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Abstract

Recovering a function or high-dimensional parameter vector from indirect measure-
ments is a central task in various scientific areas. Several methods for solving such
inverse problems are well developed and well understood. Recently, novel algorithms us-
ing deep learning and neural networks for inverse problems appeared. While still in their
infancy, these techniques show astonishing performance for applications like low-dose CT
or various sparse data problems. However, theoretical results for deep learning in inverse
problems are missing so far. In this paper, we establish such a convergence analysis for
the proposed NETT (Network Tikhonov) approach to inverse problems. NETT consid-
ers regularized solutions having small value of a regularizer defined by a trained neural
network. Opposed to existing deep learning approaches, our regularization scheme en-
forces data consistency also for the actual unknown to be recovered. This is beneficial
in case the unknown to be recovered is not sufficiently similar to available training data.
We present a complete convergence analysis for NETT, where we derive well-posedness
results and quantitative error estimates, and propose a possible strategy for training the
regularizer. Numerical results are presented for a tomographic sparse data problem using
the `q-norm of auto-encoder as trained regularizer, which demonstrate good performance
of NETT even for unknowns of different type from the training data.

Keywords: inverse problems, deep learning, convergence analysis, image reconstruction,
convolutional neural networks, `q regularization, total nonlinearity.

AMS subject classifications: 65J20, 65J22, 45F05

1 Introduction

We study the stable solution of inverse problems of the form

Estimate x ∈ D from data yδ = F(x) + ξδ . (1.1)

Here F : D ⊆ X → Y is a possibly nonlinear operator between Banach spaces (X, ‖ · ‖)
and (Y, ‖ · ‖) with domain D. We thereby allow a possibly infinite-dimensional function
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space setting, but clearly the approach and results apply to a finite dimensional setting as
well. The element ξδ ∈ Y models the unknown data error (noise) which is assumed to
satisfy the estimate ‖ξδ‖ ≤ δ for some noise level δ ≥ 0. We focus on the ill-posed (or
ill-conditioned) case where without additional information, the solution of (1.1) is either
highly unstable, highly undetermined, or both. Many inverse problems in biomedical imaging,
geophysics, engineering sciences, or elsewhere can be written in such a form (see, for example,
[12, 29, 34]). For its stable solution one has to employ regularization methods, which are
based on approximating (1.1) by neighboring well-posed problems, which enforce stability and
uniqueness.

1.1 NETT regularization

Any method for the stable solution of (1.1) uses, either implicitly or explicitly, a-priori infor-
mation about the unknowns to be recovered. Such information can be that x belongs to a
certain set of admissible elements or that x has small value of a regularizer (or regularization
functional) R : X → [0,∞]. In this paper we focus on the latter situation, and assume that
the regularizer takes the form

∀x ∈ X : R(x) = R(V, x) := ψ(Φ(V, x)) . (1.2)

Here ψ : XL → [0,∞] is a scalar functional and Φ(V, · ) : X → XL a neural network of depth
L where V ∈ V, for some vector space V, contains free parameters that can be adjusted to
available training data (see Section 2.1 for a precise formulation).

With the regularizer (1.2), we approach (1.1) via

Tα;yδ(x) := D(F(x), yδ) + αR(V, x)→ min
x∈D

, (1.3)

where D : Y ×Y → [0,∞] is an appropriate similarity measure in the data space enforcing data
consistency. One may take D(F(x), yδ) = ‖F(x)−yδ‖2 but also other distance measures such
as the Kullback-Leibler divergence (which, among others, is used in emission tomography)
are reasonable choices. Optimization problem (1.3) can be seen as a particular instance of
generalized Tikhonov regularization for solving (1.1) with a neural network as regularizer.
We therefore name (1.3) network Tikhonov (NETT) approach for inverse problems.

In this paper, we show that under reasonable assumptions, the NETT approach (1.3) is
stably solvable. As δ → 0, the regularized solutions xα,δ ∈ arg minx Tα;yδ(x) are shown to
converge to R(V, · )-minimizing solutions of F(x) = y0. Here and below R(V, · )-minimizing
solutions of F(x) = y0 are defined as any element

x+ ∈ arg min {R(V, x) | x ∈ D ∧ F(x) = y0} . (1.4)

Additionally, we derive convergence rates (quantitative error estimates) between R(V, · )-
minimizing solutions x+ and regularized solutions xα,δ. As a consequence, (1.3) provides a
stable solution scheme for (1.1) using data consistence and encoding a-priori knowledge via
neural networks.

1.2 Possible regularizers

The network regularizer R(V, · ) can either be user-specified, or a trained network, where
free parameters are adjusted on appropriate training data. Some examples are as follows.
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� Non-convex `q-regularizer: A simple user-specified instance of the regularizer (1.2) is the
convex `q-regularizer R(V, x) =

∑
λ∈Λ vλ |〈x, ϕλ〉|

q. Here (ϕλ)λ∈Λ is a prescribed basis or
frame and (vλ)λ∈Λ are weights. In this case, the neural network is simply given by the analysis
operator Φ(V, · ) : X → `2(Λ): x 7→ 〈x, ϕλ〉 and NETT regularization reduces to sparse `q-
regularization [11, 16, 17, 26, 31]. This form of the regularizer can also be combined with a
training procedure by adjusting the weights (vλ)λ∈Λ to a class of training data.

In this paper we in particular study a non-convex extension of `q-regularization, where the
regularizer takes the form

R(V, x) =
∑
λ∈Λ

vλ |Φλ(V, x)|q , (1.5)

with q ≥ 1 and Φ(V, · ) = (Φλ(V, · ))λ∈Λ being a possible nonlinear neural network with mul-
tiple layers. In Section 3.4 we present convergence results for this non-convex generalization
of `q-regularization.

� CNN regularizer: The neural network regularizer R(V, · ) in (1.2) may also be defined
by a convolutional neural network (CNN) Φ(V, · ), containing free parameters that can be
adjusted on appropriate training data. The CNN can be trained in such a way, that the
regularizer has small value for elements x in a class of desirable phantoms and large value
on a class of un-desirable phantoms. In Section 5, we present a possible regularizer design
using an encoder-decoder scheme together with a strategy for training the CNN. We also
present numerical results demonstrating that our approach performs well in practice for a
sparse tomographic data problem.

1.3 Comparison to previous work

Very recently, several deep learning approaches for inverse problems have been developed (see,
for example, [1, 3, 8, 23, 24, 39, 21, 36, 40, 41]). In all these approaches, a reconstruction
network Φrec(V, · ) : Y → X is trained to map measured data to the desired output image.

Most reconstruction networks take the form Φrec(V, · ) = ΦCNN(V, · ) ◦ B, where B : Y →
X maps the data to the reconstruction space (backprojection; no free parameters) and
ΦCNN(V, · ) : X → X is a convolutional neural network (CNN) whose free parameters are
adjusted to the training data. This basic form allows the use of well established CNNs for
image reconstruction [14] and already demonstrates impressing results. Another class of
reconstruction networks learn free parameters in iterative schemes. In such approaches, the
reconstruction network can be written in the form

Φrec(V, y) = (ΦN(VN , · ) ◦ BN(y , · ) ◦ · · · ◦ Φ1(V1, · ) ◦ B1(y , · )) (x0) ,

where x0 is the initial guess, Φk(Vk , · ) : X → X are CNNs that can be trained, and
Bk(y , · ) : X → X are iterative updates based on the forward operator and the data. The
iterative updates may be defined by a gradient step with respect to the given inverse problem.
The free parameters are adjusted to available training data.

Trained iterative schemes repeatedly make use of the forward problem which might yields
increased data consistency compared to the first class of methods. Nevertheless, in all
existing approaches, no provable non-trivial estimates bounding the data consistency term
D(F(x), y) are available; data consistency can only be guaranteed for the training data
(F(zn), zn)Nn=1 for which the parameters in the neural network are optimized. This may
results in instability and degraded reconstruction quality if the unknown to be recovered is
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not similar enough to the class of employed training data. The proposed NETT bounds the
data consistency term D(F(xα,δ), y) also for data outside the training set. We expect the
combination of the forward problem and a neural network via (1.3) (or, for the noiseless
case, (1.4)) to increase reconstruction quality, especially in the case of limited access to a
large amount of appropriate training data. Note, further, that the formulation of NETT
separates the noise characteristic and the a-priori information of unknowns. This allows us
to incorporate the knowledge of data generating mechanism, e.g. Poisson noise or Gaussian
noise, by choosing the corresponding log-likelihood as the data consistency term, and also
simplifies the training process of R(V, · ), as it to some extend avoids the impact of noise.
Meanwhile, this enhances the interpretability of the resulting approach: we on the one hand
require its fidelity to the data, and on the other penalize unfavorable features (e.g. artifacts
in tomography).

The results in this paper are a first main step for regularization with neural networks. We
propose a new framework in the form of Tikhonov regularization with neural network (the
NETT) and present a complete convergence analysis under reasonable assumptions (see
Condition 2.2). Many further issues can be addressed in future work. This includes the
design of appropriate CNN regularizers, the development of efficient algorithms for minimizing
(1.3), and the consideration of other regularization strategies for (1.4). The focus of the
present paper is on the theoretical analysis of NETT and demonstrating the feasibility of
our approach; detailed comparison with other methods in terms of reconstruction quality,
computational performance and applicability to real-world data is beyond our scope here and
will be addressed in future work.

1.4 Outline

The rest of this paper is organized as follows. In Section 2, we describe the proposed NETT
framework for solving inverse problems. We show its stability and derive convergence in
the weak topology (see Theorem 2.3). To obtain the strong convergence of NETT, we
introduce a new notion of total nonlinearity of non-convex functionals. For totally nonlinear
regularizers, we show norm convergence of NETT (see Section 2.9). Convergence rates
(quantitative error estimates) for NETT are derived in Section 3. Among others, we derive a
convergence rate result in terms of the absolute Bregman distance (see Proposition 3.3). A
framework for learning the regularizer using an auto encoder-decoder strategy is developed in
Section 4, and applied to a sparse data problem in photoacoustic tomography in Section 5.
The paper concludes with a short summary and outlook presented in Section 6.

2 NETT regularization

In the section we introduce the proposed NETT and analyze its well-posedness (existence,
stability and weak convergence). We introduce a new property (total nonlinearity), which is
applied to establish convergence of NETT with respect to the norm.

2.1 The NETT framework

Our goal is to solve (1.1) with ‖ξδ‖ ≤ δ and δ > 0. For that purpose we consider minimizing
the NETT functional (1.3), where the regularizer R(V, · ) : X → [0,∞] in (1.2) is defined
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by a neural network of the form

Φ(V, x) := (σL ◦ VL ◦ σL−1 ◦ VL−1 ◦ · · · ◦ σ1 ◦ V1)(x) . (2.1)

Here L is the depth of the network (the number of layers after the input layer) and V`(x) =

A`(x) + b` are affine linear operators between Banach spaces X`−1 and X`−1/2; we take
X0 := X. The operators A` : X`−1 → X`−1/2 are the linear parts and b` ∈ X`−1/2 the so-
called bias terms. The operators σ` : X`−1/2 → X` are possibly nonlinear and the functionals
ψ : XL → [0,∞] are possibly non-convex.

As common in machine learning, the affine mappings V` depend on free parameters that
can be adjusted in the training phase, whereas the nonlinearities σ` are fixed. Therefore V`
and σ` are treated separately and only the affine part V = (V`)L`=1 is indicated in the notion
of the neural network regularizer R(V, · ). Throughout our theoretical analysis we assume
R(V, · ) to be given and all free parameters to be trained before the minimization of (1.3).
In Section 4, we present a possible framework for training a neural network regularizer based
on an encoder-decoder strategy.

Remark 2.1 (CNNs in Banach space setting). A typical instance for the neural network in
NETT (1.2), is a deep convolutional neural network (CNN). In a possible infinite dimensional
setting, such CNNs can be written in the form (2.1), where the involved spaces satisfy
X` := `p(Λ`, X`) and X`−1/2 := `p(Λ`, X`−1/2) with p ≥ 1, X` and X`−1/2 being function
spaces, and Λ` being an at most countable set that specifies the number of different filters
(depth) of the `-th layer. The linear operators A` : `p(Λ`−1, X`−1) → `p(Λ`, X`−1/2) are
taken as

∀x ∈ `p(Λ`−1, X`−1) ∀` ∈ Λ` : A`(x) =

 ∑
µ∈Λ`−1

K
(`)
λ,µ(xµ)


λ∈Λ`

, (2.2)

where K(`)
λ,µ : X`−1 → X`−1/2 are convolution operators.

We point out, that in the existing machine learning literature, only finite dimensional settings
have been considered so far, where X` and X`−1/2 are finite dimensional spaces. In such a
finite dimensional setting, we can take X` = RN`1×N`2 , and Λ` as a set with N`c elements.
One then can identify X` = `p(Λ`, X`) ' RN

`
1×N`2×N`c and interpreted its elements as stack of

discrete images (the same holds for X`−1/2). In typical CNNs, either the dimensions N`1×N`2
of the base space X` are progressively reduced and number of channels N`c increased, or vice
versa. While we are not aware of any infinite dimensional general formulation of CNNs, our
proposed formulation (2.1), (2.2) is the natural infinite-dimensional Banach space version of
CNNs, which reduces to standard CNNs [14] in the finite dimensional setting.

Basic convex regularizers are sparse `q-penalties R(V, x) =
∑
λ∈Λ vλ |〈ϕλ, x〉|

q. In this case
one may take (2.1) as a single-layer neural network with X1 = `2(Λ1,R), σ = Id and
Φ(V, x) = V(x) = (〈ϕλ, x〉)λ being the analysis operator to some frame (ϕλ)λ∈Λ. The
non-convex functional ψ(x) =

∑
λ∈Λ vλ |xλ|

q is a weighted `q-norm. The frame (ϕλ)λ∈Λ

may be a prescribed wavelet or curvelet basis [7, 10, 28] or a trained dictionary [2, 19]. In
Section 3.4, we analyze a non-convex version of `q-regularization, where 〈φλ, · 〉 are replaced
by nonlinear functionals.
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2.2 Well-posedness and weak convergence

For the convergence analysis of NETT regularization, we use the following assumptions on
the regularizer and the data consistency term in (1.3).

Condition 2.2 (Convergence of NETT regularization).

(A1) The regularizer R(V, · ) is defined by (1.2) and (2.1) and satisfies the following:

� V` : X`−1 → X`−1/2 are affine operators of the form V`(x) = A`x + b`;

� A` are bounded linear and for some c` ∈ [0,∞), we have ∀x ∈ X : ‖x‖ ≤ c`‖A`x‖;
� σ` are weakly continuous and coercive, that is ‖σ`(x)‖ → ∞ as ‖x‖ → ∞;

� The functional ψ is lower semi-continuous and coercive.

(A2) The data consistency term satsfies the following:

� For some τ ≥ 1 we have ∀y0, y1, y2 ∈ Y : D(y0, y1) ≤ τD(y0, y2) + τD(y2, y1);

� ∀y0, y1 ∈ Y : D(y0, y1) = 0 ⇐⇒ y0 = y1;

� ∀(yk)k∈N ∈ Y N : yk → y =⇒ D(yk , y)→ 0;

� The functional (x, y) 7→ D(F(x), y) is sequentially lower semi-continuous.

In CNNs, the spaces X` and X`−1/2 are function spaces (see Remark 2.1) and a standard
operation for σ` is the ReLU (the rectified linear unit), ReLU(x) := max {x, 0}, that is
applied component-wise. The plain form of the ReLU is not coercive. However, the slight
modification x 7→ max {x, ax} for some a ∈ (0, 1), named leaky ReLU, is coercive, see [27,
22]. Another coercive standard operation for σ` in CNNs is max pooling which takes the
maximum value max {|x(i)| : i ∈ Ik} within clusters of transform coefficients.

Theorem 2.3 (Well-posedness of CNN-regularization). Let Condition 2.2 be satisfied. Then
the following assertions hold true:

(a) Existence: For all y ∈ Y and α > 0, there exists a minimizer of Tα;y ;

(b) Stability: If yk → y and xk ∈ arg min Tα;yk , then weak accumulation points of (xk)k∈N
exist and are minimizers of Tα;y .

(c) Convergence: Let x ∈ X, y := F(x), (yk)k∈N satisfy D(yk , y),D(y , yk) ≤ δk for some
sequence (δk)k∈N ∈ (0,∞)N with δk → 0, suppose xk ∈ arg minx Tα(δk)(x, yk), and let
the parameter choice α : (0,∞)→ (0,∞) satisfy

lim
δ→0

α(δ) = lim
δ→0

δ

α(δ)
= 0 . (2.3)

Then the following holds:

� Weak accumulation points of (xk)k∈N are R(V, · )-minimizing solutions of F(x) = y ;

� (xk)k∈N has at least one weak accumulation point x+;

� Any weakly convergent subsequence (xk(n))n∈N satisfies R(V, xk(n))→ R(V, x+);

� If the R(V, · )-minimizing solution of F(x) = y is unique, then xδk ⇀ x+.
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Proof. According to [15, 34] it is sufficient to show that the functional R(V, · ) is weakly
sequentially lower semi-continuous and the set {x | Tα;y (x) ≤ t} is sequentially weakly pre-
compact for all t > 0 and y ∈ Y and α > 0. By the Banach-Alaoglu theorem, the latter
condition is satisfied if R(V, · ) is coercive. The coercivity of R(V, · ) however is directly
implied by Condition 2.2. Also from Condition 2.2 it follows that R(V, · ) is sequentially
lower semi-continuous.

Remark 2.4. The boundedness of linear operators V` seems restrictive, but it is somewhat in-
dispensable. In fact, suppose for the moment that we can drop the boundedness requirement
and ensure the first layer is lower semi-continuous. The lower semi-continuity ofR(V, · ) asks
for the weights in V` for ` ≥ 2, are all positive, since certain order has to be preserved. This
positive weight assumption meanwhile leads to the convexity of R(V, · ), which, in practice,
is often not the case.

2.3 Absolute Bregman distance and total nonlinearity

For convex regularizers, the notion of Bregman distance is a powerful concept [4, 34]. For
non-convex regularizers, the standard definition of the Bregman distance takes negative
values. In this paper, we therefore use the notion of absolute Bregman distance. To the best
of our knowledge, the absolute Bregman distance has not been used in regularization theory
so far.

Definition 2.5 (Absolute Bregman distance). Let F : D ⊆ X → R be Gâteaux differentiable
at x ∈ X. The absolute Bregman distance BF( · , x) : D → [0,∞] with respect to F at x is
defined by

∀x̃ ∈ X : BF(x̃ , x) :=
∣∣F(x̃)−F(x)−F ′(x)(x̃ − x)

∣∣ . (2.4)

Here F ′(x) denotes the Gâteaux derivative of F at x .

From Theorem 2.3 we can conclude convergence of xα,δ to the exact solution in the absolute
Bregman distance. Below we show that this implies strong convergence under some additional
assumption on the regularization functional. For this purpose we introduce the new total
nonlinearity, which has not been studied before.

Definition 2.6 (Total nonlinearity). Let F : D ⊆ X → R be Gâteaux differentiable at x ∈ D.
We define the modulus of total nonlinearity of F at x as νF(x, ·) : [0,∞)→ [0,∞],

∀t > 0: νF(x, t) := inf {BF(x̃ , x) | x̃ ∈ D ∧ ‖x̃ − x‖ = t} . (2.5)

The function F is called totally nonlinear at x if νF(x, t) > 0 for all t ∈ (0,∞).

The notion of total nonlinearity is similar to total convexity [6] for convex functionals. Op-
posed to total convexity we do not assume convexity of F , and use the absolute Bregman dis-
tance instead of the standard Bregman distance. For convex functions, the total nonlinearity
reduces to total convexity, as the Bregman distance is always non-negative for convex func-
tionals. For a Gâteaux differentiable function, the total nonlinearity essentially requires that
its second derivative at x is bounded away from zero. The functional F(x) :=

∑
λ∈Λ vλ |xλ|

q

with vλ > 0 is totally nonlinear at every x = (xλ)λ∈Λ ∈ `∞(Λ) if q > 1.

We have the following result, which generalizes [32, Proposition 2.2] (see also [34, Theorem
3.49]) from the convex to the non-convex case.
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Proposition 2.7 (Characterization of total nonlinearity). For F : D ⊆ X → R and any x ∈ D
the following assertions are equivalent:

(i) The function F is totally nonlinear at x ;

(ii) ∀ (xn)n∈N ⊆ DN : limn→∞ BF(xn, x) = 0⇒ limn→∞ ‖xn − x‖ = 0.

Proof. The proof of the implication (ii) ⇒ (i) is the same as [32, Proposition 2.2]. For the
implication (i) ⇒ (ii), let (i) hold, let (xn)n∈N ⊆ DN satisfy BF(xn, x) → 0, and suppose
limn→∞ ‖xn − x‖ = δ > 0 for the moment. For any ε > 0, by the continuity of BF( · , x),
there exist x̃n with ‖x̃n − x‖ = δ such that for sufficiently large n

ε ≥ BF(xn, x) +
ε

2
≥ BF(x̃n, x) ≥ νF(x, δ).

This leads to νF(x, δ) = 0, which contradicts with the total nonlinearity of F at x . Then,
the assertion follows by considering subsequences of (xn)n∈N.

Remark 2.8. We point out that Proposition 2.7 remains true, if we replace the absolute
value | · | : R→ [0,∞] in (2.4) by the ReLU function, the leaky ReLU function, or any other
nonnegative continuous function φ : R→ [0,∞] that satisfies φ(0) = 0.

2.4 Strong convergence of NETT regularization

For totally nonlinear regularizers R(V, · ) we can prove convergence of NETT with respect
to the norm topology.

Theorem 2.9 (Strong convergence of NETT). Let Condition 2.2 hold and assume addition-
ally that F(x) = y has a solution, R(V, · ) is totally nonlinear at R(V, · )-minimizing solu-
tions, and α satisfies (2.3). Then for every sequence (yk)k∈N with D(yk , y),D(y , yk) ≤ δk
where δk → 0 and every sequence xk ∈ arg minx Tα(δk)(x, yk), there exist a subsequence
(xk(n))n∈N and an R(V, · )-minimizing solution x+ with ‖xk(n) − x+‖ → 0. If the R(V, · )-
minimizing solution is unique, then xk → x+ with respect to the norm topology.

Proof. It follows from Theorem 2.3 that there exists a subsequence (xk(n))n∈N weakly con-
verging to some R(V, · )-minimizing solution x+ such that R(V, xk(n)) → R(V, x+). From
the weak convergence of (xk(n))n∈N and the convergence of (R(V, xk(n)))n∈N it follows that
BR(V, · )(xk(n), x+) → 0. Thus it follows from Proposition 2.7, that ‖xk(n) − x+‖ → 0. If
x+ is the unique R-minimizing solution, the strong convergence to x+ again follows from
Theorem 2.3 and Proposition 2.7.

3 Convergence rates

In this section, we derive convergence rates for NETT in terms of general error measures
under certain variational inequalities. We discuss instances where the variational inequal-
ity is satisfied for the absolute Bregman distance. Additionally, we consider a non-convex
generalization of `q-regularization.
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3.1 General convergence rates result

We study convergence rates in terms of a general functional E : X × X → [0,∞] measuring
closedness in the space X. For convex Ψ: [0,∞) → [0,∞), let Ψ∗ : R → R denote the
Fenchel conjugate of Ψ defined by Ψ∗(τ) := sup {τ t −Ψ(t) | t ≥ 0}.

Theorem 3.1 (Convergence rates for NETT). Suppose E : X ×X → [0,∞], let x+ ∈ D and
assume that there exist a concave, continuous and strictly increasing function Φ: [0,∞)→
[0,∞) with Φ(0) = 0 and a constant β > 0 such that for all ε > 0 and x ∈ D with
|R(V, x)−R(V, x+)| < ε we have

βE(x, x+) ≤ R(V, x)−R(V, x+) + Φ(D(F(x),F(x+))) . (3.1)

Additionally, let Condition 2.2 hold, let yδ ∈ Y and δ > 0 satisfy D(y , yδ),D(yδ, y) ≤ δ

and write Φ−∗ for the Fenchel conjugate of the inverse function Φ−1. Then the following
assertions hold true:

(a) For sufficiently small α and δ, we have

∀xα,δ ∈ arg min Tα;yδ : βE(xα,δ, x+) ≤
δ

α
+ Φ(τδ) +

Φ−∗(τα)

τα
. (3.2)

(b) If α ∼ δ/Φ(τδ), then E(xα,δ, x+) = O (Φ(τδ)) as δ → 0.

Proof. (a) By Theorem 2.3 (c), we can assume that |R(V, · )(xα,δ)−R(V, x+)| ≤ ε. Note
that D(F(xα,δ), yδ) + αR(V, · )(xα,δ) ≤ D(F(x+), yδ) + αR(V, x+). Then from (3.1) we
obtain

αβE(xα,δ, x+) ≤ δ −D(F(xα,δ), yδ) + αΦ(D(F(xα,δ),F(x+)))

≤ δ −D(F(xα,δ), yδ) + αΦ(τδ + τD(F(xα,δ), yδ))

≤ δ −D(F(xα,δ), yδ) + αΦ(τδ) + αΦ(τD(F(xα,δ), yδ))

≤ δ + αΦ(τδ) + τ−1Φ−∗(τα).

The last estimate is an application of Young’s inequality αΦ(τt) ≤ t + τ−1Φ−∗(τα).

(b) Elementary computations show lim supδ→0 Φ−∗
(
τδ/Φ(τδ)

)
/δ < ∞, such that the right

hand side of (3.2) is bounded by Φ(τδ) up to a constant if α ∼ δ/Φ(τδ).

Remark 3.2. If Φ(t) ≤ Ct for sufficiently small t, then from (3.2) it follows that βE(xα,δ, x) ≤
δ/α + Csδ = O(δ) if α ≤ 1/C. This says that the regularization parameter α needs not
vanish as δ → 0, which is often referred to as exact penalization (for the convex case, see
the discussions in [34, 4]).

3.2 Rates in the absolute Bregman distance

We next derive conditions under which a variational inequality in form of (3.1) is possible for
the absolute Bregman distance as error measure, E(x, x+) := BR(V, · )(x, x+).

Proposition 3.3 (Rates in the absolute Bregman distance). Let X and Y be Hilbert spaces
and let F : X → Y be a bounded linear operator. Assume that R(V, · ) is Gâteaux differen-
tiable, that R′(V, x+) ∈ Ran(F∗), and that there exist positive constants γ, ε with

R(V, x+)−R(V, x) ≤ γ‖F(x)− F(x+)‖ (3.3)
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for all x satisfying |R(V, x)−R(V, x+)| < ε. Then,

BR(V, · )(x, x+) ≤ R(x)−R(x+) + C‖F(x)− F(x+)‖ for some constant C.

In particular, for the distance measure D(z, y) = ‖z − y‖2 and under Condition 2.2, Items
(a) and (b) of Theorem 3.1 hold true.

Proof. Let ξ satisfy that R′(V, x+) = F∗ξ. Then |〈R′(V, x+), x − x+〉| ≤ ‖ξ‖‖F(x)− F(x+)‖.
Note that |R(V, x)−R(V, x+)| = R(V, x)−R(V, x+) if R(V, x) ≥ R(V, x+) and |R(V, x)−
R(V, x+)| = R(V, x)−R(V, x+) + 2(R(V, x+)−R(V, x)) ≤ R(V, x)−R(V, x+) + 2γ‖F(x)−
F(x+)‖ otherwise. This yields

BR(V, · )(x, x+) ≤ |R(V, x)−R(V, x+)|+ |〈R′(V, x+), x − x+〉|
≤ R(V, x)−R(V, x+) + C‖F(x)− F(x+)‖

with the constant C := ‖ξ‖+ 2γ, and concludes the proof.

Remark 3.4. Proposition 3.3 shows that a variational inequality of the form (3.1) with
β = 1 and Φ(t) = C

√
t follows from a classical source condition R′(x+) ∈ Ran(F∗). By

Theorem 3.1, it further implies that BR(V, · )(xα,δ, x+) = O(δ) if ‖y − yδ‖ ≤ δ. Moreover, we
point out that the additional assumption (3.3) is rather weak, and follows from the classical
source condition R′(x+) ∈ Ran(F∗) if R is convex, see [16]. It is clear that a sufficient
condition to (3.3) is

|R(V, x)−R(V, x+)− 〈R′(V, x+), x − x+〉| ≤ c |R(V, x)−R(V, x+)| for some c < 1,

which resembles a tangential-cone condition.

3.3 General regularizers

So far we derived well-posedness, convergence and convergence rates for regularizers of the
form (1.2). These results can be generalized to Tikhonov regularization

Tα;yδ(x) := D(F(x), yδ) + αR(x)→ min
x
, (3.4)

where the regularization term is not necessarily defined by a neural network. These results
are derived by replacing Condition 2.2 with the following one.

Condition 3.5 (Convergence for general regularizers).

(B1) The functional R is sequentially lower semi-continuous.

(B2) The set {x | Tα;y (x) ≤ t} is sequentially pre-compact for all t, y and α > 0.

(B3) The data consistency term satisfies (A2).

Then we have the following:

Theorem 3.6 (Results for general Tikhonov regularization). Under Condition 3.5, general
Tikhonov regularization (3.4) satisfies the following:

(a) The conclusions from Theorem 2.3 (well-posedness and convergence) hold true.
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(b) If R is totally nonlinear at R-minimizing solutions, the strong convergence from The-
orem 2.9 holds.

(c) The convergence rates result from Theorem 3.1 holds.

(d) If F is bounded linear, the assertions of Proposition 3.3 hold for R.

Proof. All assertions are shown as in the special case R = R(V, · ).

Note that Item (a) in the above theorem is contained in [15]. Items (b)-(d) have not been
obtained previously for non-convex regularizers.

3.4 Non-convex `q-regularization

We now analyze a special instance of NETT regularization (1.2), generalizing `q-regularization.
More precisely, we consider the following non-convex `q-Tikhonov functional

Tα,yδ(x) = ‖F(x)− yδ‖2 + α
∑
λ∈Λ

vλ |φλ(x)|q with q > 1. (3.5)

Here Λ is a countable set and φλ : X → R are possibly nonlinear functionals. The regularizer
R(x) :=

∑
λ∈Λ vλ |φλ(x)|q is a particular instance of NETT (1.2), if we take σL ◦VL ◦ · · · ◦

σ1 ◦ V1 = (φλ)λ∈Λ, and ψ as a weighted `q-norm. However, in (3.5) also more general
choices for φλ are allowed (see Condition 3.7).

We assume the following:

Condition 3.7.

(C1) F : X → Y is a bounded linear operator between Hilbert spaces X and Y .

(C2) φλ : X → R is Gâteaux differentiable for every λ ∈ Λ.

(C3) There is a R(V, · )-minimizing solution x+ with R′(V, x+) ∈ Ran(F∗);

(C4) There exist constants C, ε > 0 such that for all x with |R(V, x)−R(V, x+)| ≤ ε,
it holds that

∀λ ∈ Λ: sgn(φλ(x+))(φλ(x+)− φλ(x)) ≤ Csgn(φλ(x+))φ′λ(x+)(x+ − x) .

Here sgn(t) = 1 for t > 0, sgn(t) = 0 for t = 0, and sgn(t) = −1 otherwise.

Proposition 3.8. Let Condition 3.7 hold, suppose that yδ ∈ Y is such that ‖y − yδ‖ ≤ δ,
and let xα,δ ∈ arg min Tα,yδ . If choosing α ∼ δ, then BR(xα,δ, x+) = O(δ).

Proof. The convexity of t 7→ |t|q implies that

R(x+)−R(x) ≤
∑
λ∈Λ

vλ|φλ(x+)|q−1sgn(φλ(x+))(φλ(x+)− φλ(x)).

By (C4), we obtain R(x+)−R(x) ≤ C〈R′(x+), x+−x〉. This together with (C3) implies (3.3).
Thus, the assertion follows from Proposition 3.6.
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Remark 3.9. Consider the case that φλ(x) := 〈ϕλ, x〉 for an orthonormal basis (ϕλ)λ∈Λ of
X. It is known that ‖x − x+‖2 = O

(
BR(V, · )(x, x+)

)
, see e.g. [34]. Then, Proposition 3.8

gives ‖xα,δ − x+‖ = O(δ1/2), which reproduces the result of [34, Theorem 3.54]. This rate
can be improved to O(δ1/q) if we further assume sparsity of x+ and restricted injectivity of
F. It can be shown by Theorem 3.1 because in such a situation (3.1) holds with Φ(t) ∼

√
t

and E(x, x+) = ‖x − x+‖q, see [16] for details.

4 NETT regularization using auto-encoders

In this section we present a framework for constructing a trained neural network regularizer
R(V, · ) of the form (2.1). The proposed network Φ(V, · ) has the form of an auto-encoder.
Additionally, we develop a strategy for network training and minimizing the NETT functional.

4.1 A trained regularizer

For the regularizer we propose R(V, · ) =
∑
λ∈ΛL

‖Φλ(V, x)‖pp with a network Φ(V, · ) =

(Φλ(V, · ))λ∈Λ of the form (2.1), that itself is part network of the encoder-decoder type,

Ψ(W, · ) ◦ Φ(V, · ) : X → X . (4.1)

Here Φ(V, · ) : X → XL can be interpreted as encoding network and Ψ : XL → X as decoding
network. Any network with at least one hidden layer can be written in the form (4.1). Training
of the network is performed such that R(V, · ) is small for artifact free images and large for
images with artifacts. A possible training strategy is presented below.

r

e d

with artefacts

no artefacts

artefacts

zero

Figure 4.1: Encoder-decoder scheme and training strategy. The network consists of the
encoder part Φ(V, · ) and decoder part Ψ(W, · ), and is trained to map any potential solution
x to the corresponding artifact part. The norm of Φ(V, x) used as trained regularizer.

For suitable network training of the encoder-decoder scheme (4.1), we propose the following
strategy (compare Figure 4.1). We choose a set of training phantoms zn ∈ X for n =

1, . . . , 2N from which we construct back-projection images xn := FT(Fzn) for the first N
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training examples, and set xn = zn for the last N training images. From this we define the
training data {(xn, rn)}2N

n=1, where

rn = zn − xn = zn − FT(Fzn) for n = 1, . . . , N (4.2)

rn = zn − xn = 0 for n = N + 1, . . . , 2N . (4.3)

The free parameters in (4.1) are adjusted in such a way, that Ψ(W,Φ(V, xn)) ' rn for any
training pair (xn, rn). This is achieved by minimizing the error function

EN(V,W) :=

N∑
n=1

d(Ψ(W,Φ(V, xn)), rn) , (4.4)

where d is a suitable distance measure (or loss function) that quantifies the error made by
the network function on the n-th training sample. Typical choices for d are mean absolute
error or mean squared error.

Given an arbitrary unknown x ∈ X, the trained network estimates the artifact part. As a
consequence, R(V, x) is expected to be large, if x contains severe artifacts and small if it is
almost artifact free. If x is similar to elements in the training set, this should produce almost
artifact free results with NETT regularization. Even if the true unknown is of different type
from the training data, artifacts as well as noise will have large value of the regularizer. Thus
our approach is applicable for a wider range of images apart from training ones. This claim
is confirmed by our numerical results in Section 5. Note that while we did not explicitly
account for the coercivity condition in (A1) during the training phase, the encoder-decoder
scheme is expected to automatically yield this property. Investigating this issue in more detail
(theoretically and numerically) is an interesting aspect of future research.

4.2 Minimizing the NETT functional

Using the encoder-decoder scheme, regularized solutions are defined as minimizers of the
NETT functional

Tα;y (x) =
1

2
‖F(x)− yδ‖2 + α

∑
λ∈ΛL

‖Φλ(V, x)‖pp , (4.5)

where Φ is trained as above. The optimization problem (4.5) is non-convex and non-smooth if
p = 1. Note that the subgradient of the regularization term R(V, x) =

∑
λ∈ΛL

‖Φ(V, x)λ‖pp
can be evaluated by standard software for network training with the backpropagation al-
gorithm. We therefore propose to use an incremental gradient method for minimizing the
Tikhonov functional (4.5), which alternates between a gradient descent step for 1

2‖F(x)− yδ‖2

and a subgradient descent step for the regularizer R(V, x).

The resulting minimization procedure is summarized in Algorithm 1.

In practice, we found that Algorithm 1 gives favorable performance, and is stable with respect
to tuning parameters. Also other algorithms such as proximal gradient methods [9] or Newton
type methods might be used for the minimization of (4.5). A detailed comparison with other
algorithms is beyond the scope of this article.

Note that the regularizer may be taken R(V, x) = ‖Φ(x)‖L with an arbitrary norm ‖ · ‖L on
XL. The concrete training procedure is described below. In the form (4.5), NETT constitutes
a non-convex generalization of `q-regularization.

13



Algorithm 1 Incremental gradient descent for minimizing NETT

Choose family of step-sizes (si) > 0

Choose initial iterate x0

for i = 1 to maxiter do
x̄i ← xi−1 − siF′(xi−1)∗(F(xi−1)− y δ) {gradient step for 1

2‖F(x)− yδ‖2}
xi ← x̄i − siα∇xR(V, · )(x̄i) {gradient step for R(V, · )}

end for

5 Application to sparse data tomography

As a demonstration, we use NETT regularization with the encoder-decoder scheme pre-
sented in Section 4 to the sparse data problem in photoacoustic tomography (PAT). PAT is
an emerging hybrid imaging method based on the conversion of light in sound, and benefi-
cially combines the high contrast of optical imaging with the good resolution of ultrasound
tomography (see, for example, [25, 30, 37, 38]).

5.1 Sparse sampling problem in PAT

The aim of PAT is to recover the initial pressure p0 : Rd → R in the wave equation
∂2
t p(x, t)− ∆xp(x, t) = 0 , for (x, t) ∈ Rd × (0,∞) ,

p (x, 0) = p0(x) , for x ∈ Rd ,
∂tp (x, 0) = 0 , for x ∈ Rd .

(5.1)

form measurements of p made on an observation surface S outside the support of p0. Here
d is the spatial dimension, ∆x the spatial Laplacian, and ∂t the derivative with respect to the
time variable t. Both cases d = 2, 3 for the spatial dimension are relevant in PAT: The case
d = 3 corresponds to classical point-wise measurements; the case d = 2 to integrating line
detectors [5, 30]. In this paper we consider the case of d = 3 and assume the initial pressure
p0 : R2 → R vanishes outside the unit disc D1, the ball of radius 1, and that acoustic data
are collected at the boundary sphere S1 = ∂D1. In particular, we are interested in the sparse
sampling case, where data are only given for a small number of sensor locations on S1. This
is the case that one often faces in practical applications.

In the full sampling case, the discrete PAT forward operator is written as F : RN1×N2 →
RMfull×M2 where Mfull corresponds to the number of complete spatial sampling points and
M2 to the number of temporal sampling points. Sufficient sampling conditions for PAT in
the circular geometry have been derived in [20]. We discretize the exact inversion formula of
[13] to obtain an approximation F ] : RMfull×M2 → RN1×N2 to the inverse of F. In the full data
case, application of F ] to data Fx ∈ RMfull×M2 gives an almost artifact free reconstruction
x ∈ RN1×N2 , see [20]. Note that F ] is the discretization of the continuous adjoint of F with
respect to a weighted L2-inner product (see [13]).

In the sparse sampling case, the PAT forward operator is given by

F = S ◦ F : X = RN1×N2 → RM1×M2 . (5.2)

Here S : RMfull×M2 → RM1×M2 is the subsampling operator, which restricts the full data in
to a small number of spatial sampling points. In the case of spatial under-sampling, the

14



FBP reconstruction F] := F ] ◦ST yields typical streak-like under-sampling artifacts (see, for
example, the examples in Figures 5.1 and 5.2 below).

Figure 5.1: Reconstruction results for a phantom of Shepp-Logan type. Top: Phantom x

(left) and corresponding FBP reconstruction (right); Bottom: Iterates x10 (left) and x50

(right) with the proposed algorithm for minimizing the NETT functional.

5.2 Implementation details

Consider NETT where the regularizer is defined by the encode-decoder framework described
in Section 4. The network Ψ(W, · ) ◦ Φ(V, · ) is taken as the Unet, where the Φ(V, x)

corresponds to the output of the bottom layer with smallest image size and largest depth.
The Unet has been proposed in [33] for image segmentation and successfully applied to PAT
in [3, 35]. However, we point out, that any network that has the encoder-decoder of the
form Ψ(W, · ) ◦ Φ(V, · ) can be used in an analogous manner.

The network was trained on a set of training pairs {(xn, rn)}2N
n=1, with N = 975, where

exactly half of them contained under-sampling artifacts. For generating such training we
used (4.2), (4.3) where zn are taken as randomly generated piecewise constant Shepp-Logan
type phantoms. The Shepp-Logan type phantoms have position, angle, shape and intensity
of every ellipse chosen uniformly at random under the side constraints that the support of
every ellipse lies inside the unit disc and the intensity of the phantom is in the range [0, 6].
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In this discrete sparse sampling case, we take the forward operator F as in (5.2) with N1 =

N2 = 256 and M1 = 30 spatial samples distributed equidistantly on the boundary circle. We
used M2 = 2000 times sampled evenly in the interval [0, 2.5]. The under-sampling problem
in PAT is solved by FBP, and NETT regularization using α = 1/4. We minimize (4.5) using
Algorithm 1, where we chose a constant step size of si = 0.4 and take the zero image x0 = 0

for the initial guess.

Figure 5.2: Reconstruction results for a phantom of different type from training data. Top:
Phantom x with smooth blobs (left) and corresponding FBP reconstruction (right); Bottom:
Iterates x10 (left) and x50 (right) with the proposed algorithm for minimizing the NETT
functional.

5.3 Results and discussion

The top left image in Figure 5.1 shows a Shepp-Logan type phantom x : R256×256 → R
corresponding to a function on the domain [−1, 1]2. It is of the same type as the training
data, but is not contained in the training data. The NETT reconstruction x10 and x50 with
Algorithm 1 after 10 and 50 iterations for the Shepp-Logan type phantom are shown in
the bottom row of Figure 5.1. The top right image Figure 5.1 shows the reconstruction
xFBP = F]Fx with the FBP algorithm of [13]. The relative L2-errors E(z) := ‖x − z‖2/‖x‖2

of the iterates for the Shepp-Logan type phantom are E(x10) = 0.262 and E(x50) = 0.192,
whereas the relative error of the FBP reconstruction is E(xFBP) = 0.338. From Figure 5.1
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one recognizes that NETT is able to well remove under-sampling artifacts while preserving
high resolution information.

We also consider a phantom image (blobs phantom) that additionally includes smooth parts
and is of different type from the phantoms used for training. The blobs phantom as well as the
FBP reconstruction xFBP and NETT reconstructions x10 and x50 are shown in Figure 5.2.
For the blobs phantom, the relative reconstruction errors are given by E(x10) = 0.176,
E(x50) = 0.102 and E(xFBP) = 0.179. Again, for this phantom different from the training
set, NETT removes under-sampling artifacts and at the same time preserves high resolution.

Figure 5.3: Reconstruction results from noisy data using NETT with 15 iterations. Left:
Shop Logan phantom; Right: Blobs phantom.

Finally, Figure 5.3 shows reconstruction results with NETT from noisy data where we added
5 % additive Gaussian noise to the the data. We performed 15 iterations with Algorithm 1.
The relative reconstruction errors are E(x15) = 0.280 for the Shepp Logan phantom and
E(x15) = 0.210 for the blobs phantom. Parameters have been taken as in the noiseless data
case; no detailed studies for finding optimal values of step site and regularization parameter
have been performed. In both cases, the reconstructions for are free from under-sampling
artifacts and contain high frequency information, which demonstrates the applicability of
NETT for noisy data as well.

The above results demonstrate the proposed NETT regularization using the encoder-decoder
framework and with Algorithm 1 for minimization is able to remove under-sampling artifacts.
Its gives pretty good results even on images with smooth structures not contained in the
training data. This shows that in the NETT framework, learning the regularization functional
on one class of training data, can lead to good results even for images beyond that class.

6 Conclusion and outlook

In this paper we developed a new framework for the solution of inverse problems via NETT
(1.3). We presented a complete convergence analysis and derived well-posedness and weak
convergence (Theorem 2.3), norm-convergence (Theorem 2.9), as well as various conver-
gence rates results (see Section 3). NETT combines deep neural networks with a Tikhonov
regularization strategy. The regularizer is defined by a network that might be a user-specified
function (generalizing frame based regularization), or might be a CNN trained on a appro-
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priate training data. We have developed a possible strategy for learning a deep CNN (using
an encoder-decoder framework, see Section 4). Initial numerical results for a sparse data
problem in PAT (see Section 5) demonstrated that NETT with the trained regularizer works
well and also yields good results for phantoms different from the class of training data. This
may be a result of the fact, that opposed to other deep learning approaches for image recon-
struction, the NETT includes a data consistency term as well as the trained network that
focuses on identifying artifacts. Detailed comparison with other deep learning methods for
inverse problems as well as variational regularization methods (including TV-minimization) is
subject of future studies.

Many possible lines of future research arise from the proposed NETT regularization and
the corresponding network-minimizing solution concept (1.4). For example, instead of the
Tikhonov variant (1.3) one can employ and analyze the residual method (or Ivanov regular-
ization) for approximating (1.4), see [18]. Instead of the simple incremental gradient descent
algorithm (cf. Algorithm 1) for minimizing NETT one could investigate different algorithms
such as proximal gradient or semi-smooth Newton methods. Studying network designs and
training strategies different from the encoder-decoder scheme is a promising aspect of fu-
ture studies. Finally, application of NETT to other inverse problems is another interesting
research direction.
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