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Abstract

Magnetorelaxometry imaging is a novel tool for quantitative determination of the spatial
distribution of magnetic nanoparticles inside an organism. While the use of multiple excitation
patterns has been demonstrated to significantly improve spatial resolution, the use of several
activation patterns is considerably more time consuming as several experiments have to be
performed in a sequential manner. In this paper, we use compressed sensing in combination
with sparse recovery, for reducing scanning time while keeping improved spatial resolution. We
investigate single-stage and two-stage approaches for image reconstructing and sparse recov-
ery algorithms based on Douglas Rachford splitting. Our numerical experiments demonstrate
that the single-stage approach clearly outperforms the two-stage approach. Further, the pro-
posed single-stage algorithm is shown to be capable to recover the magnetic nanoparticles
with high spatial resolution from a small number of activation patterns.

Keywords: Compressed sensing; magnetorelaxometry; image reconstruction; magnetic nanopar-
ticles; multiple excitation; Douglas Rachford splitting; sparse recovery.

1 Introduction

Magnetic nanoparticles (MNP) offer a variety of promising biomedical applications. For example,
they can be used as agents for drug delivery or hyperthermia, where the aim is to heat up specific
regions inside a biological specimen [27]. These applications require quantitative knowledge
of the magnetic nanoparticles distribution for safety and efficacy monitoring. In this paper,
we consider magnetorelaxometry (MRX) imaging, which is a novel and promising non-invasive
technique to spatially resolve the location and concentration of magnetic particles in vivo [4, 19],
and beneficially combines a highly sensitive magnetic measurement technology for MNP imaging
with a broad range of parameters and the potential to image particle distributions in a comparably
large volume [9].
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In MRX, the magnetic moments of the magnetic nanoparticles are aligned by a magnetic field gen-
erated by excitation coils [20]. Therewith, a magnetization can be measured from the MNP. After
switching off the excitation field, the decay of magnetization (relaxation) is recorded, typically
by SQUID sensors, yielding information about the particle concentration and other properties.
If the relaxation is measured by a sensor array, the particle distribution can be reconstructed by
inverse imaging methods [3, 19].

In multiple excitation MRX (ME-MRX), several inhomogeneous activation fields generated by an
array of excitation coils are applied. With such a coil array, a variety of inhomogeneous excitation
fields can be generated, for example, by switching on the coils in a sequential manner [24]. First
experimental realization of ME-MRX with sequential activation and least squares estimation for
imaging has been obtained in [19].

ME-MRX using sequential coil activation requires a large number of measurement cycles and
thus a considerable time for data acquisition. Recently, different approaches have been proposed
for advanced excitation schemes [7, 8, 1].

A possibility to maintain improved resolution while reducing measurement time is via compressed
sensing (CS), a new sensing paradigm [5, 11] that allows to capture a high resolution image
(or signal) by using much fewer measurements than predicted by Shannon’s sampling theorem.
CS replaces point-measurements by general linear measurements, where each measurement con-
sists of a linear combination of the entries of the image of interest. Recovering the original
image is highly under-determined. The standard theory of CS predicts that under suitable as-
sumptions on the image of interest (sparsity) and the measurement matrix (incoherence), stable
image reconstruction is nevertheless possible. CS has led to several new sampling strategies in
medical imaging, for example, for speeding up MRI data acquisition [21], accelerating photoa-
coustic tomography [17], or completing under-sampled CT images [6]. While these applications
involve relatively mildly ill-conditioned problems, ME-MRX constitutes a severely ill-conditioned
or ill-posed problem. No standard approaches for image reconstruction combining compressive
measurements and such severely ill-posed problems exist.

In this work, we investigate CS techniques for accelerating ME-MRX. For that purpose, we
consider random activations of the coils as well as sparse deterministic subsampling schemes.
For reconstructing the magnetic particle distribution from the CS data we develop two-stage
and single-stage reconstruction approaches. In the two-stage approach, the CS data are used to
recover the complete data (corresponding to a full sequential activation pattern) in a first step,
from which the magnetic particle distribution is recovered in a second stage. In the single-stage
approach, the magnetic particle distribution is directly recovered from the CS data. For both
approaches, we develop sparse reconstruction algorithms based on Douglas Rachford splitting
[10]. Note that due to the ill-posed nature of the MRX inverse problem, the standard uniform CS
recovery theory [13] cannot be applied to the single-stage approach. Nevertheless, our numerical
results demonstrate that the single-stage approach works well, and significantly outperforms the
two-stage approach in terms of reconstruction quality. We therefore recommend the single-stage
approach for further investigations in CS ME-MRX imaging.

1.1 Outline

This article is organized as follows. In Section 2 we describe the forward problem of ME-MRX
imaging and CS. The proposed single-stage and two-stage algorithms for ME-MRX image re-
construction are developed in Section 3. Details on the numerical implementation together with
numerical results and a discussion are presented in Section 4. The paper ends with a conclusion
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and outlook presented in Section 4.

2 The forward model in ME-MRX imaging

This section gives a precise formulation of the forward problem of ME-MRX and CS. For the
sake of clarity, throughout we work with a discrete model [26, 4, 22]. A continuous model has
recently been presented in [12].

activation
coils

sensors

voxels

Figure 1: Illustration of a simplified two-dimensional ME-MRX setup consisting of an array of
activation coils (each having location rs and normal vector νs) and two layers of sensors arranged
around the volume of interest.

2.1 Signal generation

In MRX, an activation field is applied to a region of interest containing magnetic particles. We
assume this region to be divided into a number of Nv quadratic voxels, each represented by
its midpoint located at rv and containing a concentration of magnetic particles n(rv ) (compare
Fig. 1). Due to the presence of the applied field, the magnetic particles align up and, after the
activation field is switched off, produce a relaxation signal. According to Biot-Savart law, the
contribution of the magnetic particles concentration in the v th voxel to the measured signal at
sensor location rs is given by [19]

bH(rs) =
µ0
4π

νs •
Nv∑
v=1

(
3rs,v ⊗ rs,v
|rs,v |5

−
1

|rs,v |3

)
H(rv ) n(rv ) for s ∈ {1, . . . , Ns} . (1)

Here H is the activation field, rs,v = rs − rv is the vector joining rs and rv , νs is the normal
vector of the sensor at location rs , and ⊗ and • are used to denote the tensor and scalar product,
respectively.
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Assuming the concentrations n(rv ) and the activation field H to be known, the measured data can
be computed by (1). Collecting the individual measurements in a vector bH = (bH(r1), . . . , b

H(rNs ))T,
we obtain the linear equation

bH = LH n ∈ RNs . (2)

Here n = (n(r1), . . . , n(rNv ))T ∈ RNv is the vector of magnetic particle concentrations, and
L ∈ RNs×Nv is the system matrix having entries

LHs,v ,
µ0
4π

νs •

(
3rs,v ⊗ rs,v
|rs,v |5

−
1

|rs,v |3

)
H(rv ) (3)

as derived from relation (1). The matrix LH is called Lead field matrix corresponding to the
excitation field H. Eq. (2) constitutes the standard discrete forward model of MRX using a single
activation field.

2.2 Full coil activation

In ME-MRX, the volume of interest is (partially) surrounded by an array of excitation coils and
sensor arrays (see Fig. 1). The coils can be controlled to generate different types of activation
fields. In the following we denote by H1, . . . ,HNc the magnetic fields induced by individual
activation of the coils. Further, we write bc , bHc ∈ RNs and Lc , LHc ∈ RNs×Nv for the data
and the Lead field matrix according to (2) and (3), corresponding to the activation field H = Hc .
The measurements from all activations can be combined to a single equation of the form

b = Ln ∈ RNcNs , (4)

where

b ,

 b1...
bNc

 and L ,

 L1...
LNc

 . (5)

We will refer to b in (4) as full activation data. Evaluating (4) constitutes the forward model
of ME-MRX. The corresponding inverse problem consists in determining the magnetic particle
distribution n ∈ RNv from the data vector b that is additionally corrupted by noise. Note that
Eq. (4) is known to be severely ill-conditioned as its singular values are rapidly decreasing (see
[2]; an analysis in the infinite-dimensional setting has been done in [12]).

The multiple coil setup has been been realized in [1, 24]. In order to collect the required data,
any coil is switched on individually and data are collected by the sensor array. This process
is repeated in a sequential manner until each coil in the array has been activated. The use of
multiple excitation patters has been shown to significantly improve the spatial resolution compared
to single activation [24]. However, the consecutive activation leads to a more time consuming
measurement process. In order to accelerate data acquisition while keeping the advantages of
multiple activation coils, in this paper we use CS techniques where we use random as well as
deterministic coil activation patterns. Additionally, we develop sparse reconstruction algorithms
for the arising CS ME-MRX inverse problems.

2.3 Compressive coil activations

The basic idea of employing CS for ME-MRX is to use m specific coil activations with m � Nc
instead of activating all Nc coils in a sequential manner. See Fig. 2 for a possible random activation
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sequential 0/1 activation random parallel activation

Figure 2: Sequential versus random activation. Left: Sequential activation, where the coils
are turned on in an sequential manner. Right: A single random activation where several coils are
turned on in a random manner.

pattern compared to sequential activation. Because of linearity, the data corresponding to the
jth random activation pattern is given by

yj =

Nc∑
c=1

aj,cb(rc) =

Nc∑
c=1

aj,c(Ln)c + ξj for j = 1, . . . , m . (6)

Here ξj models the error in the data and aj,c is the contribution of coil Nc to the jth activation
pattern. The measurement matrix

A ,

a1,1 · · · a1,Nc
...

...
am,1 . . . am,Nc

 ∈ Rm×Nc (7)

represents all activation patters. Typical choices for A are Bernoulli or Gaussian matrices, since
they are known to guarantee stable recovery of sparse signals [13]. Such kind of measurements
can be realized in natural manner in ME-MRX, by simultaneous activation of several coils. The
corresponding image reconstruction problem consists in recovering the magnetic particle distri-
bution n from the data in (6).

2.4 Matrix formulation of the reconstruction problem

In order to write the reconstruction problem in a compact form we introduce some additional
notation. First, we define the CS measurement vector as

y ,

y1...
ym

 ∈ RmNs . (8)

Second, we introduce the vectorization or reshaping operator vecNc , that takes a matrix to a
vector whose block entries are equal to the transposes of the rows of the matrix:

vecNc : RNc×Ns → RNcNs : X 7→

 X
T
1,−
...

XT
Nc ,−

 . (9)
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We denote by matNc the inverse reshaping operation that maps a vector in RNcNs to a matrix in
RNc×Ns . Further, we write Y , matm y and B , matNc b.

With the above notations, the CS data in (6) can be written in the compact form

Y = ALn+ Ξ ∈ Rm×Ns , (10)

where L is the reshaped Lead field matrix defined by the property Ln = matNc (Ln). With the
Kronecker (or tensor) product A , A⊗ I ∈ R(mNs)×(NcNs) between the CS activation matrix A
and the identity matrix I ∈ RNs×Ns , equation (10) can further be rewritten in the form

y = ALn+ ξ ∈ RmNs . (11)

The image reconstruction task in CS ME-MRX now consists in recovering the magnetic particle
distribution n from equation (10) or, equivalently, from equation (11).

3 Sparse reconstruction algorithms for CS ME-MRX imaging

In order to recover the magnetic particle distribution n from equation (10) (or (11)) we devise
new sparse recovery algorithms. These methods will either follow a two-stage or a single-stage
strategy. In the two-stage approach, the full measurement data b is recovered from the CS
data as an intermediate result, from which the magnetic particle distribution is recovered in the
second step. In the single-stage approach, the magnetic particle distribution is directly recovered
from the CS data (11). We note that no standard approach for image reconstruction combining
compressive measurements and severely ill-posed problems exist. This section is therefore also
of interest from a general perspective on CS in inverse problems.

3.1 Single-stage reconstruction

Probably the most straightforward way to address CS ME-MRX is to view (11) as a single inverse
problem with system matrixM = AL. To address instability and non-uniqueness and to account
for prior knowledge, we approach this by sparse regularization. For that purpose we minimize the
generalized Tikhonov functional [23]

TMα,β(n) ,
1

2
‖y −Mn‖22 + α‖Ψn‖1 + βR(n) . (12)

Here Ψ: RNv → Rd is a transform that sparsifies the magnetic particle concentration, R : RNv →
[0,∞) is an additional regularizer that incorporates further a priori knowledge about the magnetic
particle distribution (such as positivity and other convex constraints), and ‖ · ‖p is the standard
`p-norm defined by

‖x‖p , p

√√√√ d∑
i=1

|xi |p for x = (x1, . . . , xd) ∈ Rd .

We call Ψ a sparsifying transform if Ψn can well be approximated by k-sparse vectors x, defined
by the property that {i | xi 6= 0} has at most k elements.

Remark 1 (Recovery theory for (12)). The s-RIP constant of M = AL (after appropriate
scaling) is defined as the smallest number δk such that for all s-sparse vectors Ψn we have

(1− δk)‖n‖22 ≤ ‖Mn‖22 ≤ (1 + δk)‖n‖22 . (13)
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Roughly spoken, standard CS theory [5, 13] predicts uniform stable recovery with (12) (using
β = 0 and orthogonal Ψ), in the sense that it stably recovers any s-sparse vector provided that
the s-RIP constant of M is sufficiently small. Due to the severe ill-posedness of L, the s-RIP
is expected to be at most satisfied for very small problem size. Anyway, even in the case of full
measurement data, where A is the identity matrix, uniform reconstruction seems hardly possible.
To obtain quantitative error estimates for (12), the stable recovery results for individual elements
[14, 15, 16] are a promising alternative. Such theoretical investigations are beyond the scope of
this paper and an interesting line of future research.

In order to minimize (12), we propose using the Douglas Rachford minimization algorithm, which
is an backward-backward type splitting method for minimizing the sum of two functionals F and
G. For our purpose we take

F (n) ,
1

2
‖y −Mn‖22 (14)

G(n) , α‖Ψn‖1 + βR(n) . (15)

The Douglas Rachford algorithm for minimizing (12) generates a sequence (nk)k∈N of estimated
magnetic particle distributions and auxiliary sequences (zk)k∈N, (z̃k)k∈N as described in Algo-
rithm 1.

Algorithm 1 Proposed single-stage reconstruction sparse recovery algorithm for CS ME-MRX.
1: Select s ∈ (0, 2), and µ > 0

2: Initialize z0 = 0

3: for k = 1, . . . , Niter do
4: nk ← (MTM+ µI)−1(MTy + µzk)

5: z̃k ← argminz̃
µ
2 ‖(2nk − zk)− z̃‖22 + G(z̃)

6: zk+1 ← zk + s(z̃k − nk)

7: end for

Under the reasonable assumptions that the regularizer G is lower semicontinuous and convex, and
that the sparse Tikhonov functional TMα,β is coercive, the sequence (nk)k∈N generated by Algo-
rithm 1 is known to converge to a minimizer of (12); see [10, 25]. Note that Algorithm 1 performs
implicit steps with respect to the residual functional F , which we found to have much faster con-
vergence than forward-backward type splitting algorithms that suffer from the ill-conditioned
nature ofM.

For our numerical experiments we take Ψ = ∇ as the discrete gradient operator as appropri-
ate sparsifying transform for piecewise smooth magnetic particle distributions. The additional
regularizer is taken as the indicator function R = IC of the convex set

C , {n | ∀v : 0 ≤ n(v) ≤ nmax} for some bound nmax ,

defined by IC(n) = 0 if n ∈ C and IC(n) = ∞. It guarantees non-negativity and boundedness,
and (13) reduces to total variation regularization with box constraints. The minimization of
µ
2‖n−z‖

2
2+‖∇z‖1+ iC(z) required for implementing Algorithm 1, is again performed by Douglas

Rachford splitting.

3.2 Two stage reconstruction approach

An alternative reconstruction approach is based on a two-stage procedure. Thereby, the CS
measurements are used to first recover the full activation data from which the magnetic particle
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distribution is recovered in a second step. In order to recover the full activation data, note that
the columns of B, corresponding to CS data collected by individual sensors, satisfy

Y−,s = AB−,s + Ξ−,s ∈ Rm for s = 1, . . . Ns . (16)

Eq. (16) is a family of Ns separate reconstruction problems involving the same measurement
matrix A, and known as the multiple measurement problem in the CS literature. In order to solve
(16), we use sparse recovery. We determine an approximation to B by minimizing

T Aa,b(B) ,
1

2
‖Y − AB‖2F + a‖ΨB‖1 +

b

2
‖DB‖2F , (17)

where we ‖ · ‖F is the Frobenius norm, Ψ is a sparsifying transform for B defined by an orthog-
onal basis (ψi)i , and D the second derivative with respect to the coil variable. The additional
regularization term (b/2) ‖DB‖2F accounts for the fact that the forward operator is smoothing
and therefore B is expected to be smooth.

The functional (17) is again approached by Douglas Rachford splitting. The resulting algorithm
is summarized in Algorithm 2, where softµ( · ) denotes the soft-thresholding operation in the basis
Ψ,

softµ(B) ,
∑
i

sign(ψi • B) max{|ψi • B| − µ), 0}ψi .

Because the sparse Tikhonov functional T Aa,b defined in (17) is coercive, the sequence (Bk)k∈N
generated by Algorithm 2 converges to a minimizer of the T Aa,b.

Algorithm 2 Proposed sparse data recovery algorithm for CS ME-MRX.
1: Select s ∈ (0, 2), and µ > 0

2: Initialize Z0 = 0

3: for k = 1, . . . , Niter do
4: Bk ← (ATA+ bDTD+ µI)−1(ATY + µZk)

5: Zk+1 ← Zk + s · (softµ(2Bk − Zk)− Bk)

6: end for

Having recovered an approximation of the complete data B by Algorithm 2, the magnetic particle
distribution can be recovered by solving the full measurement data problem. For that purpose we
use Algorithm 1 withM = L.

4 Numerical results

For the following numerical simulations, we use a data setup similar to the realization in [1].
For simplification, we consider a two-dimensional setup representing one voxel plane, containing
two parallel arrays of detector elements (one measuring the horizontal (1, 0) and one measuring
the vertical (0, 1) component) located outside a quadratic region of interest. Circular shaped
activation coils are arranged in U-form around the region of interest all having the same normal
vector (0, 1). The used arrangement of sensor and coil locations for the full measurement data
setup is shown in Fig. 3. For our simulations we choose a discretization of imaging space into
Nv = 752 voxels covering a the region of interest of [−5, 5] × [−5, 5] cm2. The data are
generated for Ns = 110 positions and full measurement data corresponds to Nc = 120 activation
coils outside region of interest.
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Figure 3: Full data setup for the numerical simulations. The phantom is contained in a square
region of interest, the sensors are arranged in two parallel layers (blue dots), and the coils for full
activation are arranged around the phantom in U-form (red dots).

4.1 Forward computations

To set up the forward model (2), (4), (5), we first have to compute the magnetic fields generated
by each coil. For that purpose we follow the approach of [3, 1], where any circular activation
coil is approximated by n − 1 short line segments, each having the same current I0. Using this
approximation, the induced magnetic field at the voxel center rv can be computed by (see [18])

H(rv ) '
n−1∑
i=1

|r1,v ,i |+ |r2,v ,i |
|r1,v ,i | |r2,v ,i |

·
r1,v ,i × r2,v ,i

|r1,v ,i | |r2,v ,i |+ r1,v ,i • r2,v ,i
I0 , (18)

where r1,v ,i and r2,v ,i are the distance vectors between the voxel center rv and the beginning and
end points of the ith line segment, respectively. For the presented numerical computations we use
n − 1 = 45 line segments with a diameter of 1 ¯m, illustrating an almost point like coil. Having
computed the activation field H(rv ), we compute the entries of the lead field matrix according to
(2). By activating the coils sequentially, we obtain the full measurement data Lead field matrix.

For the presented results we use three different magnetic particle distributions which, together
with the corresponding measurements full data, are shown in Fig. 4. Any column in the measure-
ment data (in Fig. 4 and below) corresponds to a single activation pattern and contains the data
of all detectors. The phantoms are rescaled to have maximum value 1 and the forward operator
L is rescaled to have matrix norm ‖L‖2 = 1. To all data we have added additive Gaussian noise
amounting to an SNR of 80 dB. The corresponding reconstruction (LTL + µI)−1(LTy + µb)

with standard quadratic Tikhonov regularization (penalized least squares) using regularization
parameter µ = 10−12 are shown in the bottom row of Fig. 4. They can be seen as benchmark
for the more sophisticated CS reconstructions applied to less data presented below.

The CS forward matrix M = AL is computed by multiplying the full Lead field matrix with
A. CS measurements have been generated in two random ways and one deterministic way. In
the random case, A is taken either as Bernoulli matrix having entries ±1 with equal probability,
or a Gaussian matrix consisting of i.i.d. N (0, 1)-Gaussian random variables in each entry. The
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Figure 4: Phantoms, data and full measurement data reconstruction. Top row: CS-phantom
(left), Smiley-phantom (middle) and tumor-phantom mimicking cancerous tissue with included
blood vessel (right). Middle row: Corresponding full measurement data. Bottom row: Recon-
structions from full measurement data using standard quadratic Tikhonov regularization.

deterministic subsampling is performed by choosing m equispaced coil activations. The CS data
B = ALn for m = 40 coil activations using the three sampling schemes and the three phantoms
are shown in Fig. 5.

4.2 Results for the two-stage approach

In the two-stage reconstruction approach, the complete data B are recovered with Algorithm 2
in the first step. The results are shown in Fig. 6. We see that any data set is recovered well from
the CS data. For the sparsifying transform Ψ we use the wavelet basis derived from Daubechies
least asymmetric wavelet having 8 vanishing moments. The parameters are selected as a = 10−8,
b = 10−10 in the regularization functional, and s = 1, µ = 10−8, Niter = 25 for the numerical
minimization. The relative mean squared errors ‖B − Brec‖F/‖B‖F are (0.071, 0.063, 0.052)

for the CS-phantom, (0.046, 0.042, 0.046) for the Smiley-phantom and (0.048, 0.046, 0.022)

for the tumor-phantom. In particular, for the CS-phantom and the tumor-phantom the error is
smallest for the deterministic subsampling scheme, whereas for the Smiley-phantom, the Bernoulli
measurements lead to the smallest error.

Using the completed data from the first step, we recover the magnetic particle distribution
using the proposed Algorithm 1 with M = L. The results of the two-stage procedure are
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Figure 5: Simulated CS data. Top row: Gaussian activation matrix. Middle row: Bernoulli
activation matrix. Bottom row: Deterministic activation. The data corresponds to the phantoms
shown in Fig. 4 in the same order from left to right.

shown in Fig. 7. We used µ = λ = 5 · 10−7, s = 1, nmax = 1 and Niter = 50. The relative
mean squared errors for the reconstructed particle distributions are (0.88, 0.88, 0.85) for the
CS-phantom, (0.53, 0.52, 0.47) for the Smiley-phantom and (0.35, 0.36, 0.32) for the tumor-
phantom.

4.3 Results for the single-stage approach

In the single-stage approach, the phantoms are directly recovered from the CS data using the
proposed Algorithm 1. We have rescaledM to have unit matrix norm and use the same parameter
setting µ = 4 · 10−13, λ = 10−14, s = 1, nmax = 1 and Niter = 50. The reconstructed
magnetic particle distributions using the single-stage procedure from 40 coil activations are shown
in Fig. 8. Each reconstruction with Algorithm 1 takes about 50 seconds in Matlab R 2017a
on a MacBook Pro (2016) with 2.9 GHz Intel Core i7 processor. The relative mean squared
errors are (0.41, 0.42, 0.38) for the CS-phantom, (0.34, 0.34, 0.30) for the Smiley-phantom and
(0.14, 0.14, 0.14) for the tumor-phantom. These numbers as well as visual inspection show
that the single-stage approach significantly outperforms the two-stage procedure in terms of
reconstruction quality. The reconstruction results are even much better than for full data using
quadratic Tikhonov regularization. All sampling schemes yields comparable performance; however
the regular subsampling scheme slightly outperforms the random activation schemes.
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Figure 6: Reconstructed full data. The full data B have been recovered with Algorithm 2
from the CS data shown in Fig. 5. Top row: Gaussian activation matrix. Middle row: Bernoulli
activation matrix. Bottom row: Deterministic activation. The data corresponds to the phantoms
shown in Fig. 4 in the same order from left to right.

To further explore the capabilities of Algorithm 1 we also perform experiments using different
numbers of CS measurements. For that purpose we repeated the above simulations for m =

72, 21, 9, 6 coils activations using the same parameters for image reconstruction. The results are
shown in 9. One observes that for the CS-phantom and the tumor-phantom, accurate results are
obtained even for very few coil activations. For the more complex Smiley-phantom, the quality
significantly decreases with decreasing number of measurements.

Finally, Figure 10 compares the reconstruction results for a small number of m = 10 acti-
vation patterns. The relative mean squared errors are (0.58, 0.58, 0.47) for the CS-phantom,
(0.38, 0.338, 0.41) for the Smiley-phantom and (0.16, 0.16, 0.17) for the Tumor-phantom. While
the average reconstruction quality for the CS-phantom over the the whole region of interest is
the best for the deterministic sampling scheme, some aspects might be better recovered with the
random sampling schemes. For the other two phantoms the random schemes now outperform
the Deterministic activation pattern schemes.

4.4 Discussion

Our results clearly demonstrate, that the single-stage approach yields significantly better results
than the two-stage approach. While the full measurement data are completed well by Algorithm 2
(see Fig. 6) in the first step of the two-stage approach, recovering the particle distribution
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Figure 7: Results for the two-stage approach. The magnetic particle distributions have been
recovered by applying Algorithm 1 to the completed data shown in Fig. 6 in the same order from
left to right. Top row: Gaussian activation matrix. Middle row: Bernoulli activation matrix.
Bottom row: Deterministic activation pattern.

using Algorithm 1, performs much better with the original CS data than with the recovered full
measurement. One the one hand, this indicates that the data contains key features allowing
high quality reconstruction of the magnetic particle distributions. On the other hand, the data
completion procedure seemingly fails to recover these key features in a sufficient manner.

For a large numbers of coil activations shown in Fig. 7 and Fig. 8, the deterministic subsampling
scheme leads to better results than the random activation. We address this due to the strong
smoothing effect of the forward operator, which removes most high frequency components in
the data. The regular sparse sampling pattern might therefore yield to the largest information
gain given a certain number of linear measurements. For the small number of coil activations
shown (see Fig. 10), the random sampling patterns outperforms the deterministic scheme for the
Smiley-phantom and the tumor-phantom.

We point out, that hardly any recovery results for compressed sensing applied to severely ill-
conditioned matrices L are available, as AL cannot be expected to satisfy the RIP or a similar
uniform sparse recovery condition. The numerical results presented in the paper indicate that
for the type of considered phantoms (especially the CS-shaped and the tumor-shaped phantom)
stable recovery is possible from a small number of coil activations. One might derive such
estimates using the recovery result of individual vectors (see Remark 1). Such investigations are
an interesting line of future research.
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Figure 8: Results with the single-stage approach. Data in Fig. 5 is used to directly recover
the magnetic particles using Algorithm 1. Top row: Gaussian activation matrix. Middle row:
Bernoulli activation matrix. Bottom row: Deterministic activation pattern.

5 Conclusion

The use of multiple coil activation patterns in magnetorelaxometry imaging is time consuming
and requires performing several consecutive measurements. It is therefore desirable to make the
number of coils activations as small as possible, while keeping high spatial resolution. For that
purpose we investigated CS strategies in this paper. We compared Gaussian random activation,
Bernoulli activations and deterministic subsampling schemes. Further, we established and com-
pared single-stage and two-stage reconstruction approaches. In the two-stage approach, the full
activation data is computed as an intermediate result, whereas in the single stage approach, the
magnetic particle distributions is directly recovered from the CS data.

Some conclusions that can be drawn from our numerical experiments are as follows. First, the
single-stage approach significantly outperforms the two-stage approach. We therefore propose
to use the single-stage approach for ME-MRX image reconstruction. Second, in the experiments
with a large number of activations, the deterministic sampling scheme performed better than the
random sampling patterns. For a small number of coil activations (see Fig. 8) the random schemes
outperform the deterministic scheme for the Smiley-phantom and tumor phantom. Finally, for
simple phantoms, a small number of activation patterns seem to be sufficient for accurately
estimating the magnetic particle distribution. For actual image reconstruction, we developed an
algorithm based on Douglas Rachford splitting. The single-stage algorithm includes a TV penalty
as well as accounts for positivity and other known prior. The algorithm performs well for the
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Figure 9: Reconstruction from different numbers of coil activations. The particle distri-
bution is recovered with Algorithm 1 using the Deterministic activation pattern scheme with
m = 72, 21, 9, 6 (from top to bottom) coil activations.

considered setup and recovers the particle distribution in less that one minute on a standard Mac
Book (2016).

Several interesting research directions following this work are possible. First, we can replace
the inner TV minimization in the single-stage approach by a different algorithm which should
accelerate Algorithm 1. Second, the derivation of theoretical error estimates for the single-
stage approach is of significant interest. Results in that direction can advice which type of
MRX measurements are best to obtain accurate results for certain phantom classes. Moreover,
the derivation of adaptive compressed sensing strategies for online monitoring is of significant
interest. Advising optimal coil activations given previous activations is a difficult problem that will
benefit from theoretical error estimates, numerical simulations as well as a real-world experiments
that are currently been implemented. In this paper we investigated standard random compressed
sensing schemes (using Gaussian and Bernoulli activation patterns). Using more problem adapted
and task oriented measurement design we will expect to derive improved coil activation schemes.
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Figure 10: Comparison of the activation patterns for 10 coil activations. Reconstruction
with the single-stage approach using different activation patterns. Top row: Gaussian activation
matrix. Middle row: Bernoulli activation matrix. Bottom row: Deterministic activation pattern.
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