10],
the sparsity of the Laplacian is used in combination with `1-minimization. Recently, machine
learning methods have been applied to CS-PAT [11]. In this work, we develop several machine
learning methods for CS-PAT and apply them to experimental CS-PAT data. Comparison
with joint `1-minimization is also given.

In contrast to [11], we also implement the NETT [12], which uses a neural network as trained
regularizer for CS-PAT image reconstruction. In particular, we propose a simpler network
architecture and training strategy than the one used in [12]. The proposed strategy for the
regularizer in NETT may be useful for other inverse problems as well.

2 Background

In this section we describe the CS-PAT problem, and present the joint `1-algorithm as well
as the standard deep learning approach for CS-PAT image reconstruction. The NETT will be
introduced in Section 3.

2.1 Compressed sensing PAT

PAT relies on the following principle. When an object of interest is illuminated with a short
laser pulse, an acoustic pressure wave is induced inside the object. This pressure wave is
recorded on the outside of the object and used for reconstructing an image of the interior. In
the following we will restrict ourselves to the 2D case in a circular measurement geometry,
which arises when using integrating line detectors [4, 5].

Let p0 : R2 ! R denote the PA source (initial pressure distribution). The induced pressure
wave satisfies the following equation

@2p(r; t)� c2�rp(r; t) = �0(t)p0(r) for (r; t) 2 R2 � R+ ; (1)

where r 2 R2 is the spatial location, t 2 R+ the time variable, �r the spatial Laplacian, and
c is the speed of sound. We further assume that the PA source p0(r) vanishes outside the disc
BR = fx 2 R2 j kxk < Rg and we set p(r; t) = 0 for t < 0. Then p(r; t) is uniquely defined
and we refer to it as the causal solution of (1).

The PAT problem consists in recovering p0(r) from measurements of p(s; t) on @BR � (0;1),
where s stands for the detector location. In the full data case, as shown in [13], the following
filtered backprojection formula (FBP) formula yields an exact reconstruction of the PA source,

p0(r) = � 1

�R

Z
@BR

Z 1

jr�zj

(@ttp)(s; t)q
t2 � jr� sj2

dtdS(s) : (2)
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Additionally, in [13] it was shown that the operator defined by the right hand side of (2) is
the adjoint of the forward operator of the wave equation.

In practical application, the pressure can only be measured with a finite number of samples.
This means we measure data

p(sk; tl) for (k; l) 2 f1; : : : ;Mg � f1; : : : ; Qg ; (3)

where the sampling points are uniformly sampled, i.e.

sk =

�
R cos(2�(k � 1)=M)
R sin(2�(k � 1)=M)

�
tl = 2R(l� 1)=(Q� 1) : (4)

As shown in [6], using classical Shannon sampling theory, the number M of spatial measure-
ments in (3), (4) determines the resolution of the reconstructed PA source. To reduce the
number of measurements while preserving high resolution we apply CS. Instead of collecting
M samples, we measure generalized samples

g(j; l) =

MX
k=1

S[j; k]p(rk; tl) for j 2 f1; : : : ;mg ; (5)

with m � M . Several choices of the sampling matrix S exist [1, 2, 3]. In this work we will
focus on two cases, namely a deterministic subsampling matrix and a random Bernoulli matrix.

Let us denote the discretized solution operator of the wave equation by W 2 RMQ�n, were n
is the discretization size of the reconstruction, and by S = S 
 I 2 RmQ�MQ the Kronecker
product between the CS measurement matrix S and the identity matrix. If we denote the
discrete initial pressure by x 2 Rn, we can write the measurement process the following way

y = Ax+ " with A = S �W 2 RmQ�n : (6)

Since mQ � n, equation (6) is under-determined and its solution requires specialized re-
construction algorithms that incorporate additional knowledge about the unknowns. Such
algorithms will be described in the following.

2.2 Residual networks

Deep learning has been recently applied to several image reconstruction problems [14, 15, 16]
including PAT [11, 17, 18, 19, 20].

The probably simplest approach is to use an explicit reconstruction function R� = N� �
A] : RmQ ! Rn where N� is a neural network (NN) and A] is an operator that performs
an initial reconstruction. In order to determine the parameter vector � 2 Rp (where p can
be very large) that parameterizes the NN, one minimizes an error function averaged over a
finite set of training data (bk; fk)

N
k=1. Here fk are samples of phantoms and bk = A]A(fk) the

corresponding input images. Then one solves the following optimization problem iteratively

min
�

1

N

NX
k=1

kN�(bk)� fkkqp : (7)

In particular, stochastic gradient and variants are frequently applied to approximately minimize
(7).

In order to simplify the learning procedure [16], it has been proposed to train a NN that learns
the residual images f �b = f �A]Af . In such a situation, the reconstruction function has the
form

Rres
� = (Id+U�)A] ; (8)
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image size: 128× 128
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32× 32

64 128 128

16× 16
128 256 256

8× 8
256 512 512
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256 128 128

128 64 64

64 32 32 1

+

1

= f

addition

concatenation

. . . 3× 3 convolutions followed by ReLU activation.

. . . Downsampling (2× 2 max−pooling).

. . . Upsampling followed by 3× 3 convolutions with ReLU as activation.

. . . 1× 1 convolution followed by identity activation function.

b =

Figure 1: Architecture of the residual U-net. The number of convolution kernels (chan-
nels) is written over each layer. Long arrows indicate direct connections with subsequent
concatenation or addition.

where � 2 Rp is the adjustable parameter vector. A popular choice [17, 15, 16] for U� is the
so called U-net, which was originally designed for image segmentation [21]. The resulting NN
architecture is shown in Figure 1. Variants of the residual structure to increase data consistence
have been proposed in [22, 23].

2.3 Joint `1-minimization

In [10] a method based on `1-minimization was introduced which relies on sparsity. An element
v 2 Rn is called s-sparse, with s 2 f1; : : : ; ng, if it contains at most s nonzero elements. One
can reconstruct v in a stable manner from measurements g = Av provided that A satisfies
the restricted isometry property (RIP) of order 2s. This property means that (1 � �)kzk2 �
kAzk2 � (1 + �)kzk2 holds for all z 2 Rn which are 2s-sparse and the constant � < 1=

p
2 [24].

Bernoulli matrices satisfy the RIP with high probability [24], but the subsampling matrix
does not. Also it is not clear if the forward operator A = (S 
 I) � W satisfies the RIP for
any sampling matrix. However the following result from inverse problems theory can still be
applied in this case.[25]

Theorem 1. Let A 2 RmQ�n and v 2 Rn. Assume that the source condition holds:
9w 2 RmQ : Aᵀw 2 sign(v) ^ 8i 2 supp(v) : j(Aᵀw)ij < 1, where sign(v) is the set-valued
signum function and supp(v) is the set of indices with nonzero components of v. Further,
assume that A, restricted to the subspace spanned by ei for i 2 supp(v), is injective.
Then for any g� 2 RmQ such that kAv� g�k

2
� � and any minimizer of the `1-Tikhonov

functional, v�� 2 argminz
1

2
kAz � g�k2

2
+ �kzk

1
we have kv�� � vk

2
= O(�) provided that

� � �.

It was also shown [25], that the RIP implies the source condition of Theorem 1. Additionally,
a smaller support set supp(v) makes it easier to fulfill the conditions in Theorem 1. This
indicates that sparsity of the unknowns is an important requirement for `1-minimization. The
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sparsity approach of [10] is based on the following result: [10] If f is an initial PA source
vanishing outside of BR and let p be the causal solution of (1). Then @2t p is the causal solution
of (1) with modified source, @2q(r; t) � �rq(r; t) = �0(t)c2�f(r) for (r; t) 2 R2 � R+. As a
consequence we have that

8f 2 Rn : D2
tAf = A(c2Lrf) (9)

holds up to discretization errors, where Lr is the discrete Laplacian and Dt the discrete tem-
poral derivative.

For typical PA sources, Lrf is sparse or at least compressible. Thus, based on (9), one could
first recover Lr by solving the following `1-problem argminzfkzk1 j Az = D2

t gg, and then solve
the Poisson equation Lrf = g=c2 with zero boundary conditions in order to get f . However,
this approach leads to low frequency artifacts in the reconstructed phantom. To overcome this
issue, a joint minimization approach was introduced [10], which jointly reconstructs f and Lrf .
In practice, one minimizes the following

min
f ;h

1

2
kAf � gk2

2
+

1

2
kAh�D2

t gk22 +
�

2
kLrf � h=c2k2

2
+ �khk

1
+ IC(f) ; (10)

where � is a tuning parameter and � is a regularization parameter. Moreover, IC implements
a positivity constraint, i.e. with C = [0;1)n, the function IC is defined by IC(f) = 0 if f 2 C
and IC(f) =1 otherwise.

To solve (10), one can use a proximal forward-backward splitting method [26], which is ap-
plicable to problems separable into smooth and non-smooth but convex parts. Here we take
the smooth part as �(f ;h) = 1=2kAf � gk2

2
+ 1=2kAh � D2

t gk22 + �=2kLrf � h=c2k2
2
and

the non-smooth part as 	(f ;h) = �khk
1
+ IC(f). We need to calculate the proximity op-

erator of the non-smooth parts, which, for a convex function F : Rn ! R, is defined by
proxF (f) , argminfF (z)+ 1

2
kf�zk22 j z 2 Rng. In our case, the proximity operator can be com-

puted explicitly and component-wise, prox	(f ;h) = [proxIC (f);prox�k � k1(h)]. On the other
hand, the gradients of � can also be calculated explicitly. The resulting joint `1-minimization
algorithm for (10) is given by the following iterative scheme

fk+1 =proxIC
�
fk � �

�Aᵀ(Afk � g)� �L(Lfk � hk=c2)
��

hk+1 =prox�k � k
1

�
hk � �

�
Aᵀ(Ahk �D2

t g)�
�

c2
(Lrf

k � hk=c2)
��

;
(11)

with starting points f0 = h0 = 0 and proxIC (f) = (max(fi; 0))i, prox�k � k
1

(h) = (max(jhij �
�; 0) sign(hi)).

3 Nett: variational regularization with neural networks

Standard deep learning approaches have the disadvantage that they may perform badly on
images that are very different from the ones included in the training set. In order to address
this issue, iterative networks [27, 28, 29] or data invariant regularizing networks [23] have been
proposed. Another method to enhance data consistency, which we will use in this paper, is
based on generalized Tikhonov regularization using a learned regularization term [12].

3.1 NETT framework

The basic idea is to consider minimizers of the unconstrained optimization problem

min
f

1

2
kAf � gk2

2
+
�

2
R(f) ; (12)
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where R : Rn ! [0;1] is a trained regularizer and � > 0 is the regularization parameter. The
resulting reconstruction approach is called NETT (for network Tikhonov regularization), as it
is a generalized form of Tikhonov regularization using a NN as trained regularizer.

In [12] it has been shown that under reasonable conditions, the NETT approach is well-posed
and yields a convergent regularization method. In particular, minimizers of (12) exist, are
stable with respect to data perturbations, and minimizers of (12) converge to R-minimizing
solutions of the equation Af = g as the noise level goes to zero. For the regularizer proposed
in [12] these conditions are difficult to be verified. We propose a variation of the trained
regularizer using a simpler network architecture and different training strategy.

3.2 Construction of regularizers

For the regularizer in (12) we make the ansatz

R(f) = kV�(f)k2F ; (13)

where k�kF is the Frobenius norm and V� : Rn ! Rn is a trained NN. In this work, we use the
simple NN architecture shown in Figure 2, that consist of three convolutional layers. Clearly,
one could also use more complicated network structures.

1 64 32 1

f = = x→ ‖·‖22

Figure 2: Network structure for the trained regularizer. The first two convolutional
layers use 3�3 convolutions followed by ReLU activations. The last convolutional layer (green
arrow) uses 3� 3 convolutions not followed by an activation function.

To train the network V� we choose a set of phantoms (fk)
N1+N2

k=1 and compute initial recon-
structions bk = A]Afk. We then define a training set of input/output pairs (xk;yk)N1+N2

k=1 in
the following way:

xk = bk ; yk = bk � fk for k = 1; : : : ; N1

xk = fk ; yk = 0 for k = N1 + 1; : : : ; N1 +N2 :
(14)

The parameters in the network V� are optimized to approximately map xk to yk. For that
purpose we minimize the mean absolute error

E(�) =
1

N1 +N2

N1+N2X
k=1

kV�(xk)� ykk1 : (15)

averaged of the training set.

Note that the trained regularizer depends on the forward operator as well as on the initial
reconstruction operator. If the equation Ax = y is undetermined, it is reasonable to take
the initial reconstruction operator as right inverse A] : RmQ ! Rn, i.e. AA]y = y holds for
exact data y. The residual images AA]x � x in this case are contained in the null-space of
the forward operator and trained regularizer finds and penalizes the component of x in the
null space. This reveals connections of NETT with the null space approach of [22]. However,
for training the regularizer one can consider other initial reconstructions that add undesirable
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structures. For CS-PAT, the forward operator has the form A = S � W and we use A] as a
numerical approximation of Wᵀ � Sᵀ.

For comparison purpose we also test (12) with the deterministic regularizer R(f) = kDxfk2F +

kDyfk2F , where Dx and Dy denote the discrete derivatives in x and y direction, respectively.
We can write these derivatives as convolution operations with the convolution kernels kx =
2�1=2[�1; 1] and ky = 2�1=2[�1; 1]ᵀ. The deterministic regularizer therefore has the form
kD(f)k2F , where D = [Dx;Dy] is a convolutional NN with no hidden layer, a two-channel output
layer, and fixed non-adjustable parameters. We therefore call the resulting reconstruction
approach the deterministic NETT. Notice that the deterministic NETT is equal to standard
H1-regularization.

3.3 Minimization of the NETT functional

Once the weights of the network have been trained, we reconstruct the phantom by iteratively
minimizing the NETT functional (12). For that purpose we use the following incremental
gradient algorithm:

f̂k+1 = fk � �
�AT (Afk � g)

�
fk+1 = f̂k � ��

�rfV�(fk)
�
:

(16)

Note that the derivative rfV� is with respect to the input of the NN and not its parameters.
This gradient can be calculated by standard deep learning software. Note that by fixing the
number of iterations, the iteration (16) shares some similarities with iterative and variational
networks [27, 28].

The NETT convergence theory of [12] requires the regularization functional R to be proper,
coercive and weakly lower semi-continuous. In the finite-dimensional setting considered above,
this is equivalent to the coercivity condition 8f 2 Rn : kV�(f)k2F � ckfk2F . We did not explicitly
account for this condition in the network construction. To enforce stability, we may combine
(16) with early stopping. As an alternative strategy, we might adjust the training process, or
replace the trained regularizer by kV�(f)k2F + akfk2F with some constant a > 0.

4 Numerical results

In this section we present numerical results including simulated as well as experimental data
in order to compare the methods introduced in the previous section.

4.1 Implementation details

We use Keras [30] and Tensorflow [31] for implementation and optimization of the NNs. The
FBP algorithm and the joint `1-algorithm are implemented in MATLAB. We ran all our ex-
periments on a computer using an Intel i7-6850K and an NVIDIA 1080Ti.

Any discrete PA source f 2 Rn with n = 1282 consists of discrete samples of the continuous
source at a 128 � 128 grid covering the square [�5µm; 9µm] � [�12:5µm; 1:5µm]. The full
wave data g 2 RMQ correspond to M = 240 sensor locations on the circle of radius 40µm and
polar angles in the interval [35�; 324�] and Q = 747 equidistant temporal samples in [0; T ] with
cT = 4:9749� 10�2 µm. The sound speed is taken as c = 1:4907� 103ms�1.

The wave data are simulated by discretization of the wave equation, and (2) is implemented
using the standard FBP approach [13]. This gives us a forward operator W : Rn ! RmQ and
an unmatched adjoint B : RnQ ! Rn. We consider m = 60 CS measurements, which yields a
compression ratio of 4. We also generated a noisy dataset by adding 7% Gaussian white noise
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to the measurement data. For the sampling matrices S 2 Rm�M we use the deterministic
sparse subsampling matrix with entries S[i; j] = 2 if j = 4(i� 1) + 1 and 0 otherwise, and the
random Bernoulli matrix where each entry is taken independently at random as �1=pm with
equal probability.

4.2 Reconstruction methods

For the two-step as well as the NETT approach we use A] := B � Sᵀ as initial reconstruc-
tion. To train the networks we generate a dataset of N = 500 training examples (bk; fk)

N
k=1

where fk are taken as projection images from three-dimensional blood vessel data as described
in [32], and bk = A]Afk. To train the residual U-net we minimize the mean absolute error
1

N

PN
k=1k(Id+U�)(bk)� fkk1. For NETT regularization, we use training data as in (14) with

N1 = N2 = N and fk+N = fk and minimize (15). In both cases we use the Adam optimizer [33]
with 300 epochs and a learning rate of 0.0005.

For the joint `1-method we use 70 iterations of (11) with the parameters � = 0:001; � = 0:005
and � = 0:125 (� = 0:03125 for noisy data) for Bernoulli sampling, and � = 0:0625 (� =
0:03125 for noisy data) for sparse sampling. For NETT regularization we use 10 iterations of
(16) with � = 0:5 (0.7 for noisy phantoms) and � = 0:5 for the deterministic regularization
network we use � = 0:5 and � = 0:35. All hyper-parameters have been selected by hand to
get good visual results and no hyper-parameter optimization has been performed.

Figure 3: Sample from the blood-vessel data set. Left: Ground truth phantom. Middle:
Initial reconstruction using A] from sparse data. Right: Initial reconstruction using A] from
Bernoulli data.

Method MSE RMAE PSNR SSIM

FBP 0.00371 4.52 24.92 0.39
`1 0.00075 1.71 31.69 0.76
H1 0.00108 2.02 30.05 0.75

U-net 0.00072 1.46 31.94 0.86
NETT 0.00048 1.39 33.56 0.89

Method MSE RMAE PSNR SSIM

FBP 0.00472 5.38 23.44 0.32
`1 0.00028 1.08 35.79 0.86
H1 0.00126 2.22 29.27 0.7

U-net 0.00096 1.59 31.37 0.85
NETT 0.00045 1.43 33.68 0.88

Table 1: Averaged performance for noise-free data. Left: Sparse sampling. Right:
Bernoulli sampling. Best values are highlighted.
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Figure 4: Reconstruction results for using simulated data. Top Row: Reconstructions
from sparse data. Bottom Row: Reconstructions from Bernoulli data. First Column: Joint `1-
algorithm. Second Column: H1-regularization (deterministic NETT). Third Column: Residual
U-Net. Fourth Column: NETT.

Figure 5: Reconstruction results using noisy data. Top Row: Reconstructions from
sparse data. Bottom Row: Reconstructions from Bernoulli data. First Column: Joint `1-
algorithm. Second Column: H1-regularization (deterministic NETT). Third Column: Residual
U-Net. Fourth Column: NETT.

4.3 Results for simulated data

For the offline evaluation, we investigate performance on 10 blood vessel phantoms (not con-
tained in the training set). We consider sparse sampling and Bernoulli sampling. One of the
evaluation phantoms and reconstruction results for noise-free and for noisy data are shown in
Figures 3-5.

To quantitatively evaluate the reconstruction quality, we calculated the relative mean absolute
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Method MSE RMAE PSNR SSIM

FBP 0.00371 4.52 24.92 0.39
`1 0.00245 3.24 26.23 0.46
H1 0.00134 2.54 28.95 0.62

U-net 0.00076 1.52 31.61 0.85
NETT 0.0012 2.24 29.47 0.75

Method MSE RMAE PSNR SSIM

FBP 0.00474 5.38 23.44 0.32
`1 0.00277 3.47 25.68 0.43
H1 0.00139 2.47 28.77 0.65

U-net 0.00098 1.61 31.19 0.84
NETT 0.0008 1.82 31.17 0.82

Table 2: Averaged performance for data including 7% noise. Left: Sparse sampling.
Right: Bernoulli sampling. Best values are highlighted.

error (RMAE), the mean squared error (MSE), the peak signal to noise ratio (PSNR) and the
structured similarity index (SSIM). The performance measures averaged over the 10 evaluation
phantoms are shown in Table 1 for noise-free data, and in Table 2 for the noisy data case.
We can see that the learned approaches work particular well for the sparse sampling matrix.
The residual U-net seems to be better than NETT at denoising the image, which results in
lower errors for noisy data. We further observe that our simple trained regularizer in any case
performs better than the (very simple) deterministic one. The `1-minimization approach works
best for noise-free Bernoulli measurements, but it is outperformed by the learned approaches
in the noisy data case. Since `1-minimization needs many iterations we did not iterate until
convergence; for the presented reconstructions it is already one order of magnitude slower than
the other methods. In the noisy data case, we observe that the NETT yield smaller MSE than
the residual U-net for Bernoulli measurements, while the U-Net approach works best for the
sparse measurements.

4.4 Results for experimental data

We used experimental data measured by the PAT device using integrating line sensors as
described in [34, 10]. The setup corresponds to the one used for our simulated phantoms.
The first sample is a simple cross phantom and the second is a leaf phantom with many fine
structures. We only test sparse measurements, since the current experimental setup does
not support Bernoulli measurements. For the residual U-net and the NETT with trained
regularizer we use the networks trained on the blood vessel data set as described above.

Figure 6: Reconstructions of the cross phantom from experimental data. The recon-
struction results are obtained for the sparse sampling pattern using the following algorithms,
from left to right: FBP, `1-minimization, U-net and NETT.

Reconstruction results for the cross phantom are shown in Figure 6. All methods yield quite
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Figure 7: Reconstructions of the leaf phantom from experimental data. The recon-
struction results are obtained for the sparse sampling pattern using the following algorithms,
from left to right: FBP, `1-minimization, U-net and NETT.

accurate results and all structures are resolved clearly. However, none of the methods is able
to completely remove the strong artifacts extending from the corners of the cross phantom.
The U-net seems to do the best job by removing nearly all artifacts. Reconstruction results
for the leaf phantom are shown in Figure 7. Reconstructing the leaf phantom is more chal-
lenging, since it contains very fine structures. None of the methods is able to resolve them
completely. The artifacts outside of the object are present in all reconstructed images. How-
ever, the reconstruction using joint `1-minimization and the deep-learning approaches (NETT
and residual U-net) yield satisfying results. Nevertheless, future work is required to improve
the reconstruction quality for real-word data.

5 Discussion and conclusion

We studied deep-learning approaches (NETT and the residual U-net) and joint `1-minimization
for CS-PAT using either sparse sampling or Bernoulli measurements. All methods work well
for both types of measurements. For exact data, iterative approaches, which use the forward
operator in each step, work better than the residual U-net for Bernoulli measurements. Incor-
porating different sampling strategies directly in the experimental setup is an interesting line
for future research. NN based algorithms perform well with noisy data, but still are open for
improvements for experimental data. This suggests that our simulated training data is different
from the measured real-world data. Developing more accurate forward models and improving
training data are an important future goal. The learned regularizer has a quite simple network
structure. Investigating more complex network architectures and modified training strategies
will be investigated in future work.
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