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Abstract—Spatially and temporally highly re-
solved depth information enables numerous ap-
plications including human-machine interaction in
gaming industry or safety functions in the automo-
tive industry. In this paper we address this issue
using Time-of-flight (ToF) 3D cameras which are
compact devices providing highly resolved depth
information. Practical restrictions often require to
reduce the amount of data to be read out and
transmitted. Using standard ToF cameras, this
can only be achieved by lowering the spatial or
temporal resolution. To overcome such a limita-
tion, we propose a compressive ToF camera design
that allows to reduce the amount of data while
keeping high spatial and temporal resolution. This
uses the theory of compressive sensing and sparse
recovery. We propose efficient block-wise recon-
struction algorithms based on `1-minimization.
We apply the developed reconstruction methods
to data captured by a real ToF camera system and
evaluate them in terms of reconstruction quality
and computational effort.
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I. Introduction

Time-of-Flight (ToF) camera systems rely on the

time of flight (or travel time) of an emitted and

reflected light beam to create a depth image of a

scenery. They offer many advantages over traditional

systems (e.g. lidar) such as compact design, regis-

tering depth and intensity images at a high frame

rate, and low power consumption [12]. This makes

them ideal for mobile usage for example using a ToF

camera on a mobile phone. On such devices, the

computational resources we can use for the required

image reconstruction algorithms are limited. While

there are several technologies allowing 3D imaging,

in this paper we will focus on cameras that use a

modulated light source to calculate the phase shift

(encoding the depth image) between the emitted and

received signal [16].

High spatial and temporal resolution requires a

large amount of data to be read out and transferred

from ToF cameras. In order to determine a depth

image, at typically four different phase images per

frame have to be collected in the ToF camera. How-

ever, even from four phase images the depth image is

unique only up to a certain maximal distance from

the camera. To measure larger distances one needs

additional phase images that have to be read out

and transferred. Also in multi-camera systems, where

the depth image is calculated outside the camera, the
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amount of data can be very high. If the data rate is

a limiting factor, either the spatial or the temporal

resolution has to be reduced in a conventional ToF

camera.

To address this issue, in this article we propose

a compressive ToF camera that allows a reduced

amount of data to be transferred while preserving

high spatial and temporal resolution. Instead of in-

dividual pixels of the phase images, the compressive

ToF camera reads out combinations of pixel values

that are transferred to an external processor. We

thereby only use combinations of elements in the

same row, which is compatible with existing ToF

camera designs. Note that a completely different

compressive ToF camera design has been proposed

in [20], [19], [17]. In order to reconstruct the original

phase and depth images we use techniques from

sparse recovery and `1-minimization.

Outline

In Section II we give a short overview on ToF imag-

ing. In Section III we present the type of measure-

ments that we propose for compressive ToF imaging.

We thereby start with details on the classical (non-

compressive) and the new (compressive) designs. Ad-

ditionally, we prove that the used matrices fulfill the

RIP-property under suitable conditions. In Section

IV we give details on the numerical algorithm and

present extensive studies of our two-step reconstruc-

tion approach of recovering the depth image from the

compressed measurements.

A preliminary version of this paper has been

presented at the International Conference Sam-

pling Theory and Applications (SampTA) 2017 in

Tallinn [3].

Figure I.1: Basic principles of a ToF camera.

Phase images are collected by sampling the cross-

correlation of the emitted with the reflected light

pulse. From these phase images one computes a depth

image mapping the distance from the scene to the

camera.

II. Basics of 3D imaging using ToF cameras

A ToF camera measures the distance of a scenery

to the camera. By sending out a diffuse light pulse

and measuring the reflected signal the camera is

able to record the depth informations of the entire

scenery at once. To acquire depth information the

sent out light is modulated and can be generated

by an LED. The scenery reflects the light which is

recorded by the camera as depicted in Figure I.1. The

emitted pulse can be modeled as a time-dependent

function g(t) = C cos(ωt), where C is the amplitude,

ω the modulation frequency (or carrier frequency),

and t the time variable. The signal is reflected,

and the camera receives, for any individual pixel

i ∈ {1, . . . , n}, a phase and amplitude shifted signal

fi(t) = Bi +Ai cos(ωt− ϕi) .

Here ϕi is the phase shift depending on the distance

di between the camera and the scene mapped at pixel

i, Ai the amplitude depending on the reflectivity, and

Bi an offset. The phase shift is related to the distance

di via the relation di = ϕi c/(2ω).

At each pixel of the ToF camera, the cross-

correlation between the reference and the reflected
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signal is measured, where the cross-correlation be-

tween two signals f : R→ R and g : R→ R is given

by

cf,g(s) = lim
T→∞

1
2T

∫ T

−T
f(t)g(t+ s) dt . (II.1)

In our case cf,g(·) can be calculated analytically [1],

[24], [16] which yields

cfi,g(s) = AiC

2 cos(ωs+ ϕi) +Ki . (II.2)

Here Ki are some constants accounting for noise and

the background image generated by ambient light.

By sampling the cross-correlation function at the

sampling points s = 0, π/(2ω), π/ω, 3π/(2ω) we get

four so called phase images

p(1) = AC
2 cos(ϕ) + K

p(2) = −AC
2 sin(ϕ) + K

p(3) = −AC
2 cos(ϕ) + K

p(4) = AC
2 sin(ϕ) + K .

Here we have set ϕ = (ϕj)nj=1 ∈ Rn and K =

(Kj)nj=1, A = (Aj)nj=1 ∈ Rn, and all operations

are taken point-wise. Under the common assumption

that Ki is independent of the pixel location we can

estimate the phase shifts ϕ by

ϕ̂ = arg
(
p(1) − p(3) + i

(
p(4) − p(2))) . (II.3)

Here α = arg(z) ∈ [0, 2π) denotes the argument

of the complex number z defined by z , reiα. In

particular, the depth image is given by d̂ = ϕ̂ c/(2ω).

Since the phase shifts are contained in [0, 2π),

the maximal distance that can be found by (II.3) is

dmax = (c/ω)π. Larger distances are falsely identi-

fied, taking values in the interval [0, dmax). To over-

come this ambiguity, several methods have been pro-

posed in the literature (see, for example, [16], [11]).

One such approach consists in capturing two sets of

phase images with different modulation frequencies

ω1 6= ω2, and then comparing the two depth images.

In this paper we will not address the ambiguity

problem further since the compressive ToF camera

that we propose below can be extended to multiple

modulation frequencies in a straightforward manner.

Further research, however, is needed to thoroughly

investigate the possibility of using machine learning

to solve the ambiguity issue.

III. Compressive ToF sensing and image

reconstruction

In this section we present the proposed compres-

sive ToF 3D sensing design compatible with existing

ToF cameras. Additionally, we describe an efficient

block-wise reconstruction procedure based on sparse

recovery.

A. Compressive ToF sensing

As mentioned in the introduction, in a conven-

tional ToF camera, all pixel values of all phase images

have to be read out and large amounts of data have

to be transferred. To reduce the amount of data, in

this paper we propose a compressive ToF camera,

which reads out and transmits linear combinations

instead of individual pixel values of the phase image.

Our proposed compressive ToF camera design is

based on the existing non compressive ToF camera

design, which should allow to engineer and build

the new camera with low effort. The only difference

between the two designs is in the way the pixels of

the sensors are read out. For the compressive ToF

camera, we propose to read out linear combinations

of neighbouring pixels.

The data collected by the compressive ToF camera

can be written in the form

∀i ∈ {1, 2, 3, 4} : y(i) = Mp(i) .
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Here M ∈ Rm×n is the measurement matrix, p(i) ∈
Rn are the phase images and y(i) ∈ Rm the read

out data with m � n. To reconstruct the depth

image from the compressed readouts we propose the

following two-step procedure: First, we estimate the

differences p(1) − p(3) and p(4) − p(2) from

y(1) − y(3) = M
(
p(1) − p(3)

)
, (III.1)

y(4) − y(2) = M
(
p(4) − p(2)

)
, (III.2)

using sparse recovery. In a second step we recover

the depth image by applying (II.3) to the estimated

differences.

Any of the equations (III.1), (III.2) is an underde-

termined system of the form y = Mx, for which in

general no unique solution exists. To obtain solution

uniqueness, the vector x ∈ Rn needs to satisfy

certain additional requirements. In the recent years

sparsity turned out to be a powerful property for

this purpose. Recall that x is called s-sparse, if it

has at most s nonzero entries. Assuming sparsity, the

vector x is recovered by solving the `1-minimization

problem

minimize
z∈Rn

‖z‖1 subject to Mz = y . (III.3)

In order for (III.3) to uniquely recover x, the matrix

M needs to fulfill certain properties. One sufficient

condition is the restricted isometry property (RIP).

The matrix M is said to satisfy the s-RIP with

constant δ > 0, if

(1− δ)‖z‖22 ≤ ‖Mz‖22 ≤ (1 + δ)‖z‖22

holds for all s-sparse z ∈ Rn. If the s-RIP constant is

sufficiently small, then (III.3) uniquely recovers any

sufficiently sparse vector (see, for example, [10], [13],

[7]).

Although some results for deterministic RIP ma-

trices exist [18], [6], matrices satisfying the RIP

Figure III.1: Standard readout versus com-

pressive readout. Left: Standard sequential read-

out using 16 ADCs. Right: In the compressive read-

out, in each row, instead of 16 sequential readouts

per ADC, m/K combinations of pixel values are read

out.

are commonly constructed in some random man-

ner. Realizations of Gaussian or Bernoulli random

matrices are known to satisfy the RIP with high

probability [13]. Rademacher random variables take

the values -1 and 1 with equal probability. It has been

shown [8] that if m ≥ Cδ−2s log(n/s), then δs ≤ δ

with high probability for both types of matrices.

Remarkably, this bound on m is optimal [13]. This

means we can not expect to have universal recovery

guarantees for a smaller number of measurements.

Thus, if the number of measurements is lower than

this bound, we can find a s-sparse vector that can

not be recovered.

More generally, all matrices with independent sub-

gaussian entries satisfy the RIP with high probabil-

ity. A subgaussian random variable X is defined by

the following property

P(|X| ≥ t) ≤ βe−κt
2

for all t > 0 (III.4)

with constants β, κ > 0. It is easy to show that

Rademacher and Gaussian random variables are sub-

gaussian. Subgaussian matrices M are also univer-

sal [13] which means that for any unitary matrix
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Ψ ∈ Cn×n the matrix MΨ also satisfies the RIP.

Thus one can also recover signals that are not sparse

in the standard basis but for which Ψ∗x is sparse,

where Ψ∗ is the conjugate transpose. This property

is very useful in applications since many natural

signals have sparse representations in certain bases

different from the standard basis. In general, if the

restricted isometry constant of MΨ is small then we

can recover the signal by solving (III.3) with MΨ

instead of M, in the noisy case,

minimize
z∈Cn

‖Ψ∗z‖1 such that ‖Mz− y‖2 ≤ η .
(III.5)

Here η equals to the noise level of the measurements.

Similar results hold if Ψ is a frame (see [9], [15], [23],

[28]).
In practical applications such unstructured ma-

trices can not always be used. Either there are re-

strictions on the matrix preventing us from using

a random matrix with i.i.d. entries or the storage

space is limited, such that storing a full matrix would

be too expensive. There are different methods for

constructing structured compressed sensing matrices

that satisfy the RIP. For example, such matrices

can be constructed by random subsampling of an

orthonormal matrix [13, Chapter 12] or deterministic

convolution followed by random subsampling [25] or

using a random convolution followed by deterministic

subsampling [27]. In the next section we will examine

the latter type since its application to ToF imaging

and the existing camera designs is more accessible.

B. Compressive 3D Sensing Using Block Partial Cir-

culant Matrices

The hardware requirements in our case prevent us

from using arbitrary matrices since for the analog-

to-digital converters (ADC) the weights 0 and ±c for
some fixed constant c ∈ R should be used. Further,

any individual ADC can only be wired with a limited

number of pixels (compare Fig. III.1) which imposes

a particular block-structure of the measurement ma-

trix. Thus the measurement matrices that we use in

our approach take the block-diagonal form

M = M1 ⊗ · · · ⊗MK :=




M1 0 · · · 0

0 M2 · · · 0
... . . . ...

0 · · · MK



.

(III.6)

Here, each sub-matrix Mk ∈ Rmk×nk operates on

a certain subset Ωk ( {1, . . . , n} with nk = |Ωk|
elements coming from a a single row in the image. For

simplicity we consider the case that nk = n/K and

mk = m/K for each k. The particular measurements

in each row block are constructed in a certain random

manner satisfying the requirements above. In the

following subsection we consider partial circulant

matrices for possible block entries.

A particularly useful class of row-wise measure-

ments in the compressive ToF camera can be mod-

eled by partial circulant matrices. A circulant matrix

Cv ∈ Rn×n associated with v = (v1, . . . , vn) ∈ Rn is

defined by

∀i, j ∈ {1, . . . , n} : (Cv)i,j = vi	j ,

where j 	 i := (j − i) mod n is the cyclic sub-

traction. In particular, for all v,w ∈ Rn, we have

Cvw = v ∗w, where (v ∗w)j :=
∑n
i=1 vj	iwi is the

circular convolution. For any subset Ω ⊆ {1, . . . , n},
the projection matrix RΩ ∈ R|Ω|×n is defined by

RΩv := (vi)i∈Ω.

Definiton III.1. The partial circulant matrix asso-

ciated to v ∈ Rn and Ω ⊆ {1, . . . , n} is defined by
1√
|Ω|

RΩCv.
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Further, recall that a random vector v with val-

ues in {±1}n is called a Rademacher vector if it

has independent entries taking the values ±1 with

equal probability. Partial circulant matrices satisfy

the RIP. Such results have been obtained first in [27]

and have later been refined in [22] using the theory

of suprema of chaos processes. These results have

formulated for sparsity in the standard basis. For our

purpose we formulate such a result for the general

orthonormal bases.

Theorem III.2 ([22, Theorem 1.1]). Consider the

partial circulant matrix M = 1√
m

RΩCv associated to

a vector v with iid subgaussian entries and a subset

Ω ⊆ {1, . . . , n} containing m elements. If, for some

s ≤ n and δ ∈ (0, 1), we have

m ≥ Cδ−2µ2s(log s)2(logn)2 ,

then, with probability at least 1− n− logn log2 s, the s-

RIP constant of MΨ is at most δ, where the constant

µ is given by µ = maxi,j |〈Fj−,Ψi−〉|. Here F is the

discrete Fourier matrix and Ψ ∈ Cn×n is any unitary

matrix.

Proof. For the case that Ψ is the identity matrix the

result is derived in the original paper [22]. The gen-

eralization to arbitrary Ψ can be shown analogously

to the original results. Such a proof is worked out in

[2], [4].

Theorem III.2 shows that random partial circu-

lant matrices yield stable recovery of sparse vectors

using (III.3). Recall that the proposed compressive

ToF camera readout uses block diagonal measure-

ment matrices of the form (III.6). Taking each block

as a random partial circulant matrix and applying

Theorem III.2 yields the following result.

Theorem III.3. Let M ∈ Rm×n be of the form

(III.6), where each block on the diagonal is a par-

tial circulant matrix Mk = 1√
mk

RΩk
Cvk

associated

with independent Rademacher vectors vk and subsets

Ωk ⊆ {1, . . . , n/K} having mk = m/K elements that

are selected independently and uniformly at random.

If, for some s ∈ N and δ ∈ (0, 1), we have

m ≥ KCδ−2µ2s(log s)2(log(n/K))2 ,

then, with probability at least (1 −
(n/K)− log(n/K) log2 s)K , MkΨ has the s-RIP

constant of at most δ for all k = 1, . . . ,K. Here the

constant µ is given by µ = maxi,j |〈Fj−,Ψi−〉| and
Ψ ∈ C(n/K)×(n/K) is any unitary matrix.

Proof. Asm/K ≥ Cδ−2s(log s)2(log(n/K))2, we can

apply Theorem III.2 with n and m replaced by

n/K and m/K to each block. Thus the restricted

isometry constant of each block is at most δ with

probability at least 1− (n/K)− log(n/K) log2 s. As the

generating Rademacher vectors for each block are

independent, the s-RIP constants of all blocks are

uniformly bounded by δ with probability at least

(1− (n/K)− log(n/K) log2 s)K .

Theorem (III.3) yields stable recovery via (III.5) if

the vector x is Ψ−block sparse, meaning that x =

[x1, . . . ,xK ] with Ψ∗xk ∈ Rn/K being s sparse for

all k = 1, . . . ,K.

C. Image reconstruction by block-`1 minimization

As presented in Section III-A, the depth image

is recovered from compressed readouts by first es-

timating the differences p(1) − p(3) and p(4) − p(2)

from (III.1) and (III.2), which are underdetermined

systems of equations of the form y = Mx, and

then applying (II.3) to the estimated differences. In

this subsection we present how to efficiently solve
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these underdetermined systems using block-wise `1-

minimization.

Suppose that the measurement matrix M ∈ Rm×n

has a block diagonal form (III.6), with diagonal

blocks Mk ∈ R(m/K)×(n/K) operating on a sub-

group of pixels from individual lines. This type of

measurement matrices reflects the current ToF cam-

era architecture illustrated in Fig. III.1. Assuming

the sparsifying basis Ψ to be block diagonal with

diagonal blocks Ψk ∈ R(n/K)×(n/K), the full `1-

minimization problem (III.5) can be decomposed into

K smaller `1-minimization problems of the form

minimize
z∈Rn/K

‖Ψ∗kz‖1 subject to ‖Mkzk−yk‖2 ≤ η/K .

(III.7)

Here yk ∈ Rm/K are the data from a single block.

If all Mk satisfy the Ψ-RIP (i.e. MkΨk satisfies

the RIP), then (III.7) stably and robustly recovers

any Ψ−block-sparse vector x = [x1, . . . ,xK ] with

y = Mx. Theorem III.3 shows that this, for example,

is the case if Mk are realized as random partial

circulant matrices.

By solving (III.7) we exploit sparsity within a

single row-block. While one can expect some row-

sparsity, (III.7) does not fully exploit the level

of sparsity present in two-dimensional images. As

shown in [30] using row-sparsity yields artifacts in

the reconstructed image. In this work we therefore

follow a different approach that is described next.

For that purpose we consider an additional partition

of all pixels

{1, . . . , n} =
⋃

`=1,...,n/b2

B` , (III.8)

where B` corresponds to all indices in squared blocks

of size b × b with b := n/K. Then the measurement

matrix can be written in the form M = B1 ⊗ · · · ⊗

Bn/b2 with diagonal blocks

B` :=




M` 0 . . . 0

0 M`+b . . . 0
... . . . ...

0 . . . M`+(b−1)b



∈ Rb2×b2

(III.9)

for ` = 1, . . . , n/b2. We further assume that the

sparsifying basis Ψ = Ψ1 ⊗ · · · ⊗ Ψn/b2 is block

diagonal with Ψk ∈ Rb
2×b2 . In such a situation,

(III.3) can be decomposed into n/b2 smaller `1-

minimization problems,

minimize
z`∈Rb2

‖Ψ∗`z`‖1 subject to ‖B`z` − y`‖2 ≤ ε .
(III.10)

The advantage of (III.10) over (III.7) is that Ψ`

can now be chosen as a two dimensional wavelet or

cosine transform, which are well known to provide

sparse representation of images. On the other hand,

(III.5) is still decomposed into smaller subproblems

which enables efficient numerical implementations.

The optimization problems (III.10) can be solved in

parallel which further decreases computation times.

Using a global sparsifying transformation might be

better in terms of sparsity, but the resulting problem

is less efficient to solve. In the future we will in-

vestigate optimal compromises between sparsity and

computational efficiency.

For the actual numerical implementation we use

`1-Tikhonov regularization

minimize
z`∈Rb2

λ‖z`‖1 + ‖B̃`z` − y`‖22 (III.11)

where B̃` = B`Ψl can be calculated by (Ψᵀ
`B

ᵀ
` )ᵀ.

The two problems (III.10), (III.11) are equivalent [14]

in the sense that every solution of (III.10) is also a

solution of (III.11) for λ depending on ε and vice

versa. For minimizing the unconstrained `1-problem

(III.11) we use the fast iterative soft thresholding
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algorithm (FISTA) introduced in [5] which is an

efficient algorithm for `1-minimization.

IV. Experimental Results

In this section we present some experimental re-

sults using raw data captured by an existing standard

ToF camera. An example of such raw data (four

phase images) is shown in Figure IV.1. From the raw

data of the standard ToF camera, we generated the

compressive sensing measurements synthetically.

A. Compressed ToF sensing

For compressive ToF sensing, we initialized the

measurement matrices M (the block circulant matri-

ces; see Section III-B) randomly with the entries of a

random vector generating the partial circulant blocks

taking values in {−1, 1, 0} with equal probability.

The blocks have size m × 14 which implies that the

compression ratio is 14/m. In the experiments we

observed that usually not all blocks of our measure-

ment matrix yield adequate reconstruction proper-

ties. This indicates that the size of the single blocks is

not large enough to guarantee recovery in each block

with high probability. Using bigger blocks would

overcome this issue (according to Theorem III.3),

but this is not possible with our camera design. We

therefore propose the following alternative strategy.

We start with a set of several candidates for the

blocks of the measurement matrix from which we

choose the ones with the lowest reconstruction error

on a set of test images.

For the following results we have chosen the pa-

rameters in the FISTA algorithm by hand and did

not perform extensive parameter optimization. On

most images the parameter choice had a moder-

ate influence on the reconstruction error. Thus we

used λ = 0.05 for all presented results with `1-

minimization. For the basis Ψ we use the 2D-Haar

wavelet transform and, as described in Section III-C,

we executed the reconstruction block wise with a

block size of 28× 28.

To measure the error between the uncompressed

depth image d ∈ Rl×n = R168×224 and the re-

constructed depth image d̃ ∈ R168×224 we use the

relative mean absolute error (RMAE) and the peak

signal to noise ratio (PSNR) defined by

MAE(d, d̃) := 1
ln

l∑

i=1

n∑

j=1
|di,j − d̃i,j |

RMAE(d, d̃) := MAE(d, d̃)
maxi,j(di,j)

100%

PSNR(d, d̃) := 10 log
(
ln

maxi,j(di,j)∑
i,j(di,j − d̃i,j)2

)
dB .
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Figure IV.1: Phase images as captured by the

existing ToF camera (chair-image). The vertical line

artefacts, as well as the noise are inherent to the

measurement procedure.

B. Example 1: Chair image

For our first set of examples we consider phase

images of a chair shown in Figure IV.1, which is less

than 1 meter away from the camera (see Figure IV.2,

left). In the FISTA reconstruction of the chair-image
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we see some artefacts around the main objects. They

are a result from the small blocks in the measurement

matrix and varying sparsity level of the images.

The wavelet coefficients are not exactly zero but

only rapidly decreasing and on blocks around edges

the decay is slower than elsewhere. These artefacts

at image contours could be reduced by adding a

noise reduction term to (III.11), for example a total

variation term [29], [31], [21], which results in an

improved image quality. However, the reconstruction

speed would be slower.

In Figure IV.3 we can see the reconstructed dif-

ferences of the phase images. In the uncompressed

differences of the phase images shown in Figure IV.3

(bottom), one clearly sees how the noise K (see

(II.2)) contained in the original phase images (shown

in Figure IV.1) is cancelled out. This demonstrates

that it is indeed beneficial to capture four phase

images instead of two. The phase images shown

in Figure IV.1 contain significantly more noise and

artefact than the differences shown in Figure IV.3.

C. Example 2: Books image

In the second example set we consider an image

from a couple of books and folders (see Figure IV.4,

left). The objects are around 0.5 to 1.2 meters away

from the camera and the background consists of a

wall, which is around 1.5 meters away. In the books-

image, the FISTA yields less artefact compared to the

chair image since the image consists of larger piece-

wise constant regions. As can be seen in Figure IV.5,

this results in faster decaying wavelet coefficients.

D. Very limited data

To investigate the reconstruction quality when

only using a very small amount of data, we generated

a measurement matrix with m = 3. This results in a

Figure IV.2: Top. Depth image calculated from the

phase images of Figure IV.1. On the top left we

see wrapping artefact, because the objects exceed

the maximal measurable distance. Bottom. Recon-

structed depth image after 10 iterations of FISTA.

The colors give the distance from the camera in

meters. The compression ratio is 50% and the relative

mean absolute error 3.53%.

compression ratio of around 21%. In this example

we also increased the probability for zeros to 2/3

and the resulting matrix had around 57% zeros. This

means that the images can be captured very quickly

since zero entries in the measurement matrix imply

that the camera can skip the corresponding pixel.

However this results in some missing data which can

never be recovered. The reconstructed depth image is

shown in Figure IV.6, where one notices clear vertical

artefacts. The vertical structure of the artifacts is
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Figure IV.3: Top. Reconstructed differences of phase

images p(1)−p(3) and p(4)−p(2) with a compression

ratio of 50%. Bottom. Uncompressed differences.

One clearly sees that the uncompressed phase differ-

ences contain less artefacts than the original phase

images p(i) itself (shown in Figure IV.1).

because we us the same block in the measurement

matrix for measurements in each column. As a conse-

quence, the resulting artefacts are more regular than

for the case where we use different blocks for each

row.

E. Error analysis

In Table I we show the average mean absolute error

evaluated on a set of 26 test images for various com-

pression ratios. The images consist of the chair-image

and books-image and other similar images captured

with the ToF camera in an office and an apartment.

We used the same FISTA parameter λ = 0.05 and

ran 10 iterations for all the samples.

V. Conclusion

In this paper, we proposed a compressive ToF

camera design that reduces the required amount of

data to be read out and transferred. The proposed

compressed ToF camera uses measurements within

Figure IV.4: Top. Depth image of our second ex-

ample (the books-image) calculated from the un-

compressed phase images. Bottom. Reconstructed

depth image after 10 iterations of FISTA with the

same settings as in Figure IV.2 (the compression

ratio is again 50%). The relative mean absolute error

is 0.62%.

Measurements m Average RMAE Average PSNR

12 0.95 68.17
7 1.38 65.84
5 1.95 58.19
3 6.19 36.57

Table I: Average errors and signal to noise ratio on a

set of test images of the depth images.
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Figure IV.5: Ordered wavelet coefficients of

the blocks from the differences of the phase images

(left: p(1)−p(3) and right: p(4)−p(2)) from our two

example images. We only plotted the largest 10% of

the coefficients. As expected, the coefficients for the

chair-image decrease slower.
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Figure IV.6: Depth image recovered from very

limited data. The compression ratio is around 21%.

Additionally, more than half of the entries of the

measurement matrix equals zero. The relative mean

absolute error is 8.98%.
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Figure IV.7: Top. Average relative MAE error of the

reconstructed depth images depending on the com-

pression ratio m/n. We used the same procedure and

data as in Table I. Bottom. Same as on top, but now

using the PSNR for evaluating the reconstruction

quality.

rows of the image which yields a block-diagonal mea-

surement matrix. Random partial circulant matrices

as diagonal blocks have been shown to be compatible

with current camera architecture. However, their

asymptotic recovery guarantees do not directly apply

in our case. To fix this, one can increase the block

size, which is not really practical for the ToF camera.

On the other hand our experimental results still

clearly demonstrate that it is possible to recover

the original images for small block sizes. For that

purpose, we proposed and implemented a strategy to
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increase the compressed sensing ability of the random

partial circulant matrices. For image reconstruction

we use different squared blocks that allow to exploit

sparsity of the phase images in the two dimensional

wavelet basis. Future work has to be done to improve

the image quality and make it more consistent across

different images and to increase the reconstruction

speed. For that purpose we will investigate the use

of machine learning based algorithms for compressed

sensing [26].
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