
Technikerstraße 13 - 6020 Innsbruck - Austria

Tel.: +43 512 507 53803 Fax: +43 512 507 53898

https://applied-math.uibk.ac.at

AppliedMathematics

Preprint-Series: Department of Mathematics - Applied Mathematics

Image Based Fashion Product Recommendation
with Deep Learning

H. Tuinhof, C. Pirker, M. Haltmeier

Nr. 52
23. July 2018



Image Based Fashion Product Recommendation
with Deep Learning

Hessel Tuinhof1, Clemens Pirker2, and Markus Haltmeier3

1InvoiceFinance; Netherlands
E-mail: hessel@invoicefinance.nl

2Department of Strategic Management, Marketing and Tourism
University of Innsbruck, Austria

E-mail: clemens.pirker@uibk.ac.at

3Department of Mathematics
University of Innsbruck, Austria

E-mail: markus.haltmeier@uibk.ac.at

May 6, 2018

Abstract

We develop a two-stage deep learning framework that recommends fashion
images based on other input images of similar style. For that purpose, a neural
network classifier is used as a data-driven, visually-aware feature extractor. The
latter then serves as input for similarity-based recommendations using a ranking
algorithm. Our approach is tested on the publicly available Fashion dataset. Ini-
tialization strategies using transfer learning from larger product databases are pre-
sented. Combined with more traditional content-based recommendation systems,
our framework can help to increase robustness and performance, for example, by
better matching a particular customer style.

Keywords: Product recommendation, deep learning, convolutional neural net-
works, similarity recommendation

1 Introduction

Identifying products a specific customer likes most can significantly increase the earnings
of a company [14]. Clearly, recommending suitable products in E-commerce increases
the probability of a customer’s purchase. Additionally, offering too many products
can reduce the probability that a potential customer performs a purchase at all. Fi-
nally, knowing and subsequently targeting customer preferences increases the medium-
and long-term commitment of the customer to the company, which is a key factor

1



to profitability [2, 16]. Prior studies demonstrate that recommendation engines help
consumers to make better decisions, reduce search efforts and find the most suitable
prices [4].

One possibility to infer knowledge about customer preferences is via specific questioning
in customer surveys. However, this is not always possible and customer responses may
not be correct or sufficient for accurately describing preferences. In this work, we
follow a different, data-driven approach, where customer preferences are automatically
extracted from available information on the customer. More specifically, we focus on
fashion products and develop a method that only requires a single input image to return
a ranked list of similar-style recommendations.

1.1 Proposed recommendation system

The proposed recommendation system operates in a two-stage mode. In the first step,
we train a convolutional neural network (CNN) to solve specific image classification
tasks. The trained CNN is then used as a problem-specific feature extractor, where
the features serve as inputs for the ranking system. While in this paper we work with
fashion products, similar recommendation systems can be employed for other product
categories as well.

Image data provides a wealth of information on a visually-aware feature level, e.g.
edges and color blobs. Plenty of image processing techniques exist to extract such low-
level features [13]. Deep learning provides a technique to extract hidden higher-level
features by composing several convolutional layers. Therefore CNNs are a natural choice
to provide fashion product recommendations based solely on image data. Compared
to classical content-based recommendation, which is mainly based upon descriptive
metadata like manually annotated product tags or user reviews, our approach relies on
visual information.

1.2 Relation to previous work

There are at least two main approaches for product recommendations: collaborative
filtering and content-based filtering. Whereas the former relies on historical user-item
interactions, the latter tries to relate user profiles and item descriptors. A recent deep
learning approach is the neural collaborative filtering framework proposed in [6], which
generalizes the matrix factorization technique used extensively in collaborative filtering
methods. Others like [5] employ a hybrid approach, where a matrix factorization based
predictor is combined with a deep learning model that extracts visual features as well
as latent non-visual user features. A recent thorough overview on deep learning-based
recommender systems can be found in [19].

The success of CNNs for computer vision tasks like object classification, detection
and segmentation [3] gives reason to decouple classical product recommendation solu-
tions from its extensive user-item interaction data usage requirement. Therefore our
method uses product image data, which, for example in E-commerce, is readily avail-
able. This also allows to mitigate the cold start problem of collaborative filtering and

2



classical content-based recommender systems. Closely related to our approach are the
works [1, 15]. Due to the high degree of subjectivity related to fashion articles, general
recommender systems usually perform poorly in fashion recommendation tasks. We
show that recommendation systems purely relying on visual features are reasonable as
they are able to provide highly visually appealing recommendations of similar style. This
can also be helpful in the case of new customers, where no historical user data is yet
available. It can also be integrated in existing content-based systems, for example, to
account for a particular or desired style of a customer, or to address the cold-start
problem.

1.3 Outline

The remainder of the paper is structured as follows. Section 2 presents the proposed
product recommendation method. In particular, we give details on the used network
architectures, the used ranking algorithm and describe the Fashion dataset. In Section 3
we present some numerical results. The paper concludes with a short discussion in
Section 4.

2 Methods

2.1 Fashion dataset

Throughout this paper, we work with a subset of the publicly available Fashion1 dataset [11].
In order to obtain high-quality ground-truth labels for category type and texture at-
tributes, we design a labeling questionnaire on the crowdsourcing platform Crowd-
Flower2. Every image is labeled by a total maximum of five human operators. To be
a valid label at least three human operators have to agree. Each labeling task consists
of five images to be labelled, one of which is a simple test image. If a human operator
fails a test more than twice, she is no longer allowed to continue. Separate datasets
for category and texture classification have been created.

The used class labels for category types are blouse, dress, pants, pullover, shirt, shorts,
skirt, top, T-shirt. For the texture attributes we use the labels graphic, plaid, plain,
spotted, striped. Figure 1 shows the frequency distributions for the two datasets. The
category type dataset contains 11 851 and the texture attributes dataset 7342 images.
Further characteristics can be found in Table 1.

2.2 Proposed framework

Our method composes of a trained CNN classifier used as image feature extractor and
a modification of the k-nearest neighbors (k-NN) algorithm used for ranking in feature
space.

1http://imagelab.ing.unimore.it/fashion_dataset.asp
2www.crowdflower.com

3

http://imagelab.ing.unimore.it/fashion_dataset.asp
www.crowdflower.com


shorts

tshirt

blouse

dress

pants

pullover

shirt

skirt

top

0

50
0

10
00

15
00

Count

C
at

eg
or

y 
Ty

pe

spotted

plaid

striped

graphic

plain

0

50
0

10
00

15
00

20
00

25
00

Count

Te
xt

ur
e

0

2500

5000

7500

10000

No Yes

Embellishment

C
ou

nt

shorts

tshirt

blouse

dress

pants

pullover

shirt

skirt

top

0

50
0

10
00

15
00

Count

C
at

eg
or

y 
Ty

pe

spotted

plaid

striped

graphic

plain

0

50
0

10
00

15
00

20
00

25
00

Count

Te
xt

ur
e

0

2500

5000

7500

10000

No Yes

Embellishment

C
ou

nt

Figure 1: Frequency distributions for the category type and texture attributes datasets
created from the Fashion dataset.

Classification Samples
Dataset Type No. Total Train Val

Fashion Category Multinomial 9 11,851 9,480 2,371
Fashion Texture Multinomial 5 7,342 5,873 1,469

Table 1: Summary of the datasets created from the Fashion dataset. The third column
indicates the total amount of class labels for the respective dataset.

� Classification via CNNs: In the first step, we train separate CNNs to predict
the category and texture type. Each of the CNNs can be written as

Ni(Wi , · ) , Si(Vi ,Fi(Ui , · )) for i = 1, 2 . (1)

Here Wi = (Ui ,Vi) are weight vectors, Si(Vi , · ) are fully connected softmax
output layers that actually perform classification and Fi(Ui , · ) are the CNNs
without the last layer. The latter are used as feature extractor.

� Ranking in feature space: After training and evaluating the performance of
these classifiers, we remove the softmax output layer Si of each model. The
remaining CNNs are then concatenated and F = [F1,F2] is used to extract the
feature vector F(X) of any input image X ∈ RN×N . We then use the k-NN
algorithm to search for the closest items to F(X) in feature space.

Details on the employed CNNs and the k-NN algorithm for ranking are presented below.

2.3 Network architectures

A wealth of CNN architectures are available today. In this section we briefly discuss
the two architectures that we use in our work: AlexNet and batch-normalized Inception
(BN-Inception). The AlexNet and BN-Inception are both standard architectures and
well established. AlexNet has been chosen as a benchmark to compare against deeper,

4



more complex networks like the BN-Inception. AlexNet consists of 8 layers and BN-
Inception of 34. Both use an image of size 224x224 as input.

Two important contributions of the AlexNet [9] are popularizing usage of the non-
saturating rectified linear unit activation function, ReLU(x) , max(0, x), and intro-
ducing a normalization layer after the ReLU activation. Empirical results show that
the normalization layer improves the generalization ability of the network. The BN-
Inception [7] is an extension of the GoogLeNet architecture [17], which allows deeper
and wider CNNs by mapping the output of a layer to several layers at once. The output
of these parallel layers is then again concatenated. The proposed batch normalization
extension addresses the internal covariate shift problem. The latter describes the prob-
lem that the latent input distribution of every hidden layer constantly changes, because
every training iteration updates the weight vector Wi . Batch normalization also has a
regularization effect.

2.4 Network training

In order to adjust Ni(Wi , · ) to the particular classification task, the weight vector Wi

is selected depending on a set of training data Ti , {(Xn,Yn)}Nin=1. For this purpose,
the weights are adjusted in such a way, that the overall error of Ni(Wi , · ) made on the
training set is small. This is achieved by minimizing the error function

E(Wi) ,
Ni∑
n=1

d(Ni(Wi ,Xn),Yn) + λ‖Wi‖2 , (2)

where d is a distance measure that quantifies the error made by the network function
Ni(Wi , · ) for classifying the n-th training sample.

To stabilize the weight computation in (2), we add a L2-regularization term λ‖Wi‖2
with regularization parameter λ ≥ 0. As is common for classification with neural
networks, we use the cross entropy for the loss function d . The actual minimization
of (2) is performed by stochastic gradient descent.

2.5 Ranking by k-NN

The k-NN algorithm can be used as simple ranking algorithm. For that purpose, con-
sider the feature space Rp and denote with d2(f,g) = ‖f − g‖2 the Euclidean distance
of two feature vectors. Let {f1, . . . , fm} be a training set of feature vectors. A k-
NN algorithm then solves some regression or classification task at f ∈ Rp using the k
closest training features. This can be implemented by first computing an enumeration
π(f) : {1, 2, . . . , m} → {1, 2, . . . , m} satisfying d2(f, fπ(f)(i)) ≤ d2(f, fπ(f)(i+1)). We
use the permutation π(f) as ranking output for the input feature f. To reduce memory
requirements of the k-NN ranking, we use an implementation that employs a balltree
search [12].

5



Classification Samples
Dataset Type No. Total Train Val

DeepFashion Category Multinomial 46 289,222 231,377 57,845
DeepFashion Texture Multinomial 156 111,405 89,124 22,281

Table 2: Summary of the datasets created from the DeepFashion Attribute Prediction
dataset used for pretraining. The third column indicates the total amount of class
labels for the respective dataset.

3 Results

In this section we present results for the image classification and similarity recommen-
dation with the proposed framework.

3.1 Pretraining

To overcome difficulties arising from the relative small size of the Fashion dataset,
we use the concept of transfer learning [3, 18]. For that purpose, we pretrain the
classification models on a larger dataset (namely, the DeepFashion Attribute Prediction3

dataset, [10]) containing 289 222 garment images. A full summary of the dataset can
be found in Table 2.

For pretraining we use AlexNet and BN-Inception architectures. For the AlexNet we
minimize (2) with stochastic gradient descent using batch size of 64, regularization
parameter λ = 0.0005, learning rate 0.01 and momentum 0.9. For training the BN-
Inception we use the ADAM [8] algorithm with batch size of 32, λ = 0, and learning
rate 0.001. Following [3], we use early stopping as an efficient regularization technique
to prevent overfitting. We therefore stop training AlexNet/BN-Inception after 9/8 and
17/13 epochs for the category and texture classification, respectively.

Additional to the cross entropy loss, we use the evaluation metrics accuracy,

accuracy(y, ŷ) ,
1

N

N∑
n=1

1yn(ŷn) , (3)

and top-K accuracy, which is defined as in Equation (3) with a slightly modified indicator
function such that top-K predicted classes are incorporated. Table 3 shows accuracy,
top-K-accuracy and loss evaluated on the test set for both AlexNet and BN-Inception.
The BN-Inception achieves higher accuracy and better generalization ability. Therefore,
we only use the BN-Inception architecture for classification on the Fashion dataset.

3.2 Classification

For the final classification models we train the BN-Inception by minimizing (2) on the
Fashion dataset with ADAM, where the weights are initialized using the ones from the

3http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/AttributePrediction.html

6

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/AttributePrediction.html


Category AlexNet BN-Inception

Accuracy 0.57 0.63
Top-5 0.79 0.84
Loss 1.48 1.27

Texture AlexNet BN-Inception

Accuracy 0.28 0.32
Top-3 0.62 0.66
Loss 3.00 2.82

Table 3: Pretraining results: The left table depicts results for the category classification
and the right table for the texture classification.

pretraining stage. Due to the small size of the Fashion dataset, we add L2-regularization
with λ = 0.0001 to the loss function and also reduce the batch size to 16.

Several image augmentation techniques are applied in order to effectively increase
dataset size. These include random rotations with a maximum rotation angle of ±3
for the category type model and ±8 for the texture attributes model, random changes
of HSL color channels within a range of [−6, 6], a shear transformation with ran-
dom shear factor within [−0.25, 0.25], random aspect ratio changes within a range of
[0.875, 1.125] and random vertical flips. The random augmentations are applied to the
training set every epoch anew. This allows to train longer without overfitting too fast.
Following early stopping regularization, we stop training the category type and texture
attributes classification models after 15 and 4 epochs respectively. Table 4 summarizes
the final training results. The top-K accuracy metric is however excluded due the the
smaller number of class labels in the Fashion datasets.

Category Texture

Accuracy 0.87 0.80
Loss 0.42 0.61

Table 4: Final BN-Inception classification results on the Fashion datasets for category
and texture.

3.3 Similarity recommendation

The CNN classifiers are used as feature extractors and return feature vectors Fi(X)
of size d = 1024 for any input image. The feature extractors are applied to a set of
n = 19 422 test images. These corresponding feature vectors are concatenated and
stacked to obtain a n × 2d feature matrix. The k-NN ranking algorithm is applied to
the feature matrix. For the recommendation task, it is now sufficient to extract the
features from an input image, submit them to the k-NN ranking algorithm and return
the top-k matching style recommendations. In Figure 2 we present several query images
and corresponding top-5 recommendations. Subjectively, the top-5 recommendations
indeed look quite similar to the query images. In the top row a query image from the
dataset itself is used. This corresponding top-5 recommendations demonstrate that if
the image appears in the dataset it is actually most similar to itself. Similar results have
been obtained in other performed tests. Other than that, an implicit objective metric
for recommendation quality can be found by means of the classification accuracies

7



Figure 2: k-NN recommendation ranking. First column displays the query images and
columns 2–6 display the predicted five nearest neighbors, where column 2 is the most
similar.

reported in Table 4. The definition of a precise objective evaluation criterion, however,
remains difficult due to the inherent subjectivity of recommendation quality. This also
makes comparison with other methods quite challenging. The computationally most
time-consuming part in the application of the proposed recommendation system is the
evaluation of the CNN classifiers.

In our implementation, we have implemented the CNNs in MXNet [?] using its Python
API. Running on a desktop PC with an Intel i7-6850K CPU and a NVIDIA 1080Ti GPU,
the whole image processing pipeline applied to a given input image only takes fractions
of a second. Note that the potentially time-consuming network training is done before
a new input image is provided to the recommendation system, which therefore allows
fast online product recommendation.

4 Conclusion

We presented a visually-aware, data-driven and rather simple but still effective recom-
mendation system for fashion product images. The proposed two-stage approach uses a

8



CNN classifier to extract features that are used as input for similarity recommendations.
It can be used, for example, in E-commerce by allowing customers to upload a specific
fashion image and then offering similar items based on texture and category type fea-
tures of the customer’s uploaded image. Additional feature extractors, e.g. trained on
gender or color classification tasks, can be easily added. Furthermore, generalization to
other domains makes sense, e.g. music recommendation based on raw music data, but
needs further investigation. Several interesting extensions of our approach are possible.
First, it would be promising to integrate the two separate training stages into a sin-
gle one and provide end-to-end deep learning-based fashion product recommendations.
In particular, consideration should be given to Siamese networks. Additionally, hybrid
approaches combining image-based and content-based systems will be implemented.
Finally, it is important to evaluate the customer impact of our image-based approach
and its extensions against other recommender systems through customer surveys.

References

[1] L. Chen, F. Yang, and H. Yang. Image-based product recommendation system
with convolutional neural networks, 2017.

[2] A. S. Dick and K. Basu. Customer loyalty: toward an integrated conceptual
framework. J. acad. market. Sci., 22(2):99–113, 1994.

[3] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT, 2016.

[4] G. Häubl and K. B. Murray. Double agents: assessing the role of electronic product
recommendation systems. MIT Sloan Manage. Rev., 47(3):8–12, 2006.

[5] R. He and J. McAuley. Vbpr: Visual bayesian personalized ranking from implicit
feedback. In AAAI, pages 144–150, 2016.

[6] X. He, L. Liao, H. Zhang, et al. Neural collaborative filtering. In WWW2017,
pages 173–182, 2017.

[7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In ICML, pages 448–456, 2015.

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, pages 1097–1105, 2012.

[10] Z. Liu, P. Luo, S. Qiu, et al. Deepfashion: Powering robust clothes recognition
and retrieval with rich annotations. In CVPR, pages 1096–1104, 2016.

[11] M. Manfredi, C. Grana, S. Calderara, and R. Cucchiara. A complete system for
garment segmentation and color classification. Mach. Vis. Appl., 25(4):955–969,
2014.

9



[12] S. M. Omohundro. Bumptrees for efficient function, constraint and classification
learning. In NIPS, pages 693–699, 1991.

[13] S. Prince. Computer vision: models, learning, and inference. Cambridge University
Press, 2012.

[14] J. B. Schafer, J. A. Konstan, and J. Riedl. E-commerce recommendation appli-
cations. Data Min. Knowl. Discov., 5(1-2):115–153, 2001.

[15] D. Shankar, S. Narumanchi, H.A. Ananya, et al. Deep learning based large scale
visual recommendation and search for e-commerce. arXiv:1703.02344, 2017.

[16] S. S. Srinivasan, R. Anderson, and K. Ponnavolu. Customer loyalty in e-commerce:
an exploration of its antecedents and consequences. J. Retailing, 78(1):41–50,
2002.

[17] C. Szegedy, W. Liu, Y. Jia, et al. Going deeper with convolutions. In CVPR,
pages 1–9, 2015.

[18] N. Tajbakhsh, J. Y. Shin, S. R Gurudu, et al. Convolutional neural networks for
medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imag.,
35(5):1299–1312, 2016.

[19] S. Zhang, L. Yao, and A. Sun. Deep learning based recommender system: A
survey and new perspectives. arXiv:1707.07435, 2017.

10


