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Abstract In this article, we study several reconstruc-
tion methods for the inverse source problem of pho-

toacoustic tomography (PAT) with spatially variable

sound speed and damping. The backbone of these meth-

ods are the adjoint operators, which we thoroughly an-

alyze in both the L2- and H1-settings. They are casted
in the form of a nonstandard wave equation. We derive

the well-posedness of the aforementioned wave equa-

tion in a natural functiona space, and also prove the

finite speed of propagation. Under the uniqueness and
visibility condition, our formulations of the standard

iterative reconstruction methods, such as Landweber’s

and conjugate gradients (CG), achieve a linear rate of

convergence in either L2- or H1-norm. When the visi-

bility condition is not satisfied, the problem is severely
ill-posed and one must apply a regularization technique

to stabilize the solutions. To that end, we study two

classes of regularization methods: (i) iterative, and (ii)

variational regularization. In the case of full data, our
simulations show that the CG method works best; it

is very fast and robust. In the ill-posed case, the CG

method behaves unstably. Total variation regulariza-

tion method (TV), in this case, significantly improves

the reconstruction quality.
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1 Introduction

Photoacoustic tomography (PAT) is an emerging hy-
brid method of imaging that combines the high contrast

of optical imaging with the good resolution of ultra-

sound tomography. As illustrated in Figure 1, the bio-

logical object of interest is scanned with a pulsed optical
illumination. The photoelastic effect causes a thermal

expansion and a subsequent ultrasonic wave propagat-

ing in space. One measures the ultrasonic pressure on

an observation surface outside of the object. The aim of

PAT is to recover the initial pressure distribution inside
the tissue from the measured data. The initial pressure

distribution contains helpful internal information of the

object and is the image to be reconstructed.

optical illumination thermal expansion induced acoustic wave

Fig. 1 Left: A biological object is illuminated with an optical
pulse. Middle: Absorption of optical energy causes thermal
expansion. Right: Thermal expansion induces an ultrasonic
wave that is measured outside of the sample and used to
reconstruct the image of the object.

The standard model in PAT assumes homogeneous
non-damping acoustic media and has been well studied.

There exist several methods to solve the corresponding

inverse problem of PAT such as explicit inversion formu-

las [18,58,34,17,39,20,21,38,43], series solutions [35,2],
time reversal [18,26,25,50,51], and quasi-reversibility

[12]. Reviews on these methods can be found in [26,32,

33,46]. Discrete iterative approaches, which are based
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on a discretization of the forward problem together with

numerical solution methods for solving the resulting

system of linear equations can be found in [45,44,59,15,

57,47,27,56]. Recently, iterative schemes in a Hilbert

space settings have also been introduced and studied;
see [6,8,22].

PAT in heterogenous damping media: In this article, we

are interested in PAT accounting for spatially variable

sound speed and spatially variable damping. It is still an

ongoing research which is the correct model for attenua-
tion, and several different modeling equations have been

used (see, or example, [36,37,4,31,1,3,9,24,30,42,55]).

For mathematical interest, we consider a simple atten-

uation model using the damped wave equation, which
reads

[c−2(x) ∂tt + a(x) ∂t −∆]p(x, t) = 0 on Rd × R+,

p(x, 0) = f(x) on Rd,

pt(x, 0) = −c2(x) a(x)f(x) on Rd .

(1)

Here, c : Rd → R is the variable sound speed, a : Rd →
R the variable damping coefficient, and f : Rd → R the

desired initial pressure. We assume that c and a are

smooth functions, c is bounded between two positive
constants, and a ≥ 0. Let us denote by S the obser-

vation surface and by T > 0 the final measurement

time. We will assume that S is a (relatively) closed

subset of ∂Ω with nonempty interior Int(S), where Ω
is an open subset of Rd that contains the support of

f . The mathematical problem of PAT is to invert the

map W : f 7→ g := p|S×(0,T ). It is referred to as the

inverse source problem of PAT. In this article, we as-

sume that W is injective (that is, the reconstruction
is unique). For the full data problem, it holds as long

as T > maxx∈Ω dist(x, ∂Ω) (see, [1]). The injectivity of

W in the case of partial data is still an open problem

and beyond the scope of this article.

There are only few papers analyzing the damped

wave equation (1) for PAT [24,42,1]. In [24], some in-

teresting microlocal analysis results have been derived
for (1) and a time-reversal framework for image recon-

struction has been proposed. This time reversal method

is only proved to converge (linearly) to the exact solu-

tion when the attenuation coefficient is small enough.

In the recent work [42] a modification of the time re-
versal method has been proposed that converges (lin-

early) to the solution for arbitrarily large attenuation

coefficient. A more general model was considered in [1].

Let us mention that, in order for the algorithm to con-
verge, both papers assume that the data is measured on

a closed surface completely surrounding the object (i.e.,

full data problem). Opposed to that, the analysis and

algorithms we derive in the present paper apply to the

partial data problem as well as the full data problem.

Main contributions: In this article, we establish the

mathematical foundation of several reconstruction meth-
ods for the inverse source problem of PAT with variable

sound speed and damping. Namely, we formulate the

adjoint operator in the continuous setting using a non-

standard wave equation. We prove the well-posedness
of the adjoint equation in a natural setting and its fi-

nite speed of propagation. We then propose and ana-

lyze various iterative reconstruction algorithms for PAT

employing our knowledge of the adjoint operator. We

study both the full and limited data cases. Under the
uniqueness and the visibility condition (described in

Section 3.1), our algorithms converge linearly to the

solution, even for the partial data problem. The con-

vergence is shown in the L2-type norm (on image and
pre-image space) and the H1-type norm. We note that

convergences in the H1-type norm have been a com-

mon practice in the inverse source problem of PAT (see

for example [24,42]). However, in practice, the image

to be recovered may not be in H1. Therefore, having
convergence in the L2-norm is helpful, too.

In case that the visibility condition does not hold,

the inverse problem of PAT is severely ill-posed and

regularization methods have to be applied for its so-

lution. For that purpose Landweber’s, the steepest de-
scent and the CG method can be applied as well, since

they are known to be regularization methods when com-

bined with Morozov’s discrepancy principle [16,23,29].

Additionally, we study generalized Tikhonov regular-
ization [48], which consists in minimizing the penalized

residual functional Φ(f) = 1
2‖Wf − g‖2+λG(f). Here

G : X → [0,∞] is a convex regularization term and

λ > 0 is the regularization parameter. In particular,

we investigate the quadratic, G(f) =
∫

Ω |∇f |
2
, and

the total variation (TV), G(f) =
∫

Ω
|∇f |, regulariza-

tions. In the quadratic case, the above iterative meth-

ods can again be applied to minimize Φ. For the latter

case, we use the minimization algorithm of [49], which
is a special instance of the Chambolle-Pock algorithm

[11]. Using a discretization of the forward operator with

matched discrete adjoint, variational methods including

TV minimization have been applied in [27]. Using con-

tinuous formulations of the adjoint, variational methods
have been applied to PAT in [5,28]. Our application of

variational regularization for the damped wave equa-

tion (1) is new.

Outline: The article is organized as follows. In Sec-

tion 2, we derive the explicit formulation of the adjoint

operator. We also discuss some properties of the adjoint
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equation. In Section 3, we study the inverse problem

of PAT in inhomogeneous damping media. We show

that the inverse problem of PAT is well-posed under

the visibility condition (see Subsection 3.1). We ana-

lyze iterative and variational reconstruction algorithms
in the well-posed and the ill-posed cases. In section 4,

we present various numerical examples for the proposed

methods. The main theoretical result, the analysis of

the adjoint equation, is presented Appendix A.1. We
briefly describe the k-wave method, which we use for

our forward and adjoint simulation, in Appendix A.2.

2 The adjoint operator for PAT

Let us recall that the PAT forward operator is given

by W : f 7→ g := p|S×(0,T ), where p is defined by the
acoustic wave equation (1) and S is a closed subset of

∂Ω. Our goal is to invert W using the methods intro-

duced in the following section. It is crucial to analyze

the adjoint operator W∗ of W. To that end, we first
need to identify the correct mapping spaces for W. We,

indeed, will consider two realizations, W0 and W1, of

W corresponding to two different choices of the map-

ping spaces.

We first assume that supp(f) ⊂ Ω0, where Ω0 ⋐ Ω.

For the spaces of f , let us denote

X0 := {f ∈ L2(Rd) : supp(f) ⊂ Ω0},
X1 := {f ∈ H1(Rd) : supp(f) ⊂ Ω0}.
Then, X0 and X1 are Hilbert spaces with the respective

norms ‖f‖X0 = ‖c−1f‖L2(Ω0) and ‖f‖X1 = ‖∇f‖L2(Ω0).

We note that X0
∼= L2(Ω0) and X1

∼= H1
0 (Ω0). The

above chosen norms are convenient for our later pur-

poses.

For the spaces of g, we fix a nonnegative function

χ ∈ C∞(∂Ω × [0, T ]) such that supp(χ) = Γ := S ×
[0, T ]. Let us denote:

Y0 =
{

g : ‖g‖Y0 := ‖√χ g‖L2(Γ ) <∞
}

,

Y1 = {g : g( · , 0) ≡ 0, ‖g‖Y1 := ‖gt‖Y0 <∞} .
We define

Wi = W|Xi : (Xi, ‖ · ‖Xi)→ (Yi, ‖ · ‖ Yi) for i = 0, 1.

Let Hi(Γ ) be the standard Sobolev space of order i on

Γ . Notice that W is a bounded map from Xi → Hi(Γ ).

This comes from the fact that W is the sum of two

Fourier integral operators of oder zero (see, e.g., [24,

Lemma 3]). Since Hi(Γ ) ⊂ Yi, we obtain:

Theorem 1 For i = 0, 1, Wi is a bounded map from

Xi to Yi.

From now one, we consider χ g as a function on ∂Ω×
[0, T ], which vanishes on (∂Ω\S)× [0, T ]. The following

theorem gives us an explicit formulation of the adjoint

operator W∗
i of Wi:

Theorem 2 The following results hold.

(a) Let g ∈ H1([0, T ];H−1/2(∂Ω))∩X0. Consider

the wave equation

[c−2 ∂tt − a∂t −∆]q = 0, (Rd \ ∂Ω)× (0, T ),

q(T ) = 0, qt(T ) = 0,

[

q
]

= 0,
[

∂q
∂ν

]

= χ g.

(2)

Here, [q] denote the jump of [q] across the

boundary ∂Ω. Then

W∗
0g = qt(0)|Ω0 .

(b) Let g ∈ H1([0, T ];H−1/2(∂Ω)) ∩ X1. Assume

further that χ is independent of t (i.e., χ(y, t) =

χ(y)). We define

ḡ(x, t) = g(x, t)− g(x, T ),

and consider the wave equation

[c−2 ∂tt − a ∂t − ∆]q̄ = 0, (Rd \ ∂Ω)× (0, T ),

q̄(T ) = 0, q̄t(T ) = 0,

[

q̄
]

= 0,
[

∂q̄
∂ν

]

= χ ḡ.

(3)

Then,

W∗
1g = Π [q̄t(0)].

Here, Π is the projection on the space X1
∼=

H1
0 (Ω0), given by

Π(f) = f − φ,

where φ is the harmonic extension of f |∂Ω0 to

Ω0.

The proof for Theorem 2 is similar to that of [22,

Theorem 3.2]. We skip it for the sake of brevity. The
analysis of (2), which is the main theoretical achieve-

ment of this article, is presented in Theorem 6. Namely,

we show that if g ∈ H1([0, T ];H−1/2(∂Ω)), equation (2)

has a unique solution q ∈ L2([0, T ];H1(Rd)) satisfying

q′ ∈ L2([0, T ];L2(Rd)), and q′′ ∈ L2([0, T ];H−1(Rd)).
Moreover, q satisfies the finite speed of propagation:

let c+ = maxx∈Rd c(x), then q(x, t) = 0 for any (x, t) ∈
Ωc ∈ [0, T ] such that dist(x, ∂Ω) ≥ c+(T−t). In the ab-

sence of damping (i.e., a = 0), an existence and unique-
ness of equation (2) has been proved in [8]. Compared to

their result, we require less regularity on g and the so-

lution space is more natural. Moreover, the finite speed
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of propagation is new. It helps us to truncate the cal-

culation domain when needed.

Remark 1 Let us make the following observations:

(a) Since H1([0, T ];H−1/2(∂Ω)) ∩ Yi is dense in
both Yi for i = 0, 1, the adjoint operators W∗

0

andW∗
1 are uniquely determined from the for-

mulas in Theorem 2.

(b) Compared to W∗
0, W

∗
1 involves an extra pro-

jection operator. In our numerical experiments,
we will only use W∗

0 since it is simpler to im-

plement. However, the knowledge of W∗
1 is

helpful in designing iterative algorithms that

converge in the H1-norm.

3 Solution to the inverse problem

In this section, we present methods for inverting the

two realizations Wi : Xi → Yi for i = 0, 1. To that

end, we first show that the inverse problems are well
posed under the visibility condition. We then separately

consider the well-posed and ill-posed situation.

3.1 Well-posedness under the visibility condition

Let us fix several geometric conventions. We will al-
ways assume that the sound speed c is smooth and

bounded from below by a positive constant. The space

Rd is considered as a Riemannian manifold with the

metric c−2(x) dx2 and Ω is assumed to be strictly con-
vex with respect to this metric. Then, all the geodesic

rays originating inside Ω intersect the boundary ∂Ω at

most once. We also assume that the speed c is nontrap-

ping, i.e., all such geodesic rays intersect with ∂Ω. Also,
T ∗Ω \ 0 is the cotangent bundle of Ω minus the zero

section, which can be identified with Ω × (Rd \ {0}).
Visibility condition: There is a closed subset S0 ⊂

∂Ω such that S0 ⊂ Int(S) and the following condition

holds: for any element (x, ξ) ∈ T ∗Ω0 \ 0, one of the
unit speed geodesic rays originating from x at time t = 0

along the directions ±ξ intersects transversally with S0,

at a time t < T .

Let us recall that, in this article, we will always as-
sume the injectivity of Wi. Our first result is that the

inversion of Wi is stable under the visibility condition.

Theorem 3 Assume that the visible condition holds

and χ ≡ 1 on S1 × [0, T ], where S1 is a closed sub-

set of ∂Ω such that S0 ⊂ Int(S1) and S1 ⊂ Int(S). For

i = 0, 1, there is a constant C > 0 such that for any
f ∈ Xi, we have

‖f‖Xi ≤ C‖g‖Yi where g = Wf . (4)

One proof virtually follows from [22, Theorem 3.4] line

by line. One only needs to refer to [24] instead of [50]

when needed. We briefly present here another approach.

Proof Observe that W∗
iWi is, similarly to the non-

damping case (see [22, Theorem 3.6]), an elliptic opera-

tor from Xi into itself with the principal symbol σ(x, ξ)
being bounded from below by a positive constant δ. We

then have

‖Wif‖2Yi
= 〈W∗

iWif, f〉Xi
≥ δ 〈f, f〉

Xi
+ 〈Kf, f〉

Xi
,

whereK is a compact operator. Young’s inequality gives

‖f‖2Xi
≤ C(‖Wif‖2Yi

+ ‖Kf‖Xi).

The injectivity of Wi and [53, Theorem V.3.1] gives

‖f‖2Xi
≤ C‖Wif‖2Yi

.

Algorithm 1 Steepest descent method for Wif = gδ.

1: Initialize f δ
0 = 0; k ← 0

2: while stopping criteria not satisfied do

3: sk = W∗
i (Wif

δ
k − gδ)

4: γk = ‖sk‖2Xi
/ ‖Wisk‖2Yi

5: f δ
k+1 = f δ

k − γksk
6: k ← k + 1

7: end while

Algorithm 2 CGNE method for Wif = gδ.

1: Initialize f δ
0 = 0; r0 = gδ −Wif

δ
0 ; d0 = W∗

i r0;
k ← 0

2: while stopping criteria not satisfied do

3: αk = ‖W∗
i rk‖2Xi

/‖Widk‖2Yi

4: f δ
k+1 = f δ

k + αk dk
5: rk+1 = rk − αk Widk
6: βk = ‖W∗

i rk+1‖2Xi
/‖W∗

i rk‖2Xi

7: dk+1 = W∗
i rk+1 + βk dk

8: k ← k + 1

9: end while

3.2 Well posed case: Linear convergence of iterative

methods

When the linear inverse problem Wf = g is well-posed,

then Landweber’s, the steepest descent, and the CG

methods applied to gδ converge to a minimizer of

Φ0 : Xi → R : f 7→ 1

2
‖Wif − gδ‖2Yi

(5)
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with a linear rate of convergence (for both realizations

Wi : Xi → Yi ofW). Here, we assume that f ∈ Dom(Wi)

and gδ ∈ Yi is such that
∥

∥Wif − gδ
∥

∥

Yi
< δ. For con-

venience of the reader the steepest descent and the

CG iteration are recalled in Algorithms 1 & 2. The
Landweber’s method is the same as the steepest de-

scent method with the modification that the step size

γk is replaced by a constant value γ satisfying 0 < γ <

2/‖W∗
iWi‖. Theorem 3 implies the following result.

Theorem 4 Assume that the visible condition holds
and let χ ≡ 1 on S1× [0, T ], where S1 is a closed subset

of ∂Ω such that S0 ⊂ Int(S1) and S1 ⊂ Int(S).

– For any gδ ∈ Yi, the Landweber, the steepest de-

scent and the CG iteration converge linearly to the

unique minimizer f δ of (5). More precisely, there
is a constant a < 1 (only depending on the realiza-

tion and the iterative method) such that the iterates

f δ
k defined by either method satisfy ‖f δ − f δ

k‖Xi ≤
ak‖f δ‖Xi for k ∈ N.

– For δ = 0, the limit f0 is the unique solution of

Wif = g. Moreover, we have ‖f − f δ‖Xi ≤ Cδ,

where C is the constant appearing in Theorem 3.

Proof Theorem 3 shows that the inverse problem is

well-posed. The above results follow directly from the

standard theory of iterative methods [23,16,29].

Theorem 4 shows that with our choices of map-
ping spaces, the Landweber’s, steepest descent, and CG

methods converge linearly in the L2-norm as well as the

H1-norm.

3.3 Ill-posed case: regularization

Now consider the situation where the visibility condi-

tion does not hold. Then one has to apply regularization

methods.

Iterative regularization methods: We consider the Land-
weber, the steepest descent and the CG methods com-

bined with Morozov’s discrepancy principle. According

to the discrepancy principle, the iteration is terminated

at the index

k(δ, gδ) = argmin
{

k ∈ N : ‖Wif
δ
k+1 − gδ‖Xi ≤ τδ

}

with some fixed τ > 1.

Theorem 5 Suppose f ∈ Xi, δ > 0, let gδ ∈ Yi sat-

isfy ‖gδ −Wf‖Yi ≤ δ and define (f δ
k )k∈N by either the

Landweber, steepest descent or the CG iteration.

1. Exact data: If δ = 0, then ‖fk − f‖
Xi
→ 0 as k →

∞.

2. Noisy data: Let (δ(m))m∈N ∈ (0,∞)N converge to

zero and let (gm)m∈N ∈ Yi satisfy ‖gm −Wf‖Yi ≤
δ(m). Then the following hold:

– The stopping indices k∗(δ(m), gm) are well de-

fined;
– We have ‖f δ(m)

k∗(δ(m),gm) − f‖Xi → 0 as m→∞.

Proof The claims follow from standard results for iter-

ative regularization methods (see, for example, [23,16,

29]).

Variational (penalized) regularization methods: As an

alternative to iterative regularization methods we will

apply generalized Tikhonov regularization, which has

the advantage that a-priori information can be more
easily explicitly incorporated. In this work we apply

H1-regularization and TV-regularization,

Φ2(f) :=
1

2
‖Wf − g‖2Y0

+
λ

2

∫

Ω0

|∇f |2 , (6)

Φ1(f) :=
1

2
‖Wf − g‖2Y0

+ λ

∫

Ω0

|∇f | , (7)

respectively. Here λ > 0 is the regularization parameter

and both functionals are considered as mappings on

X0 = L2(Ω0). From the general theory of variational

regularization methods, it follows that (6) and (7) again
yield regularization methods [48].

For numerically minimizing the Tikhonov function-

als (6) and (7), we replace them by the discrete coun-

terparts

Φ2(f) :=
1

2
‖Wf− gδ‖22 +

λ

2
‖|Df|‖22 , (8)

Φ1(f) :=
1

2
‖Wf− gδ‖22 + λ ‖|Df|‖1 . (9)

Here f ∈ RN , gδ ∈ RM , W : RN → RM is the dis-

cretization of the forward operator and D : RN → RN ×
RN denotes the discrete gradient. The functional (8) is

quadratic and can be minimized, for example, with the
steepest descent or the CG iteration. The discrete TV

problem (9) can also be minimized by various meth-

ods. In this work we use the minimization algorithm of

[49], which is a special instance of the Chambolle-Pock

algorithm [11] and summarized in Algorithm 3.

4 Numerical examples

In this section we present numerical examples for full

data (well-posed case) as well as for limited view data
(ill-posed case). For both cases we take Ω = [−1, 1]2
and Ω0 = B0.9(0), the ball with radius 0.9 centered at

the origin. We also assume variable sound speed and
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Algorithm 3 Algorithm for minimizing (9)

1: L← ‖(W, D)‖2; τ := 1/L; σ := 1/L; θ := 1; k ← 0

2: initialize f0, p0, and q0 to zero values

3: u0 ← f0

4: while stopping criteria not satisfied do

5: pk+1 ← (pk + σ(Wuk − gδ))/(1 + σ)
6: qk+1 ← λ(qk + σDuk)/max {λ1, |qk + σDuk|}
7: fk+1 ← fk − τWTpk+1 + τDT qk+1

8: uk+1 ← fk+1 + θ(fk+1 − fk)

9: k ← k + 1
10: end while

variable attenuation profile. We consider the realiza-

tion of the operator W = W0 : X0 → Y0 using the
L2-norm. For the forward and the adjoint equations,

the wave equation is solved with a variant of the k-

space method that is described in Appendix A.2. The

k-pace method yields solutions that are periodic with

period determined by the size of the computational do-
main. To avoid effects of periodization in all numerical

simulations the domain Ω = [−1, 1]2 is embedded in a

larger computational domain [−2, 2]2.

0

0.5

1

0.95

1

1.05

0

2

4

-0.5

0

0.5

Fig. 2 Phantom (top left), variable sound speed (top right),
variable attenuation coefficient (bottom left) and data with
added noise (bottom right).

The initial phantom, the sound speed and the at-

tenuation are shown in Figure 2. All these functions

are represented by discrete vectors in R201×201. The

computed data g ∈ R800×501 corresponds to discrete
pressure values at the 800 boundary pixels on ∂Ω and

501 equidistant time samples in [0, 2.5]. The (full data)

discrete forward operator W : R201×201 → R800×501 is

obtained by restricting the numerical solution to the
boundary pixels. The discretization WT : R800×501 →
R201×201 of the adjoint operator is also computed using

the k-space method. In order to avoid inverse crime, in

all simulations we use a twice finer discretization for the

data simulation than for the reconstruction (followed by

restriction to the 800× 501 grid).

4.1 Full view data (well-posed case)

We first study the well-posed case where the data is

given on the whole boundary. The standard iterative

methods (Landweber, steepest descent and CG) are
therefore linearly convergent.

0 5 10 15 20 25 30 35 40
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

error: log ( || f - f
k
 ||

2
 / || f ||

2
 )

CG (plain LSQ)

SD (plain LSQ)

Landweber

TV regularization

0 5 10 15 20 25 30 35 40
-1.5

-1

-0.5

0

residuum: log ( || g - g
k
 ||

2
 / || g ||

2
 )

CG (plain LSQ)

SD (plain LSQ)

Landweber

TV regularization

Fig. 3 Errors and residuals for the full data case without
added noise.

Exact data: Figure 3 shows the residuals and the rel-
ative L2-reconstruction errors ‖fk − f‖2/‖f‖2 of the

above methods for the first 40 iterates applied to sim-

ulated data. For comparison purpose, we also show re-

sults using the TV minimization algorithm with λ =
0.1. One observes that the error and the residuals stag-

nate for all methods at some positive value after a cer-

tain number of iteration. This is because the minimizer
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Fig. 4 Reconstructions after 10, 20 and 40 iterations for the
full data case without added noise.

of ‖Wf−gδ‖22 is slightly different from the exact solution

f (since g 6= gδ, mainly due to the different data genera-

tion meshes). The CG method is the fastest converging

and the Landweber the slowest. In Figure 4, we show re-

constructions of these methods after 10, 20 and 40 iter-
ations. All iterative methods have a similar behavior. In

the initial iterations there are still artifacts contained in

the pictures, and in later iterations the region with high

attenuation value is underestimated. After more itera-
tions, also this region is recovered correctly as well. The

minimal reconstruction error ‖fk − f‖2/‖f‖2 is about

2.9% and the minimal relative residual ‖Wfk−g‖2/‖g‖2
about 3.5% for all methods.

Noisy data: In order to test stability with respect to

noise we repeated the above simulations after adding

uniformly distributed Gaussian noise to the data with
a relative error of about 59%. As can be seen from Fig-

ure 5, the convergence behavior is very similar to the

exact data case reflecting the well-posedness of the in-

verse problem. Due to the added noise, the minimal
residuals and the minimal reconstruction errors are of

course much larger than in exact data case. Reconstruc-

tions after 5, 10 and 20 iterations are shown in Figure 6.

One observes good reconstruction results and robust-

ness with respect the the noise. The relative reconstruc-
tion errors after 20 iterations are about 14%, 13.8%,

13.9%, 9.4% for CG, steepest decent, Landweber and

TV minimization, respectively. The the relative residu-

als are 57.5%, 57.5%, 57.6%, 57.88% which is about the
relative data error. One notes that the relative recon-

struction error is even smaller than the relative data er-

ror. This is probably due to the redundancy of the PAT
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TV regularization
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Fig. 5 Errors and residuals for the full data case with noise
added.
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Fig. 6 Reconstructions after 5, 10 and 20 iterations for the
full data case with noise added.
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data. We conclude that in the full data case all methods

have similar stability and accuracy, but the CG is the

fastest. Therefore in the case of full data we can sug-

gest the CG method among the unpenalized iterative

methods for image reconstruction. In the case of the
piecewise constant phantoms TV minimization seems

to give better results in terms of L2-reconstruction er-

ror.

4.2 Limited view data (ill-posed case)

Next we consider the limited data where the data are

only given on the part of the boundary ∂[−1, 1]2 de-

termined by horizontal component being greater than

−0.25. The visibility condition is not satisfied and we

are facing a severely ill-posed problem for which one re-
quires a regularization method. We propose the steep-

est descent and CG method as iterative regularization

methods and H1-regularization and TV-regularization

as variational regularization methods. For minimizing
the H1-functional (8) we use the steepest descent iter-

ation which, in our simulations, turned out to be faster

than the Landweber method and more stable than the

CG algorithm. For minimizing the TV-functional (9)

we use the minimization algorithm of [49]. The regular-
ization parameter in the variational methods is set to

λ = 0.1.

Exact data: We start by applying the above schemes

to the simulated data. Figure 7 shows the relative er-

rors and relative residuals for all methods on a log-
arithmic scale. In terms of relative reconstruction er-

rors, the steepest descent and the TV algorithm per-

form best, whereby the steepest descent is faster con-

verging. Surprisingly, while the CG method again shows
very rapid convergence in the initial iterations, it turns

out to be unstable in the ill-posed case. Reconstruc-

tion results after 10, 20 and 50 iterations are shown in

the Figure 8. The relative ℓ2-reconstruction error after

50 iterations for the CG iteration, the steepest descent
iteration, H1-regularization and TV-regularization are

are 12.8%, 4.2%, 5%, and 4.5%, respectively. The cor-

responding (relative) residuals are 21.3%, 2.3%, 3.6%,

and 3.6%.

Noisy data: The methods from above are again ap-
plied, now to noisy data with relative ℓ2-error about

59.7%. The standard (unpenalized) iterative methods

provide a regularization method when combined with

early stopping. In contrast, theH1- and TV-regularization
methods converge to the minimizers of the correspond-

ing Tikhonov functionals. Reconstruction results are

shown in Figures 9 and 10. In terms of reconstruction
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Fig. 7 Errors and residuals for the ill-posed partial data case
without noise.
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Fig. 8 Reconstructions after 10, 20 and 50 iterations for the
ill-posed partial data case without noise.
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Fig. 9 Errors and residuals for the ill-posed partial data case
with noise.
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Fig. 10 Reconstructions after 10, 20 and 50 iterations for the
ill-posed partial data case with noise.

quality, TV-minimization is the best method, followed

by H1-regularization. The CG methods again behaves

unstably and worse than the steepest descent method.

The relative ℓ2-reconstruction error after 50 itera-
tions for the CG iteration, the steepest descent itera-

tion, H1-regularization and TV-regularization are re-

spectively 32%, 20.3%, 11.5%, and 10.59%. The corre-

sponding residuals are 66.4%, 56.4%, 57.2%, and 57.6%.
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A Appendix

A.1 Existence and uniqueness of adjoint equation

In this section, we prove the existence and uniqueness for the
adjoint equation. Namely, consider the equation:


















[c−2 ∂tt + a ∂t − ∆]q = 0, for (x, t) ∈ (Rd \ ∂Ω)× (0, T ),

q(0) = 0, qt(0) = 0,

[

q
]

= 0,
[

∂q
∂ν

]

= g.

(10)

Definition 1 A function q is a weak solution of (10) if

i) q ∈ L2([0, T ];H1(Rd)), q′ ∈ L2([0, T ];L2(Rd)), q′′ ∈ L2([0, T ];H−1(Rd)),
ii) q(0) = 0 and qt(0) = 0, and
iii) for any function φ ∈ H1

0 (R
d):

∫

Rd

c−2(x) qtt(x, t) φ(x)dx+

∫

Rd

a(x) qt(x, t)φ(x) dx

+

∫

Rd

∇q(x, t)∇φ(x)dx = −

∫

∂Ω

g(y, t)φ(y) dy,

a.e. t ∈ [0, T ].

Let us note that from the above variational formulation, (10)
can be formally rewritten as the nonhomogeneous wave prob-
lem
{

[c−2 ∂tt − a ∂t − ∆]q = −δ∂Ω g, on Rd × (0, T ),

q(0) = 0, qt(0) = 0, on Rd.

This formulation will be used for numerical simulation in Sec-
tion A.2. Here are some results for equation (10):

Theorem 6 For any

g ∈ L2([0, T ];H1/2(∂Ω)) ∩H1([0, T ];H−1/2(∂Ω)),

equation (10) has a unique weak solution. Moreover,

i) q satisfies the finite speed of propagation property. Namely,
let c+ := maxx∈Rd c(x), then q(x, t) = 0 for any (x, t) ∈
Ωc × [0, T ] such that dist(x, ∂Ω) ≥ c+t.
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ii) The following estimate holds

∫ T

0

[

‖qt(t)‖2 + ‖q(t)‖2
H1(Rd)

]

dt

≤ C‖g′‖2
H1([0,T ];H−1/2(∂Ω))

. (11)

Here, for simplicity, we use ‖ · ‖ for the weighted L2-norm
with the weight c−2(x):

‖qt(t)‖2 =

∫

Rd

c−2(x) q2t (x, t)dx.

Proof Let BR denote the ball of radius R centered at the
origin and R := R0 + c+T , where R0 satisfies Ω ⊂ BR0

. Let
H1

0 (BR) be the closure of C∞
0 (BR) with respect to the norm

‖f‖H1
0 (BR) =

[
∫

BR

|∇f |2dx

]1/2

.

Our proof is divided into two steps:

Step 1: There exists a weak solution q of (10) on BR. That
is,

i’) q ∈ L2([0, T ];H1
0(BR)), q′ ∈ L2([0, T ];L2(BR)), q′′ ∈ L2([0, T ];H−1(BR)),

ii’) q(0) = 0 and q′(0) = 0, and

iii’) for any function φ ∈ H1
0(BR)

∫

BR

c−2(x) qtt(x, t)φ(x) dx+

∫

BR

a(x) qt(x, t) φ(x)dx

+

∫

BR

∇q(x, t)∇φ(x)dx

= −

∫

∂Ω

g(y, t) φ(y) dy a.e t ∈ [0, T ]

Step 2: The solution q in Step 1 satisfies: q(x, t) = 0 for
all (x, t) ∈ Ωc × [0, T ] such that dist(x, ∂Ω) ≥ c+t.

Once both steps are proved, the solution q of equation
(10) is just the trivial extension of q into [0, T ] × Rd. Let us
now proceed to prove those steps.

Proof of Step 1: Let {φk}k be an orthogonal basis of H1
0 (BR).1

For any integer N , we define

qN (x, t) =
N
∑

i=1

di(t)φi(x)

to be a solution of the system

∫

BR

c−2(x) qN,tt(x, t)φi(x) dx+

∫

BR

a(x) qN,t(x, t)φi(x) dx

+

∫

BR

∇qN (x, t)∇φi(x) dx

= −

∫

∂Ω

g(y, t)φi(y) dy, i = 1, . . . , N. (12)

together with the initial condition qN (x, 0) = qN,t(x, 0) = 0.
Since the above system is a standard linear ODE system for
(d1, . . . , dN ), qN uniquely exists. Multiplying each equation

1 One such basis is the set of normalized eigenvectors of the
Laplacian with the zero boundary condition.

by d′i(t) and summing them up, we obtain:

∫

BR

c−2(x)qN,tt(x, t)qN,t(x, t) dx+

∫

BR

a(x) [qN,t(x, t)]
2 dx

+

∫

BR

∇qN (x, t)∇qN,t dx = −

∫

∂Ω

g(y, t) qN,t(y, t) dy.

This implies

1

2

d

dt

[
∫

BR

c−2(x)|qN,t(x, t)|
2 dx+

∫

BR

|∇qN(x, t)|2dx

]

≤ −

∫

∂Ω

g(y, t) qN,t(y, t) dy.

Taking the integration of both sides with respect to t and
using the initial conditions for qN :

1

2

[

‖qN,t( · , t)‖
2 + ‖qN ( · , t)‖2

H1
0 (BR)

]

≤

−

∫

∂Ω

g(y, t) qN (y, t) dy +

∫ t

0

∫

∂Ω

gt(y, t) qN (y, t) dy.

Bounding the first term of the right hand side, we obtain

1

2

[

‖qN,t( · , t)‖
2 + ‖qN ( · , t)‖2H1

0 (BR)

]

≤ ‖g( · , t)‖H−1/2(∂Ω)‖qN ( · , t)‖2
H1/2(∂Ω)

+

∫ t

0

‖gt( · , t)‖
2
H−1/2(∂Ω)

+

∫ t

0

‖qN ( · , t)‖H1/2(∂Ω).

Now, Young’s inequality gives

1

2

[

‖qN,t( · , t)‖
2 + ‖qN ( · , t)‖2H1

0 (BR)

]

≤ A‖g( · , t)‖2
H−1/2(∂Ω)

+
1

2A
‖qN ( · , t)‖2

H1/2(∂Ω)
+

∫ t

0

‖gt( · , t)‖
2
H−1/2(∂Ω)

+

∫ t

0

‖qN ( · , t)‖H1/2(∂Ω),

where A > 0 can be any constant, whose value will be specified
later. Noting that ‖qN ( · , t)‖H1/2(∂Ω) ≤ C‖qN ( · , t)‖H1

0 (BR) we

obtain by choosing A big enough

1

2

[

‖qN,t( · , t)‖
2 + ‖qN ( · , t)‖2H1

0 (BR)

]

≤ A‖g( · , t)‖2
H−1/2(∂Ω)

+
1

4
‖qN ( · , t)‖2H1

0(BR) +

∫ t

0

‖gt( · , t)‖2H−1/2(∂Ω)

+ C

∫ t

0

‖qN ( · , t)‖2
H1

0 (BR)
.

Here and in the sequel, C is a generic constant whose value
may vary from one place to another. Therefore,

‖qN,t( · , t)‖
2 + ‖qN ( · , t)‖2H1

0(BR) ≤ C
(

‖g( · , t)‖2
H−1/2(∂Ω)

+

∫ T

0

‖gt( · , t)‖
2
H−1/2(∂Ω)

+

∫ t

0

‖qN ( · , t)‖2H1
0 (BR)

)

, t ∈ [0, T ].
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Let EN (t) :=
∫ t
0
‖qN,t( · , t)‖2 + ‖qN ( · , t)‖2

H1(BR)
. We arrive

at

E′
N (t) − CEN (t)

≤ C
(

‖g( · , t)‖2
H−1/2(∂Ω)

+‖gt‖2L2([0,T ],H−1/2(∂Ω))

)

, t ∈ [0, T ].

From the Grownwall’s inequality, we obtain

EN (T ) ≤ C(‖g‖2
L2([0,T ],H−1/2(∂Ω))

+ ‖gt‖
2
L2([0,T ],H−1/2(∂Ω))

). (13)

Since C is a constant independent of N , {qN} and {qN,t} are
bounded sequences in L2([0, T ],H1

0(BR)) and L2([0, T ];L2(BR)),
respectively. After possibly passing over to subsequences, we
obtain qN ⇀ q in L2([0, T ];H1

0 (BR)) and qN,t ⇀ q1 in L2([0, T ];L2(BR)).
It is easy to show that q1 = q′. Since {φk} is a basis of
H1

0 (BR), from (12), we obtain for any v ∈ L2([0, T ];H1
0 (Ω)):

lim
N→∞

∫ T

0

∫

Rd

c−2(x) qN,tt(x, t) v(x, t) dxdt

+

∫ T

0

∫

Rd

a(x) qt(x, t) v(x, t) dxdt+

∫ T

0

∫

Rd

∇q(x, t)∇v(x, t) dx

= −

∫

∂Ω

g(y, t) v(y, t) dy.

That is, qN,tt converges to an element in L2([0, T ],H−1(BR)).
That is, qtt ∈ L2([0, T ],H−1(BR)) and

∫ T

0

∫

Rd
c−2(x) qtt(x, t) v(x, t) dx dt

+

∫ T

0

∫

Rd

a(x) qt(x, t) v(x, t) dxdt

+

∫ T

0

∫

Rd

∇q(x, t)∇v(x, t) dxdt

= −

∫ T

0

∫

∂Ω

g(y, t) v(y, t) dy dt.

Let φ ∈ H1
0 (BR). For any t0 ∈ (0, T ), choosing2 v(x, t) =

φ(x)χ[t0−ǫ,t0+ǫ](t), we obtain

∫ t0+ǫ

t0−ǫ

∫

Rd

c−2(x) qtt(x, t) φ(x)dx dt

+

∫ t0+ǫ

t0−ǫ

∫

Rd

a(x) qt(x, t) φ(x) dxdt

+

∫ t0+ǫ

t0−ǫ

∫

Rd

∇q(x, t)∇φ(x)dxdt

= −

∫ t0+ǫ

t0−ǫ

∫

∂Ω

g(y, t) φ(y) dy dt.

Dividing both sides by 2ǫ and send ǫ→ 0, we obtain

∫

BR

c−2(x) qtt(x, t0)φ(x)dx

+

∫

BR

a(x) qt(x, t0)φ(x) dx+

∫

BR

∇q(x, t0)∇φ(x) dx

= −

∫

∂Ω

g(y, t0)φ(y) dy a.e t0 ∈ [0, T ]

2 For any set U , χU is the characteristic function of U .

This finishes the proof of Step 1, since ii’) easily follows from
the fact that qN ( · , 0) = 0 and qN,t( · , 0) = 0.

Proof of step 2: We first prove the result in the case u′ ∈
L2([0, T ],H1(Ω)) and u′′ ∈ L2([0, T ], L2(Ω)). Let (x0, t0) ∈
(BR\Ω)×[0, T ] such that dist(x0, ∂Ω) > c+t0. There is ǫ0 > 0
such that for each t ∈ [0, t0], we have B(x0, (c++ǫ0)(t0− t))∩
∂Ω = ∅. We also denote Ot = B(x0, c(t0 − t)) ∩ BR and

E(t) =
1

2

∫

Ot

c−2(x)|qt(x, t)|
2 + |∇q(x, t)|2dx, 0 ≤ t ≤ t0.

Then,

d

dt
E(t) = −

c+

2

∫

∂Ot\∂BR

c−2(x)|qt(x, t)|
2 + |∇q(x, t)|2dσ(x)

+

∫

Ot

c−2(x)qt(x, t) qtt(x, t) +∇q(x, t)∇qt(x, t) dx.

Taking integration by parts for the second integral gives the
following formula of d

dt
E(t):

−
c+

2

∫

∂Ot\∂ΩR

[

c−2(x)|qt(x, t)|2 + |∇q(x, t)|2 − 2∂νq(x, t)

×
qt(x, t)

c+

]

dσ(x)+

∫

Ot

[

c−2(x)qtt(x, t)−∆q(x, t)
]

qt(x, t) dx.

Noting that the integrand of the first term on the right hand
side is nonnegative, we arrive to

d

dt
E(t) ≤

∫

Ot

[

c−2(x)qtt(x, t)−∆q(x, t)
]

qt(x, t) dx.

Let us recall that for any function φ ∈ H1
0 (BR)

∫

BR

c−2(x) qtt(x, t) φ(x)dx+

∫

BR

a(x) qt(x, t) φ(x) dx

+

∫

BR

∇q(x, t)∇φ(x) dx = −

∫

∂Ω

g(y, t) φ(x)dy.

For 0 < ǫ < ǫ0 we choose ϕǫ ∈ C∞(Rd) be a nonnegative
function such that ϕ ≡ 1 on B(x0,c+(t0−t)) and ϕ ≡ 0 outside

of B(x0,(c++ǫ)(t0−t)) and limǫ→0 ϕǫ = χBx0,c+(t0−t)
on L2(Rd).

Choosing φ(x) = qt(x, t)ϕǫ(x), we obtain

∫

BR

c−2(x) qtt(x, t) qt(x, t)ϕǫ(x) dx

+

∫

BR

a(x) qt(x, t) qt(x, t)ϕǫ(x) dx

+

∫

BR

∇q(x, t)∇[vt(x, t)ϕǫ(x)] dx = 0.

Taking integration by parts for the last integral and combine
it with the first integral, we obtain
∫

BR

[

c−2(x) qtt(x, t)−∆q(x, t)
]

qt(x, t)ϕǫ(x) dx

+

∫

BR

a(x) q2t (x, t)ϕǫ(x) dx = 0.

Therefore,
∫

BR

[

c−2(x) qtt(x, t)−∆q(x, t)
]

qt(x, t)ϕǫ(x) dx ≤ 0.
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Taking the limit as ǫ→ 0, we obtain
∫

Ot

[

c−2(x) qtt(x, t)−∆q(x, t)
]

qt(x, t) dx ≤ 0.

We obtain E(t)
dt
≤ 0. Noting that E(0) = 0, we arrive at

E(t) = 0 for all t ∈ [0, t0]. Therefore, q(x, t) = 0 on Ot for all
t ∈ [0, t0]. Since this is correct for all (x0, t0) ∈ Ωc× [0, T ] such
that dist(x0, ∂Ω) > c+t0, It is now easy to see q(x, t) = 0 for
all (x, t) ∈ Ωc such that dist(x, ∂Ω) ≥ c+t.
In general, we do not have the required regularity for the
above proof. However, consider Q(x, t) =

∫ t
0
q(x, τ)dτ . Then,

Q satisfies the same equation (with a different jump function)
and the required regularity. The above proof then shows that
Q(x, t) = 0 for all (x, t) ∈ Ωc × [0, T ] such that dist(x, ∂Ω) ≥
c+t. It implies the same result for q(x, t). This finishes proof
of Step 2.
Finishing the proof: Now extending q into Rd × [0, T ] by zero
on (Rd \ BR) × [0, T ], we can easily prove that q is a weak
solution on Rd× [0, T ]. Moreover, q satisfies the finite speed of
propagation (i). Finally, the estimate (11) follows from (13).
The uniqueness of q is simple (see, e.g., proof of Theorem A.2
in [8]), we leave the details to the reader.

A.2 A k-space method for the damped wave equation

In this subsection, we briefly describe the k-space method as
we use it to numerically compute the solution of the wave
equation, which is required for evaluating the forward opera-
tor W and its adjoint W∗. For the case a = 0, several methods
for numerically solving the underlying acoustic wave equation
have been used in PAT. This includes finite difference meth-
ods [10,41,52], finite element methods [8] as well as Fourier
spectral and k-space methods [14,27,54]. We now extend the
k-space method to the case a 6= 0 because this method does
not suffer from numerical dispersion [13].

Consider the solution p : Rd × (0, T ) → R of the damped
wave equation

[c−2 ∂tt + a ∂t −∆]p = s on Rd × (0, T ) , (14)

p(0) = f on Rd , (15)

pt(0) = −c
2 a f on Rd . (16)

Here, s : Rd×(0, T )→ R is a given source term and f : Rd → R

the given initial pressure. To derive the k-space method one
first rewrites (14) in the form

[∂tt − c20∆]p = (1− c20/c
2)ptt − c20a pt + c20s (17)

where c0 > 0 is a suitable constant; we take c0 = c+ :=
max

{

c(x) : x ∈ R2
}

.

The k-space method is derived from (17) by introducing
the auxiliary functions v(x, t) and r(x, t) such that vtt(x, t) =
(1 − c20/c

2(x))ptt(x, t) and rtt(x, t) = c20a(x)pt(x, t). Such an
approach shows that (17) is equivalent to the following system
of equations,

[∂tt − c20∆]w = c20 s+ c20∆v − c20 ∆r , (18)

v =
(

c2/c20 − 1
)

(w − r) (19)

p = v + w − r (20)

r(t) = c20a

∫ t

0

p(s)ds . (21)

Interpreting c20∆v(x, t) − c20 ∆r(x, t) as an additional source
term, (18) is a standard wave equation with constant sound
speed c0. This suggests the time stepping formula

w(x, t+ ht) = 2w(x, t)− w(x, t − ht)− 4F−1
ξ

[

sin(c0|ξ|ht/2)2×

Fx[w(x, t) + v(x, t)− r(x, t)]− (c0ht/2)
2×

sinc(c0|ξ|ht/2)
2Fx[s(x, t)]

]

, (22)

where Fx and F−1
ξ denote the Fourier and inverse Fourier

transforms in the spatial variable x and the spatial frequency
variable ξ, respectively, and ht > 0 is a time stepping size.

The resulting k-space method for solving (14) is summa-
rized in Algorithm 1.

Algorithm 1 (The k-space method) For given initial pres-
sure f(x) and source term s(x, t) approximate the solution p(x, t)
of (14) as follows:

(1) Set t = 0 and define initial conditions
– r(x, 0) = 0;
– v(x, 0) = (1− c20/c

2(x))f(x);
– w(x,0) = c20/c

2(x)f(x);
– w(x,−ht) = (1 + htc20a(x))w(x, 0).

(2) Compute w(x, t+ ht) by evaluating (22);
(3) Make the updates

– v(x, t+ht) := (c2(x)/c20 − 1) (w(x, t+ht)− r(x, t));
– p(x, t+ ht) := v(x, t+ ht) + w(x, t+ ht)− r(x, t);
– r(x, t+ ht) := r(x, t) + c20a(x)p(x, t+ ht)ht;

(4) Set t← t+ ht and go back to (3).

Algorithm 1 can directly be used to evaluate the forward
operator Wf by taking s(x, t) = 0 and restricting the solution
to the measurement surface SR, that is Wf = p|SR×(0,T).
Recall that the adjoint operator is given by W∗g = qt(0),
where q : R2 × (0, T )→ R satisfies the adjoint wave equation

[c−2 ∂tt −∆]q = −δSR
g on R2 × (0, T ) (23)

qt(T ) = q(T ) = 0 on Rd. (24)

By substituting t← T − t and taking s(x, t) = g(x, T − t) δS(x)
as source term in 14, Algorithm 1 can also be used to eval-
uate the W∗. In the partial data case where measurements
are made on a subset S ( SR only, the adjoint can be imple-
mented by taking the source s(x, t) = χ(x, t) g(x, T − t) δSR

(x)
with an appropriate window function χ(x, t). In order to use
all available data, in our implementations we take the window
function to be equal to one on the observation part S and zero
outside. This choice of the window function is known to cre-
ate streak artifacts into the picture [19,40,7]. However, as we
see in our simulations, the artifacts fade away quickly after
several iterations when the problem is well-posed.
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