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Abstract

High spatial resolution is a central aspect of tomographic imaging. In photoacoustic to-
mography, this requires accurate models for acoustic wave propagation and corresponding
efficient image reconstruction methods. In this article we consider such models accounting
for frequency dependent attenuation according to a wide class of attenuation laws that may
include memory. We formulate the inverse problem of photoacoustic tomography in atten-
uating medium as ill-posed operator equation in a Hilbert space framework that is tackled
by iterative regularization methods. For that purpose we derive explicit expressions for the
adjoint problem that can efficiently be implemented. Our approach comes with a clear con-
vergence analysis that is not shared by existing approaches for the considered model class. In
contrast to time reversal the employed adjoint wave equation is again damping and thus has
a stable solution. This stability property can be clearly seen in our numerical results. Indeed,
if the attenuation is not too strong then the reconstruction results are even better than in the
absence of attenuation. Moreover, the presented numerical results clearly demonstrate the
efficiency and accuracy of the derived iterative reconstruction algorithms in various situations
including the limited view case, where alternative methods cannot be directly applied.

Key words: Photoacoustic tomography, image reconstruction, acoustic attenuation, Landwe-
ber method, regularization methods.

AMS subject classification: 44A12, 65R10, 92C55.

1 Introduction

Photoacoustic tomography (PAT) is an emerging coupled-physics imaging modality that combines
the high spatial resolution of ultrasound imaging with the high contrast of optical imaging (the
basic principles are illustrated in Figure 1.1). Potential medical applications include imaging of
tumors, visualization of vasculature or scanning of melanoma [5, 44, 55, 72]. In this article we
consider PAT using the following general model for acoustic wave propagation in attenuating
media,
19\? , y

(Da + co(?t) Palx,t) — Apo(z,t) = §'(t)h(x) for (z,t) € R* x R. (1.1)
Here h: R? — R is the photoacoustic (PA) source, ¢y > 0 is a constant, and D,, is the time convo-
lution operator associated with the inverse Fourier transform of the complex valued attenuation
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function a: R — C. Dissipative pressure wave equation models that can be cast in the form (1.1)
can be found in [15, 28, 36, 37, 40, 41, 49, 63, 64]. The particular form of o depends on the used
acoustic attenuation model and various different models have been proposed for use in PAT (see
[40] for an overview).

The inverse problem of PAT consists in recovering the source term h from observations of p, on a
observation surface I' C R? outside its support and for times ¢ € (0, 7). Taking attenuation into
account is essential for high resolution PAT since ignoring attenuation may significantly blur the
the reconstructed image.

optical pulse optical absorption/ induced acoustic wave

iii ¢¢¢ ¢¢ thermal expansion

Figure 1.1: BASIC PRINCIPLES OF PAT. A semitransparent sample is illuminated with a short
optical pulse. Due to optical absorption and subsequent thermal expansion an acoustic pressure
wave is induced within the sample. The pressure waves are measured outside of the sample and
used to reconstruct an image of the interior.

1.1 Our approach

The inverse problem of PAT can be formulated as the problem of estimating i from approximate
data g° ~ W,h, where W, maps the PA source h to the solution of (1.1) restricted to I x (0,T).
Inverting W, is ill-posed (see Theorem 2.9) which implies that a regularization method has to
be employed for its solution. In this paper we propose the use of iterative regularization methods
for that purpose. In particular we apply the Landweber method which is a well established
regularization method. A main ingredient in the Landweber method is the numerical evaluation
of the adjoint W,. For that purpose, we derive two explicit expressions for the adjoint. The first
one takes the form of an explicit formula for the adjoint operator and will be used in our numerical
implementation. The second one involves the solution of an adjoint attenuated wave equation.
We emphasize that our inversion approach is universal, in the sense that it can be applied to
a wide range of different attenuation models and a general measurement geometry. Opposed to
competing approaches, the iterative approach followed in this paper can easily be applied to the
limited data case or account for other practical constraints such as the sparse sampling issue.

1.2 Comparison to previous and related work

In the case of vanishing attenuation o = 0, the attenuated wave equation (1.1) reduces to the
standard wave equation

2
Cl%)ng?po(x,t) — Apo(z,t) = 6'(t)h(z)  for (z,t) R x R, (1.2)
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with sound speed ¢p. Recovering the source term h in (1.2) from boundary data is the standard
problem in PAT and various methods for its solution have been derived in the recent years. These
approaches can be classified in direct methods, time reversal, and iterative approaches. Direct
methods are based on explicit solutions for the inverse problem that have been derived in the
Fourier domain [1, 26, 46, 75] as well as in the spatial domain [17, 18, 20, 21, 25, 45, 47, 52,
53, 57, 61, 74]. In the time reversal technique, the wave equation (1.2) is solved backwards in
time where the measured data are used as boundary values in the time reversed wave equation
[10, 18, 30, 54, 67]. Discrete iterative approaches, on the other hand, are usually based on a
discretization of the forward problem together with numerical solution methods for solving the
resulting system of linear equations [13, 58, 59, 60, 76, 70, 71]. Recently, also iterative schemes
in a Hilbert space settings have been introduced and studied; see [4, 6, 24]. In this paper we
generalize the iterative Hilbert space approach to attenuating media.

The case of non-vanishing attenuation is much less investigated and existing methods are very
different from our approach. One class of reconstruction methods uses the following two-stage
procedure: In a first step, by solving an ill-posed integral equation the (idealized) un-attenuated
pressure data po(z, - ) are estimated from the attenuated data p,(z, -). In the second step, the
standard PAT problem is solved. Such a two step method has been proposed and implemented for
the power law in [48, 49], and later been used in [3, 40] for various attenuation laws. Compared to
two stage approaches, in the single step approach it is easier to include prior information available
in the image domain, such as positivity of the PAT source (compare Section 3.1). Further, in
the limited data case, where the measurement surface does not fully enclose the PA source,
the second step in the two-stage approach is again a non-standard problem for PAT, for which
iterative methods can be applied. In such a situation is seems more natural to directly apply
iterative methods to the attenuated data, as considered in the present paper.

A different class of algorithms extends the time reversal technique to the attenuated case (see
[2, 9, 33, 38, 69]). Note that the time reversal of the attenuated wave equation yields a noise
amplifying equation. Therefore regularization methods have to be incorporated in its numerical
solution. A convergence analysis for such a regularized time reversal in PAT seems missing.
Opposed to the time reversal, the adjoint wave equation used in our approach is again damping
and no regularization is required for its stable solution. This yields to a clear convergence analysis
for our method by using standard regularization theory [16, 34, 62]. We are not aware of similar
existing results for PAT in attenuating acoustic media. The approaches which are closest to our
work seem [31, 32]. In [31] discrete iterative methods are considered, where the problem is first
discretized and the adjoint is computed from the discretized problem. Further, both works [31, 32]
use attenuation models based on the fractional Laplacian (see [11, 68]) which yields an equation
that is non-local in space. It is not obvious how to extend these approaches to model (1.1) which
can also include memory.

1.3 Notation

For k € N, we write S (RkH) for the Schwartz space of rapidly decreasing functions f: RFt! — C,
and S’(RkH) for its dual, the space of tempered distributions Further we write F; for the Fourier
transform in the temporal variable, defined by (F,f)(z,w) = [ f(t)e“! f(z,t)dt for f € S(RFFT)
and extended by duality to tempered distributions. A tempered dlstribution in &' (RF1) will be
called causal (in the last component) if it vanishes on ¢ < 0. Finally, for @ € S(R) we denote by
D, the time convolution operator with kernel ]:t_l(a).
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1.4 Outline

In Section 2 we formulate the forward operator of the PAT in attenuating acoustic media in a
Hilbert space framework. We show that it is continuous between L?-spaces and give an explicit
expression for its solution. We further derive two expressions for the adjoint operator. In Sec-
tion 3 we solve the corresponding inverse problem using the Landweber regularization, present
convergence results, and give details for its actual implementation. Numerical results are pre-
sented in Section 4, and a conclusion is given in Section 5. Finally, in the appendix we present
details for the wave equation formulation of the adjoint operator.

2 PAT in attenuating acoustic media

Throughout this paper we assume that a: R — C is a weakly causal attenuation function, defined
as follows.

Definition 2.1 (Weakly causal attenuation function). A function a: R — C is called weakly
causal attenuation function, if the following assertions hold true:

(A1) Re(w) is even and Im(«) is odd;

(A2) w+— Re(a(w)) is monotonically increasing for positive w;

(A3) F;(a)(t) vanishes fort < 0.

Note that (A1) implies that the inverse Fourier transforms of o and e~*“) X are real valued. The
second condition reflects increasing attenuation with increasing frequency. It is not essential and
may be replaced by a similar property. The condition (A3) implies causality of the Greens function

Gqo (ie. Go(-,t) =0 for t < 0) and further is equivalent to the Kramers-Kronig relations (see
(2.5), (2.6) below). Examples for weakly causal attenuation functions are given in Subsection 2.2.

2.1 Attenuated wave equations

We describe acoustic waves in attenuation media by the integro-differential equation

1 2
(Da "o (’?t) Pa(x,1) = Apa(x,1) = s(x,t) for (x,t) € R**',
0

Pa(-,t) =0 for t < 0.

(2.1)

Here s is a source term and a: R — C a weakly causal attenuation function. For any causal
5 € S'(R¥1Y), the attenuated wave equation (2.1) has a causal solution p, € S'(R1). In
particular, this implies the existence of causal Greens function, that takes the form (see [40])

K, (x,t—m

Galx,1) = ) with  Ka(x,t) = F; ! (eflx\a) (t). (2.2)

47 | x|

The Greens function represents a spherical wave in attenuating acoustic media that originates
at location x = 0 and time ¢t = 0. It satisfies (1.1) with right hand side s(x,t) = —d(x)d(¢). If

Kq(x, - — ‘%) is causal for every x, then the dissipative Green function G, defined in (2.2), has
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a finite wave front speed < ¢y. Attenuation laws with finite wave front speed are called strongly
causal in [40].

Throughout we refer to the convolution of the source s with G, as the causal solution of (2.1).
For the model of [41] uniqueness is shown in [37]. Note that the proof of [37] can be generalized
to any weakly causal attenuation law. This implies uniqueness of a solution of (2.1).

Definition 2.2. Let a: R — C be a weakly causal attenuation function. Then, for any r € R we
define mq(-,7) € S'(R) by

w i(w/cotia(w))|r

The following result derived in [37, 40] will be frequently used in this paper.

Lemma 2.3 (Relation between attenuated and un-attenuated pressure). Let a be a non-vanishing
weakly causal attenuation function. Then m, is C* on R?\ {(0,0)}. Moreover,

t
W(ot) € ROx (0,00 palxit) = [ malt,rmlxr)dr, (24
0
where po and po denote the causal solutions of (1.1) and (1.2), respectively.

Proof. See [37, Theorem 1 and Lemma 1]. O

2.2 Examples for causal attenuation laws

In this subsection we give particular examples for causal attenuation laws that we use in this
paper: the power law (see [65, 64, 73]), the model of Kowar, Scherzer, Bonnefond (see [40, 41])
and the model of Nachman, Smith and Waag (see [51]).

Remark 2.4 (Kramers-Kronig relations). A central property that should be satisfied by (1.1) is
causality of the corresponding Greens function G. Causality of Gy is equivalent to assumption
(A3), the causality of F; *(a) (see [40]). Widely use criteria for the causality of F; *(a) are the
Kramers-Kronig relations (see [42, 43])

Re[a(w)] = %P.V. /R wdw', (2.5)
Im[a(w)] = —71TP.V./R Rjai_(u:;)]dw,. (2.6)

In fact, according to Titchmarsh’s theorem [66, Theorem 95] for square integrable o, the causality
of i H(a) is equivalent to (2.5) as well as to (2.6). In such a situation, if the imaginary part of
the weakly causal attenuation function is known, then its real part is uniquely determined by (2.5).

Typical acoustic attenuation laws, however, are not square integrable (see the examples below).
In this case, the Kramers-Kronig relations cannot be applied directly. Nevertheless, the method of
subtractions allows extension to attenuation functions with a(w) = O(wW") as w — oo with n € N
(see [56, Section 1.7]). In such a situation, given the imaginary part Im[a], the Kramers-Kronig
relation (2.5) determines the real part Re[a] up to n+1 additive constants. As a concrete example,
consider the case where a(w) = O(w). Then the Kramers-Kronig relations yield

Rela(w)] = Rela(wo)] + 20 PV, /R Imfa() = a{wo)] _do’ 2.7)

W' — wy w—w’

5


Admin
am_pp_logo_01


Im[a(w)] = Im[a(wo)] — (2.8)

7

w—wp Re[a(w') — a(wy)]  du'
- P.V./R

w' — wy w—w

In particular, the imaginary part of the attenuation function determines its real part provided that
Im|[a(wo)], for some fixed wy, is given. For the general case a(w) = O(w™) see [56].

In the following ay, cg, cso, 71 and v denote positive constants.

Example 2.5 (Power law). In the power law model, the complex attenuation function takes the
form
a:R—C:w—ag(—iw)” +by(—iw). (2.9)

Here (—iw)? := |w|” exp(—imysign(w)/2) and ag, by are arbitrary positive constants. This equa-
tion has been considered, for example, in [65, 64, 73]. For tissue, the exponent v in (2.9) is in the
range (1,2]. Note that for positive y that is not an integer the power law model is weakly causal.
In [40] it has been shown that the dissipative waves modeled by (2.9) are strongly causal only if
v € (0,1).

Example 2.6 (Model of Kowar, Scherzer and Bonnefond). The model proposed by Kowar,
Scherzer and Bonnefond (KBS model) [41] reads

ap (—iw)
Coo /14 (=i w)1™

alw) = =+ bo (—iw) forvye(1,2]. (2.10)

The KBS model is strongly causal. Because strong causality implies weak causality [41]) the KBS
model is also weakly causal. It satisfies the small frequency approximation Re[a(w)] < agsin(F(v—
1))/ (2¢c0om) |T1w|” asw — 0. Thus (2.10) behaves as a power law for small frequencies. In fact,
the KBS has been proposed as a strongly causal alternative to the power law for the range v € (1, 2],
where the power law fails being strongly causal.

Example 2.7 (Model of Nachman, Smith and Waag). In the model of Nachman, Smith and
Waag (NSW model) with a single relazation process, the complex attenuation function takes the

form (see [51])
alw) = (—iw) (coo \/1 + (co/coo)? (miTiw) 1) ’ (2.11)

Coo co 1+ (-inw)

Equation (2.11) and its generalization using N relazation processes have been derived in [51]
based on sound physical principles. The resulting attenuated wave equation is causal and can
even be reformulated as differential equation of order N + 2. In [51, 40] it is shown that the
model (2.11) is strongly (and thus weakly) causal provided that cy < coo. Then the wave front
speed is bounded from above by c,. We note that the attenuation law (i.e. the real part of a of
the NSW model (2.11)), satisfies a power law with exponent v =2 as w — 0.

2.3 The forward operator

Throughout the following we assume the PA source h to be supported in an open set 5. We
assume that measurements are taken on a piecewise smooth surface I' C 99 where Q C R is an
open set with Qg C Q. Further, let 7' > diam () /cmin denote the final measurement time and
suppose to is a positive number with tgcmax < dist(Qo, "), where cpin and cpax are lower and
upper bounds of the wave front speed, respectively.
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Definition 2.8 (PAT forward operator). We define the PAT forward operator with weakly causal
attenuation law o (see Definition 2.1) by

W : C3°(Q0) € L*(Q0) — L*(T' x (0,7)): h = palrx(o.1): (2.12)
where p, denotes the causal solution of (1.1). In the case of vanishing attenuation we write

W .= Wo.

According to Lemma 2.3, the kernel m(t, ) is smooth for (¢,r) # (0,0). In particular,

/ ma(t,r)g( -, r)dr (2.13)

defines a bounded linear operator M, : L*(T' x (to,T)) — L*(I" x (0,T)). The representation
of the attenuated pressure in terms of the un-attenuated pressure given in Lemma 2.3 therefore
shows that W, is well defined. Moreover, the following result shows that it can be extended to
a bounded linear operator on L?(£).

Theorem 2.9 (Mapping properties of the PAT forward operator).

(a) W, has a unique bounded extension W : L*(Qg) — L*(T x (0,T));
(b) Wo =M, o W;
(c) If a # 0, then W: L?(£) — L*(T x (0,T)) has non-closed range.

Proof. (a), (b): It is known that the operator W: L*(Qo) — L*(T' x (t0,T)): h — polrx (t,1) is
well defined, linear, bounded, injective and has closed range (see, for example, [24]). Now suppose
a # 0. Because m,, is smooth on {(¢,7) # (0,0)}, it follows that M, : L*(T" x (to,T)) — L*(T" x
(0,T)) is well defined and bounded. Together with (2.4) this gives (b) and implies the boundedness
of W,. In particular W, has a unique bounded extension W, : L?(€) — L?(T x (0,T)).

(c): Assume to the contrary that W, has closed range. From (b) and the boundedness of W1
it follows that M, = W, o W~! has closed range. Since M, : L2(T' x (to,T)) — L*(I" x (0,T))
is an integral operator with a smooth kernel this yields a contradiction. O

The well known explicit solution formulas for the standard wave equation give explicit expressions
for W. The precise forms of these expression depend on the spatial dimension. For example, in
two spatial dimensions we have

o [eot rh(y+r
V(y,t) el x (O,T) Wh (y,t) = 277@0 &f/ it Md@d?‘ . (214)
ots —

Together with W, = M, o W this gives an explicit formula for W that can be implemented
efficiently.

2.4 The adjoint operator

Because the forward operator W, := L?(€y) — L?(T" x (0, 00)) is linear and bounded its adjoint
W} exists and is linear and bounded. In this subsection we give two expressions for the adjoint
that can be used for the solution of the inverse problem.

First, we derive an expression for W, in the form of an explicit formula. This representation will
be used in our numerical reconstruction algorithm.
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Theorem 2.10 (Adjoint operator in integral form).

(a) W2: L3(T x (0,T)) — L?(Q0) is well defined and bounded;
(b) Wi, =W*oMy:
(c) ¥g € LA x (to, T))Vt € (0,T): Mig(-,r) = [ ma(t,r)g( -, t)dt

Proof. (a): According to Theorem 2.9 (a), W,: L?(Q0) — L?(I" x (0, 7)) is linear and bounded.
Therefore, its adjoint is well defined and bounded, too.

(b): Follows from Theorem 2.9 (b).

(c): According to the definition of My : L?(T x (to,T)) — L*(T x (0,T)) we have M,g(y,t) :=
[3 ma(t,r)g(y, r)dr. Therefore M : L3I x (0,T)) — L*(T x (to,T)) is given by Mig(y,r) =
frT ma(t7 T)g(ya t)dt [

Note that the adjoint W* in the absence of attenuation can be given by an explicit expression and
therefore also the attenuated adjoint W} = W* oM, is given by an explicit formula. The actual
expressions for W* depends on the spatial dimension. For example, in two spatial dimension we

have
WreQ: (W // 99D qras(y). (2.15)
lz—yl

VAt — |z —yf?

Our next results show that the adjoint operator can additionally be described by an attenuated
wave equation. In absence of attenuation similar formulations for the adjoint have been derived

n [4, 6, 24} For that purpose we denote by dr the tempered distribution on R? x R defined
by (0r,0) = [ Jpd(z,t)dS(z)dt for ¢ € C§°(R? x R). Further, we denote by D}, the formal

L*-adjoint of D,, given by the time convolution with the time reversed kernel F; *(a)(T — t).

Theorem 2.11 (Adjoint operator in wave equation form). Suppose « is a weakly causal attenu-
ation function of the form

VweR: aw)=a—iwb+pw)), (2.16)

with a,b € R and F~1(B) being absolute integrable in a neighborhood of zero. Given g € C§(T' x
(0,7)), let qo be the solution of the time-reversed wave problem

2
(DZ _ 1;) Go (1) — Aga(,t) = —0p(x) g(z,t) onRIxR, (2.17)
co

with go(-,t) =0 fort > T. Then,
. 1 L, 10
Wi(o) = (D2 - = 2 )l 0) +aaal-,0)] (218)
Proof. See Appendix A. O

From Theorem 2.11 we immediately obtain the following alternative form.
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Corollary 2.12 (Adjoint operator wave equation form). Suppose the assumptions of Theo-
rem 2.11 are satisfied and let ¢}, be the causal solution of

1 0\?
<Da + 815) @ (x,t) — Agh(x,t) = =op(z) g(x, T —t) fort>0. (2.19)
Co
Then we have ) 18
Wito) = [(Dat = 2 )il 1)+ agi( 7)) (2.20)
Co Co ot
Proof. Follows from Theorem 2.11 with ¢(z,t) = ¢o(z, T —t). O

Note that (2.17), (2.18) and (2.19), (2.20) have a similar form to the time reversal used in
[33, 2, 38, 39, 9, 69]. However, unlike the time-reversed wave equation, where the corresponding
wave blows up, the adjoint formulation has the same stability properties as the forward equation.
Therefore, in contrast to the time reversal procedure, there is no need to include regularization to
implement (2.17) or (2.19). Accurate numerical solution of dissipative wave equations for realistic
parameters is challenging and numerically quite expensive. Let us consider this issue for the wave
equation of Nachmann, Smith and Waag with only one relaxation process. The relaxation time
71 for fluids is about 100 ns and the discretization step size should be at least close the relaxation
time. This results in a time discretization much finer than usually employed for the simulation
of un-attenuated waves and therefore an increased numerical cost.

If the growth condition (2.16) is not satisfied, then the formulations (2.17), (2.18) or (2.19), (2.20)
do not necessarily hold. The following proposition verifies this conditions for the NSW model,
the KBS model for exponent 2 and the power law with exponent less than one.

Lemma 2.13 (The growth condition (2.16)).

m The power law (2.9) satisfies (2.16) if and only if v < 1;
m The KBS model (2.10) with v =2 and the NSW model (2.11) satisfy (2.16).

Proof. Clearly, the power law satisfies (2.16) if and only if the inverse Fourier transform of
By(w) := (—iw)?~! is integrable in a neighborhood of the origin. According to [50], F~1(8,)
is proportional to the distribution ¢, which is integrable at zero if and only v < 1. Next
consider the KBS model with v = 2 which satisfies (2.16) if and only if the inverse Fourier trans-
form of fxps(w) := (1 + (—im w))~/2 is integrable. According to [41, Lemma 6.1], F~*(fkss)
is proportional to the integrable function t;l/ 2e=t. For the NSW model (2.16) is verified in
a similar manner. Its attenuation law can be written as a(w) = (—iw) (by + Prps(w) f2(w))
with 75 := (cp/cs0)? 11 and Bo(w) o< y/1/72 —iw — y/1/71 —iw. From the identities (53), (A3)
and (A4) in [41, | and the transformation property [29, Item 54 in Appendix 2], it follows that
F1(B2)(t) o (e7¥™ — e’t/ﬁ)tf’/g. Because fkps and [ are integrable, it follows that their
product is integrable too, which concludes the proof. 1

3 Solution of the inverse problem

In this section we solve the inverse problems of PAT with attenuation using iterative regularization
methods. Our method comes with a clear convergence analysis. We further present details on its
actual implementation. Throughout the rest of the of this paper we write || - | for the regular


Admin
am_pp_logo_01


L%morms on L?()) and L?(T" x (0,00)) as well as for the operator norm between these two
spaces.

3.1 The Landweber method

The Landweber method for the solution of Woh ~ ¢° is defined by
YneN: h,, =hS — AW, (Wahfl - 95) . (3.1)

Here ¢ are the noisy data, 0 < A\ < [W,||~2 is the step size, and h} := h° some initial guess.
The superscript ¢ indicates the nose level which means that an estimate HWah* — g‘SH <4 is
available, where h* is the unknown true solution.

The Landweber iteration will be combined with Morozov’s discrepancy principle. According to
the discrepancy principle, the iteration is terminated at the index n = n(d,y°) when for the first
time

with some fixed 7 > 1. From Theorem 2.9 and the general theory of iterative regularization
methods we obtain the following result.

hp41 — 95H <79, (3.2)

Theorem 3.1 (Convergence of the Landweber iteration). Suppose h € L*(Qp), € > 0 and let
g° € L2((0,T) x T) satisfy ||g° — Wah|| < 6.

(a) Exact data: If 6 =0, then (hy)nen strongly converges to the h.

(b) Noisy data: Let (6m)men € (0,00)N converge to zero and let (hy)men € L?((0,T) x T)N
satisfy ||hm — Wah|| < 6y, Then the following hold:

m The stopping indices Ny, := Ny (O, ) are well defined by (3.2);
m We have ||hd» — h|| = 0 as m — occ.

Proof. According to the Theorem 2.9 the operator W, is bounded. The claims therefore follow
from standard results for iterative regularization methods (see, for example, [16, 34]). ]

The Landweber method is the most basic iterative regularization method for the solution of in-
verse problems and behaves very stable due to the smoothing effect of the adjoint. On the other
it is quite slow in some applications. Accelerated version include v-methods [7, 16], the CG Al-
gorithm [35, 27|, preconditioned Landweber iterations [14] or Kaczmarz-type iterations [23, 19].
Here we chose the Landweber iteration because the main aim of the present paper is demon-
strating the effectiveness of iterative methods for PAT with acoustic attenuation. Further, for
the considered application already 10 iterative steps provide very accurate results. Nevertheless,
note that generalization to other iterative regularization methods such as the steepest descent or
the conjugate gradient method is straight forward.

Another advantage of the Landweber method is that it can easily be combined with a projection
step to improve performance. The resulting projected Landweber method reads

Phir = Po (W = AW (Wahl o)) | (3.3)

where P denotes the projection on a closed convex set C C L%(Q) Actually in our numerical
implementation we use the projected Landweber method with C being the cone of non-negative
functions, which turned out to produce slightly better results than the pure Landweber method
with a comparable numerical complexity.
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3.2 Implementation of the (projected) Landweber iteration

We outline the implementation for the case that I' := OBRr(0) is a circle of radius R in two spatial
dimensions. Extension for more general geometries and higher dimensions are straight forward.
Our approach uses the relations W, = W o M, and W}, = M} o W* (see Theorems 2.9 and
Theorems 2.10) that relate the attenuated pressure to the un-attenuated pressure in the direct
and adjoint problems, respectively.

For that purpose the PA source h: R? — R is represented by a discrete vector h € RWVe+1)x(Nat+1)
obtained by uniform sampling

h[i] ~ h(x;) for i = (i1,i3) € {0,..., N, }? (3.4)

2R
z;=(-R,—R)+i ~ for i = (i1,i2) € {0,...,N,}% . (3.5)

Here (N, + 1)2 is the number of spatial discretization points on an equidistant Cartesian grid.
Further, any function g: 99 x [0,7] — R is discretely represented by a vector g € RN x(Ni+1)
with

)

glk, ] ~ g(R(cos gk, sin ¢y), te) for (k,£) € {0,..., Ny, — 1} x {0,..., N¢} (3.6)
2
on = k<L for k € {0,...,N, — 1}, (3.7)
N
2
te :zE—R for ¢ € {0,..., N }. (3.8)
Ny

Here N, is the number of angular samples (detector locations) and N;+1 the number of temporal
samples. The sampling conditions obtained in [22] imply that Az ~ ¢y At ~ R Ay, where
Az :=2R/N, At :=T/N; and Ay :=27/N, yield aliasing free sampling.

The Landweber iteration (3.1) and its projected version (3.3) are implemented by replacing W,
W* M, and P¢ with discrete counterparts

W: ROVeFDX(Notl) _y RNpx(Nit1) (3.9)
M, : RNeX(Netl) _y RN (Nit1) (3.10)
B: RNeX(NetD) _y RNat1)x(No+1) (3.11)
Po: RWVeAD)X(Notl) _y R(Na+1)x(No+1) (3.12)

The resulting discrete (projected) Landweber method is then defined by
VneN: hnd,, =P¢ (hfl — A BM, (MQWhg - g5)) : (3.13)

Note that for the sake of computational efficiency the operator B will be implemented by a filtered
backprojection procedure that which is the exact discrete adjoint of W. On the other hand, as
numerical approximation of M} we take the exact adjoint of the discretization of M,. Finally,
the discrete projection will simply be taken as Pc(h) := max{0,h}, which is the projection on
convex cone C := [0, 00) Mt DxMxt1) ¢ RM=ADxM+1)  How to implement the other operators will
be described in the following subsections.

Remark 3.2 (Numerical complexity). Under the reasonable assumption Ny ~ N, ~ Ni, one
iterative step (3.13) requires O(N2) floating point operations (FLOPS) with small leading con-
stants and comparable to the effort of a standard FBP reconstruction algorithm. Since a small
number of around 10 turned out to be sufficient our algorithm is numerically quite efficient.
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3.3 Implementation of W and its adjoint

For numerically approximating the un-attenuated wave operator W we discretize the explicit
formula (2.14). For that purpose we write (2.14) in the form Wh = ¢, '9;AMh, where

2m
Mh (y,r) :== 217r/0 h (y + r(cos B,sin 8))dg3, (3.14)

cot

rg(y.r) o
0o Jar—ro
for (y,t) € I x (0,7). The operator M is the spherical mean Radon transform and A the Abel
transform (in the second component). We compute discrete spherical means by approximately
evaluating (3.14) at the all discretization points (Rey, cotj) using the trapezoidal rule for dis-
cretizing the integral over 5. The values of h for applying the trapezoidal rule are obtained by
using bilinear interpolation of h. Next for any k, the Abel transform is approximately computed
by replacing g(yk, - ) with the linear interplant through the data pairs (cote, g(yk, cote)). Finally,
we approximate the time derivative 0; by finite differences. Inserting these approximations to
W =¢, 19,AM yields the discretization W.

Ag(y,t) == (3.15)

The adjoint wave operator W* is implemented in a similar manner using (2.15) which can be
written in the form W = —¢; IM*A*9,. The operators A* and 8, are discretized as above.
The adjoint M* of the spherical mean operator is implemented using a backprojection procedure
described in detail in [8, 17].

3.4 Implementation of M,

Recall that for any (z,t) € I' x [0, 7] we have

T
M,g(z,t) :/0 ma(t,r) g(z,r)dr, (3.16)
Fi(mal-,m)(w) = m oi(w/cotia(@))r| (3.17)

The operator M, is discretized based on these relations by approximately computing mq, (te, ty)
using (3.17) and then discretizing (3.16). This yields the discrete approximation

Nt
(Mag) [k, €] := At > " ma[l, 0] glk, 0], (3.18)
0'=0
. wif] (i@lf)/eotia(wlO))rie)]
FFT(m,)[¢,¢] : wli]/co + i (wl[f]) . (3.19)

Here FFT denotes the discrete Fourier transform in the first component and the discrete kernel
my[¢, ¢'] is obtained by applying the inverse fast Fourier transform in the first component. Further
wll] = lAw + Ny /T with Aw = 27 /T. Finally, the adjoint M}, is implemented by the adjoint
(M:g)[k, 0] := At Zé\/ft:o ma[¢, £] g[k, '] of the discrete operator (3.18), (3.19).

4 Numerical results

In this section we present numerical simulations for PAT with and without attenuation. For all
numerical results presented below, the region €2 is a disc of radius R. The final measurement
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Figure 3.1: VISUALIZATION OF THE KERNEL mq (¢, - ). Left: kernel using relaxation time 7 =
100 ns (strong attenuation). Right: kernel using relaxation time 71 = 1ns (weak attenuation).

time is taken as T' = 2R/cg, where ¢y = 1540 m/s is taken as the sound speed in water. For all
reconstruction results we take IV, = Ny = N, in the reconstruction. In order to avoid inverse
crime, the data have been computed using a finer temporal discretization.

4.1 Pressure simulation

For the reconstruction results using attenuation data we will employ the NSW model. It has
quadratic frequency dependence for small frequencies. This describes attenuation of water that
has an exponent close to 2 for small frequencies [40, 51]. We use coo = 1623 m/s. For simplicity
we restrict ourselves to a single relaxation process in the NSW model. For the relaxation time 7
we consider two cases, for which we also consider different radii of the measurement circle:

m Case 1: R=5cm and 74 = 100ns;

m Case 2: R =5mm and 74 = 1 nm.

Figure 3.1 shows the corresponding kernel function my/(t, -) for the above different relaxation
times. We see that the support of m,(t, - ) increases with the relaxation time indicating that the
larger relaxation time corresponds to stronger attenuation.

In Figure 4.1 we compare the (noisy) un-attenuated pressure data measured po(x, - ) at location
x = (R,0) with (noisy) attenuated pressure data p,(x, -) according to the NSW model for the
phantom shown in Figure 4.2. We also compare it to the pressure data obtained with the KSB
model and the power law with exponent v = 2. The parameter settings of the KSB and the power
law models have been chosen such that the real and imaginary parts of the complex attenuation
laws are as close as possible to the one of the NSW law for small frequencies. For the strong
attenuation case (Figure 4.1, right) we see that all attenuated pressure data are very similar.
Indeed, if we simulate noisy data via the NSW model and then estimate the initial data via
the power law, the KSB law or the NSW law, then the results would hardly be distinguishable.
However, the right picture in Figure 4.1 shows that this is not true in the small attenuation case
where the different attenuation laws yield quite different attenuated pressure signals. Note that
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Figure 4.1: SIMULATED UN-ATTENUATED AND ATTENUATED PRESSURE DATA. Left: weak atten-
uation case 71 = 100ns. Right: strong attenuation case 7 = 1ns.

for the power law we actually implemented a causal form, where we have truncated mq/(t,r) for
r >t after evaluating (3.17).

4.2 Reconstruction results for strong attenuation

The numerical simulations that we present in this subsection correspond to strong attenuation
with a relaxation time 7 = 100ns. The radius of the region of interest is taken as R = 5 cm and
we take N; = Ny = N, = 600.

The numerical phantom and the numerical results using the projected Landweber iteration with
and without attenuation are presented in Figure 4.2. We see that the reconstructions using the
NSW model (top right) yields a smoother results than in the absence of attenuation (bottom left).
In the case with attenuation the thin concentric annuli cannot be resolved, they appear as single
thick blurred annulus. Moreover, small or thin structures are blurred and provide less contrast
in the case of attenuation. We also applied the projected Landweber iteration using the un-
attenuated wave equation to the attenuated data. The reconstruction shown in the bottom right
image in Figure 4.2 indicates that thin and long structures are strongly blurred and displaced.
Actually, details with small diameter cannot be estimated reliably which clearly indicates that
attenuation has to be taken into account. This also reflects that attenuated data are not only
smoothed but also displaced. The artifacts in the mixed reconstruction might be reduced by
shifting the pressure data appropriately. Indeed, heuristic rules performing such a shift are often
applied in practice. However as the shift depends on the location and the frequency content of
the object applying a reasonable shift seems a non-trivial issue that is not required at all in our
approach.

We are not aware how to exactly choose the free parameters ¢y and co in order to accurately
model acoustic attenuation in water or soft tissue. To investigate the effect of changing these
parameters we also perform simulations with a significantly increased value of ¢o, = 3080 m/s.
From the results showing in Figure 4.3 one observes significantly increased attenuation compared
to the value ¢ = 1623 m/s (see top right image in Figure 4.2).
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exact (case 1) NSW-model (case 1)

25

0.5

no attenuation (case 1) mixed (case 1)

25

0.5

0

Figure 4.2: RECONSTRUCTIONS IN THE STRONG ATTENUATION CASE 71 = 100ns. Top left: Exact
PA source. Top right: Reconstruction based on the NSW model. Bottom left: Reconstruction in
the absence of attenuation. Bottom right: Reconstruction from attenuated data but neglecting
attenuation in the reconstruction.

4.3 Reconstruction results for weak attenuation

Now we present simulations of the NSW model for weak attenuation case with relaxation time
71 = lnm. As a consequence we have to use a finer time discretization for calculating m, in
(3.18), (3.19). In order to keep the computational expenses reasonable we decreased the radius
to R = 5mm. From the numerical results presented in Figure 4.4 we see that the attenuated
case again yields a smoother reconstructions than in the absence of attenuation. In contrast
to the strong attenuation case the very thin concentric annuli located in the upper half of the
image of f can still be resolved; the contrast now even seems better than in the dissipation free
case. Also, the very small elliptic structures can be estimated with high quality. The thinner
concentric annuli located in the lower half of the image of f cannot be resolved. As in the case
of strong attenuation, if the standard wave reconstruction is applied attenuated data, then the
reconstruction of thin and long structures is blurred and displaced.
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Figure 4.3: EFFECTS OF INCREASING THE SPEED RANGE [cp,Coo]. Left: Noisy un-attenuated
pressure and attenuated pressure for co, = 1623m/s and co, = 3080m/s, respectively. Right:
Reconstruction for c¢s, = 3080m/s. (The reconstruction for co, = 1623 m/s is shown in the top
right image in Figure 4.2.)

4.4 Reconstruction results for limited view data

Finally we perform reconstructions using limited view (or limited angle) data where the detector
positions x = R(cos ¢, sin ) are located on a half circle with ¢ € [0,7]. The reconstruction
results using the projected Landweber method are shown in Figure 4.5. The top row considers
the the strong attenuation case and the bottom row the weak attenuation case. In both cases
the result are compared to the cases without attenuation. All reconstructions show the typical
limited view artifacts, even in the absence of attenuation. Further, one notices that the results
using un-attenuated data yield a little better contrast for long thin structure and much better
contrast for structures with small diameters than the ones with attenuated data. Again, we see
if the attenuation is not too strong, then attenuation leads to smoother images and even partly
better results than in the absence of attenuation.

5 Conclusion

In this paper we developed iterative regularization methods for PAT in attenuating media. They
comes with a clear convergence theory in the Hilbert space framework that is not shared by any
other existing approach. For the sake of clarity we focused on the Landweber method. General-
izations to other regularization techniques such the CG method or Tikhonov regularization are
subject of future research. A main ingredient of these regularization methods is the evaluation
adjoint of the forward operator. For that purpose, we developed two formulations for the adjoint:
One takes the form of an explicit formula whereas the second one involves the solution of an ad-
joining wave equation. While the proposed method can equally be applied for general admissible
attenuation models, in or numerical numerical results we focused on the widely accepted atten-
uation model of Nachman, Smith and Waag [51]. A detailed comparison of reconstructions with
different attenuation laws and different reconstruction algorithms is intended for future research.
The presented numerical results clearly demonstrate that for moderate attenuation even small
structures are estimated well with our method. On the other hand, our results show that not
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2
. 1.8
. 1.6
. 14
. 1.2
1
. 0.8
. 0.6
. 0.4
. 0.2

Figure 4.4: RECONSTRUCTIONS IN THE WEAK ATTENUATION CASE 71 = 1ns. Top left: Exact
PA source h. Top right: Reconstruction based on the NSW model. Bottom left: Reconstruction
in the absence of attenuation. Bottom right: Reconstruction from attenuated data but neglecting
attenuation in the reconstruction.

accounting for attenuation yields severe artifacts due to dispersion. This clearly demonstrated the
necessity of taking correct attenuation models into account in the inversion process. Moreover,
our numerical experiments indicate that for weak attenuation the results are even better than in
the absence of attenuation.

Acknowledgement

L.V. Nguyen’s research is partially supported by the NSF grants DMS 1212125 and DMS 1616904.
He also thanks the University of Innsbruck for financial support and hospitality during his visit.

17


Admin
am_pp_logo_01


no attenuation (limited angle, case 1)

NSW-model (limited data, case 1)

2

15

no attenuation (limited angle, case 2) NSW-model (limited angle, case 2)

E 15
1
. 0.5

0

N

Figure 4.5: RECONSTRUCTIONS FROM LIMITED VIEW DATA. Top row shows the reconstruction
in the strong attenuation case using attenuation free data (left) attenuated data (right). The
bottom row shows the same for the weak attenuation case.

A Adjoint attenuated wave equation

Let © be an open set such that 99 is a closed smooth surface in R?. For notational convenience,
we will denote 2. := R?\ Q. For g € C$°(99Q x R) consider the equation

2
<Da + 1;) u(z,t) — Au(z, ) = =dpo(w) g(e,t)  on R? xR,
Co

u(z,t) =0 fort < 0.

(A1)

Here the notation u(-,t) = 0 for ¢ < 0 means that there exists some ty € (—o0,0] such that
u(-,t) =0forallt < tyg. In this appendix we show regularity of solutions of (A.1) and demonstrate
that its solution defines the adjoint of W,
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A.1 Regularity and classical solution of (A.1)

For any g € C§°(0€Q2 xR), the source term —dpq(x) g(x,t) is a tempered distribution that vanishes
for sufficiently small ¢t. Hence Equation (A.1) has a unique distributional solution

u(z,t) = / Golr —y,t —7)g(y,7)dS(y) dr, (A.2)
R JOQ

where G, € S’'(R? x R) is the causal Greens function of the attenuated wave equation (2.1). As
the first result in this section we show that the restrictions of the solution to €2 and €. are smooth
and both can be smoothly extended to 0f2.

Theorem A.1 (Regularity of solutions of (A.1)). For any g € C§°(0Q2 x R), (A.1) has a unique
solution u € C®((R?\ 0Q) x R). Further, u can be extended continuously to R? x R, and Vulq
and Vulg, can be extended continuously to  x R and Q. x R, respectively.

Proof. Let u € S'(R? x R) denote the unique distributional solution of (2.1) with s(z,t) =
doa(z)g(x,t), given by A.2. In order to obtain the regularity of u we work in the frequency domain
and employ the theory of single and double layer potentials for the Helmholtz equation. For that
purpose note that the temporal Fourier transform of Gy, is given by ®,(z,w) = e*“)Xl /|x| where
k(w) := ia(w) + w/cyg. Further, write & and g for the temporal Fourier transform of u and g,
respectively. Then,

V(z,w) € (RY\ Q) x R:  d(z,w) = /69 O (x—y,w)g(y,w)dS(y), (A.3)

which is recognized as a single layer potential for the Helmholtz equation with density g. Since
g(-,w) € C1(09), the theory of single and double layer potentials (see, for example, [12]) shows
the following:

m [i(-,w)]loo = 0 and [9,4(-, w)]lan = 9(+,w);
m Vi(-,w) € C(Q) and Va(-,w) € C(Qe);

m For some function C'(w) that is at most polynomially growing, we have
|- @)l gnan||_+||VaC )l @aon]| < C@lat 0l (A1)

Here and below, the bracket [v] denotes the jump of a function v € C(QxR)NC (. x R) across the
surface 092 (from inside out). Next note that w — ||g(-,w)||c1 decays faster than any polynomial.
Therefore, (A.4) implies that u is infinitely differentiable on C'(R?) and that Vulg and Vulg, are
infinitely differentiable on C'(2) and C(2.) (with respect to the time variable). O

In the following we call u € C®((R%\ 9€) x R) a classical solution of (A.1) if u can be extended
continuously to R? x R, Vu|g and Vu|g, can be continuously extended to 92, and

2
(Da + 1;) u(z,t) — Au(z,t) =0 for (z,t) € (RY\ Q) x R,
€o
[Oyu](z,t) = g(z,t), for (z,t) € 02 x R,
u(-,t)=0 fort < 0.

(A.5)

Using Theorem A.1 we one can show the following existence and uniqueness result for solutions
of (A.5).
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Corollary A.2 (Existence and uniqueness of (A.5)). Any classical solution of (A.5) is a dis-
tributional solution of (A.1l), and vice versa. In particular, for any g € C§°(R x 9Q), (A.5) is
uniquely solvable.

Proof. According to Theorem A.1 and its proof any solution of (A.1l) is a solution of (A.5).
Conversely, note that u is a distributional solution of (A.1) if and only

Vg € C5° (R x / / (2, )®(x, £) dS () dt (A.6)

o0
where @ is the solution of (D* — %E> ®— AP =¢and ®(-,t) =0 for t > T. Using integration
by parts one verifies that any solution of (A.5) satisfies (A.6) and therefore also (A.1). O

A.2 Proof of Theorem 2.11

Let g € C3°(I" x (0,T")) and let g, be the solution of the adjoint wave equation (2.17). Multipli-
cation of (2.17) with a test function ¢ and integrating by parts show

W € C(Q % [0,T]) / /w[( . _ 8t>2qa(x,t)} (@, ) dz dt

/+/ do(z,t) [AY(x,t)] dxdt = /+ / g(y,t dS(y)dt. (A7)

Here and below g is extended to 92 x (0,T") by zero extension on OQ\I'. Now suppose h € C§°(£2)
and let p, € C®(R% x [0, T]) be the solution of (1.1) restricted to times in [0, T]. Choosing ¢ = pa
n (A.7), we obtain

/+ /Rd [( a COat>2qa(ﬂf,t)} Pa(z,t)dzdt

//qaxt (Apa(a,1)] ddt = / | swplasma (ag)
+ Rd + o0

Taking integration by parts of the first term in (A.8) with respect to ¢t and employing g, (z,7") = 0
and Opqqo(z,T) = 0 yields

T . 10)\?
/+ [(Da— coat> Go(x,t) | palx,t)dt
1 . 10
2 |(pi- L ) dale0)] pulen0)
T , 10 10
+ /+ |:<Da co 6t> qa(l‘ t):| |:<Da + m@t) pa(x,t)} de.
A further integration by parts of the last right hand side term leads to
T , 10 10
/+ |:<Da - Co@t) QQ(x7t):| |:<Da + C()@?f) pa($7t):| dt

Tor 102
+/ Qa($7t) <Da+ > pa(x,t) de¢
o 0* co Ot

20
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T

1 10 . 19\?
= %Qa(%o) <Da + 00375) Palz,0 )+/+ Ga(,1) |:<D04 + 00375) pa(xvt):| dt.

From the last two identities we obtain

/T [(DZ — ;;)2(]&(1',t):| palz,t)dt = clo [(DZ _ Clo ;)%@3’0)] pala,0%)

1

+l (,0) (D +—g (;::0*)+/T (z,t) (D +l9 2 (z,t)dt
COQa ) a o Ot PalZ, +Qa ) o co Ot PalZ, )

and together with (A.8) and (1.1) this shows

1 1 0
— D, — — = | qalz, oz, 07
(0 22 a0 e 00

1 10

+ 2 [ gale0) [(Da 4 ) Palz, 0)] dr = — /T /mg(y,t) paly, t) dS(y) dt.

co Jpd co Ot

Note that po(-,0") = h and Opa(-,07) = 0. Next, from the representation (2.16) for the
attenuation law a(w) we obtain (D, + c()_lﬁt)pa(x,0+) = apa(z,0%). Consequently, for every
g € C§°(T" x (0,00)), we have

Vh e C°(Q): / 1 KD:; _ clo gt) (2, 0) + aqa(ﬂc,O)} h(z) dz

Q€
T
—— [ a0 (Wah) .0 a5 v

As the last identity holds on a dense subset of L?(), this shows the expression (2.17), (2.18) for
W g and concludes the proof of Theorem 2.11.
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