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Sequential Learning of Analysis Operators
Michael Sandbichler & Karin Schnass

Abstract—In this paper two sequential algorithms for learning
analysis operators are presented. They are built upon the same
optimisation principle underlying both Analysis K-SVD and
Analysis SimCO and use a stochastic gradient descent approach
similar to ASimCO. The sequential analysis operator learning
(SAOL) algorithm is based on projected gradient descent with
an appropriately chosen step size while the implicit SAOL
(ISAOL) algorithm avoids choosing a step size altogether by
using a strategy inspired by the implicit Euler scheme for solving
ordinary differential equations. Both algorithms are tested on
synthetic and image data in comparison to Analysis SimCO and
found to give slightly better recovery rates resp. decay of the
objective function. In a final denoising experiment the presented
algorithms are again shown to perform well in comparison to
the state of the art algorithm ASimCO.

Index Terms—analysis operator learning, analysis dictionary
learning, online learning, cosparse, sequential, stochastic gradient
descent, thresholding, denoising

I. INTRODUCTION

Many tasks in high dimensional signal processing, such as
denoising or reconstruction from incomplete information, can
be efficiently solved if the data at hand is known to have
intrinsic low dimension. One popular model with intrinsic
low dimension is the union of subspaces model, where every
signal is assumed to lie in one of the low dimensional linear
subspaces. However, as the number of subspaces increases,
the model becomes more and more cumbersome to use unless
the subspaces can be parametrised. Two examples of large
unions of parametrised subspaces, that have been successfully
employed, are sparsity in a dictionary and cosparsity in an
analysis operator. In the sparse model the subspaces corre-
spond to the linear span of just a few normalised columns,
also known as atoms, from a K × d dictionary matrix,
Φ = (φ1 . . . φK) with ‖φk‖2 = 1, meaning, any data
point y can be approximately represented as superposition of
S � d dictionary elements. If we denote the restriction of the
dictionary to the atoms/columns indexed by I as ΦI , we have

y ∈
⋃

|I|≤S
colspan ΦI , or y ≈ Φx, with x sparse.

In the cosparse model the subspaces correspond to the or-
thogonal complement of the span of some normalised rows,
also known as analysers, from a d × K analysis operator
Ω = (ω?

1 . . . ω
?
K)? with ‖ωk‖2 = 1. This means that any data

point y is orthogonal to ` analysers or in other words that
the vector Ωy has ` zero entries and is sparse. If we denote
the restriction of the analysis operator to the analysers/rows
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indexed by J as ΩJ , we have

y ∈
⋃

|J|≥`
(rowspan ΩJ)⊥, or Ωy ≈ z, with z sparse.

However, before being able to exploit these models for a
given data class, it is necessary to identify the parametrising
dictionary or analysis operator. This can be done either via a
theoretical analysis or a learning approach. While dictionary
learning is by now an established field, see [13] for an
introductory survey, results in analysis operator learning are
still countable, [18], [12], [11], [19], [10], [14], [2], [4], [7],
[17], [3].
Contribution: In this work we will contribute to the devel-
opment of the field by developing two sequential algorithms
for learning analysis operators, which outperform state of the
art algorithms such as Analysis K-SVD, [14] and Analysis
SimCo, [2], [3], in terms of convergence speed while retaining
the same performance.
Outline: The paper is organised as follows. After introducing
the necessary notation, in the next section we will remotivate
the opimisation principle that is the starting point of A-
KSVD and ASimCO and shortly discuss the advantages and
disadvantages of the two algorithms. We will then take a
gradient descent approach similar to ASimCO, replacing the
costly line search with a clever choice for the step size and a
projection to stay sequential, and test our algorithm both on
synthetic and image data. Inspired by the Euler scheme for
solving ordinary differential equations, in Section III we will
invest a little in the memory requirements of our algorithm
in return for avoiding the stepsize alltogether. After testing
the algorithm on synthetic and image data and comparing
both our algorithms to ASimCO, in Section V we apply
them to image denoising again in comparison to ASimCO.
Finally, in the last section we provide a short discussion
of our results and point out future directions of research.
Notation: Before finally hitting the slopes, we summarise
the notational conventions used throughout this paper. The
operators Ω and Γ will always denote matrices in RK×d

and for a matrix A we denote its transpose by A?. More
specifically, we will mostly consider matrices in the oblique
manifold A := {Γ ∈ RK×d : ∀k ∈ [K] : ‖γk‖2 = 1}, where
γk denotes the k-th row of the matrix Γ. By [n], we denote
the set {1, 2, . . . , n} and we adopt the standard notation |M |
for the cardinality of a set M . By ΓJ with J ⊂ [K] we denote
the restriction of Γ to the rows indexed by J .
A vector y ∈ Rd is called `-cosparse with respect to Ω,
if there is an index set Λ ⊂ [K] with |Λ| = `, such that
ΩΛy = 0. The support of a vector x ∈ RK is defined
by supp(x) = {k ∈ [K] : xk 6= 0} and the cosupport
accordingly as cosupp(x) = {k ∈ [K] : xk = 0}. Note that
by definition we have supp(x) ∪ cosupp(x) = [K]. For the
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runtime complexity R(n), we adopt standard Landau notation,
i.e. R(n) = O(f(n)) means, there is a constant C > 0, such
that for large n, the runtime R(n) satisfies R(n) ≤ Cf(n).
Finally, the Frobenius norm of a matrix A is defined by
‖A‖2F := tr(A?A).

II. THE SEQUENTIAL ANALYSIS OPERATOR LEARNING
ALGORITHM - SAOL

Since optimisation principles have already successfully led
to sequential algorithms for dictionary learning, [15], [16],
we will start our quest for a sequential algorithm by moti-
vating a suitable optimisation principle for analysis operator
learning. Suppose, we are given signals yn ∈ Rd that are
perfectly cosparse in an operator Ω, i.e. Ωyn has ` zero
entries or equivalently Ωyn − xn = 0 for some xn which
has K − ` non zero entries. If we collect the signals yn
as columns in the matrix Y = (y1 . . . yN ), then by con-
struction we have ΩY − X = 0 for some X ∈ X` with
X` := {(x1, x2, . . . , xN ) ∈ RK×N : | supp(xn)| = K − `}. In
the more realistic scenario, where the signals are not perfectly
cosparse, we should still have ΩY −X ≈ 0, which naturally
leads to the following minimisation program to recover Ω,

arg min
Γ∈A,X∈X`

‖ΓY −X‖2F . (1)

Apart from additional side constraints on Γ, such as inco-
herence, the optimisation program above has already been
used successfully as starting point for the development of two
analysis operator learning algorithms, Analysis K-SVD [14]
and Analysis SimCO [2], [3]. AKSVD is an alternating min-
imisation algorithm, which alternates between finding the best
X ∈ X` for the current Γ and updating Γ based on the current
X . Since the update of Γ uses singular value decompositions,
the computational complexity of the algorithm soon becomes
intractable as d increases. ASimCO is a gradient descent
algorithm with line search. It produces results similar to
AKSVD and has the advantage that it does so with a fraction
of the computational cost. Still, at closer inspection we see
that the algorithm has two problematic aspects. First, the line
search cannot be realised resource efficiently, since in each
step several evaluations of the target function are necessary,
which take up a lot of computation time. Moreover for each
of these function evaluation we must either reuse the training
data, thus incurring high storage costs, or use a new batch
of data, thus needing a huge amount of training samples. The
second problematic aspect of the ASimCO algorithm is that the
estimated operators always stay within the manifold A. This
might seem reasonable, as we can only get feasible solutions,
but has the disadvantage that, even with the optimal step size,
it can a take a large number of iterations to follow the steepest
descent path. Still, if we consider the speed up of ASimCO
with respect to AKSVD we see that gradient descent is a
promising approach if we can avoid the line search and its
associated problems.
To see that a gradient descent algorithm for our problem can
also be sequential, let us rewrite our target function, gN (Γ) =
minX∈X`

‖ΓY − X‖2F . Abbreviating Λn = supp(xn) and

Λc
n = cosupp(xn), we have

gN (Γ) =
N∑

n=1

min
xn:|Λn|=K−`

‖Γyn − xn‖22 =

=
N∑

n=1

min
xn:|Λn|=K−`

(‖ΓΛc
n
yn‖22 + ‖ΓΛn

yn − xn‖22︸ ︷︷ ︸
=0

)

=
N∑

n=1

min
|J|=`

‖ΓJyn‖22 =: fN (Γ).

Since the gradient of a sum of functions is the sum of the
gradients of these functions, from fN we see that the gradient
of our objective function can be calculated sequentially. Before
going into more details about how to avoid a line search
and thus stay sequential, let us lose a few words about the
uniqueness of the minima of our objective function.
If the signals are perfectly cosparse in Ω, clearly there is a
global minimum of fN at Ω. However, one can easily see
that all permutations and sign flips of rows of Ω are also
minimisers of fN . We call these the trivial ambiguities. The
more interesting question is whether there are other global or
local minima?
This question can be readily answered with an example. If
all our training signals are (perfectly) `-cosparse in Ω but lie
in a subspace of Rd, this will, at least without any further
modifications, be problematic. In this case we can choose a
vector v with ‖v‖2 = 1 in the orthogonal complement of this
subspace, and construct a continuum of operators Γ, which
also satisfy fN (Γ) = 0, by setting γk = akωk + bkv for some
a2
k+b2k = 1. This example indicates that isotropy in the data is

important for our problem to be well posed. On the other hand,
in case the data has such a low dimensional structure, which
can be found via a singular value decomposition of Y ?Y , it
is easy to transform the ill posed problem into a well posed
one. Armed with the nonzero singular vectors, we just have
to project our data onto the lower dimensional space spanned
by these vectors and learn the analysis operator within this
lower dimensional space. For simplicity we will from now on
assume that any such preprocessing has already been done and
that the data isotropically occupies the full ambient space Rd

or equivalently that Y ?Y is well conditioned.

A. Minimising fN

As mentioned above in order to get a sequential algorithm
we want to use gradient descent but avoid the line search. Our
strategy will be to use projected stochastic gradient descent
with carefully chosen stepsize. Given the current estimate of
the analysis operator Γ, one step of (standard) gradient descent
takes the form

Γ̄ = Γ− α∇fN (Γ) .

Let us calculate the gradient ∇fN (Γ) explicitly.1 Denote by
Jn the set for which ‖ΓJnyn‖22 = min|J|=` ‖ΓJyn‖22, then the

1The careful reader might observe that the function fN is actually not
differentiable everywhere. However this region is just a small set of measure
zero. The computation given here is hence correct almost everywhere.
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derivative of fN with respect to a row γk of Γ is

∂fN
∂γk

(Γ) =
N∑

n=1

∑

j∈Jn

∂

∂γk
〈γj , yn〉2 =

=

N∑

n=1

∑

j∈Jn

2〈γj , yn〉y?nδkj =
∑

n : k∈Jn

2〈γk, yn〉y?n =: Gk.

Note that as expected the vectors Gk can be calculated
sequentially, that is given a continuous stream of data yn, we
compute Jn, update all Gk for k ∈ Jn, and forget the existence
of yn. After processing all signals we set

γ̄k = (γk − αkGk)βk. (2)

where βk = ‖γk−αkGk‖−1
2 is a factor ensuring normalisation

of γ̄k. This additional projection is necessary, since a standard
gradient step will most likely take us out of the oblique
manifold. If we compare to dictionary learning, e.g. [15],
it is interesting to observe that we cannot simply choose
αk by solving the linearised optimisation problem with side
constraints using Lagrange multipliers since this would lead
to a zero-update γ̄k = 0. Instead, we have to carefully choose
the descent parameters αk in order to succeed. Since we
want to find a minimum, the first idea is to select αk in
a way, that we reduce our objective function in every step,
meaning fN (Γ̄) ≤ fN (Γ), as is ensured by the line search.
To stay sequential and computationally light, we proceed
along different lines. Observe that a decrease of the objective
function is ensured if for all n ∈ [N ] we have

〈γ̄k, yn〉2 = 〈(γk − αkGk)βk, yn〉2 ≤ 〈γk, yn〉2. (3)

A simple calculation to be found in Appendix A shows that
the condition on αk above is equivalent to

αk ≤
2〈Gk, yn〉〈γk, yn〉 − 2〈γk, yn〉2〈Gk, γk〉
〈Gk, yn〉2 − 〈γk, yn〉2〈Gk, Gk〉

, (4)

making

αk := min
n

2〈Gk, yn〉〈γk, yn〉 − 2〈γk, yn〉2〈Gk, γk〉
〈Gk, yn〉2 − 〈γk, yn〉2〈Gk, Gk〉

(5)

a viable choice.
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Fig. 1. Decay of the target function after random initialisation for various
choices of the stepsize, minimum vs. median with α = 0.1 (left) and median
with varying prefactors α (right). The 10000 noiseless, 92-cosparse training
signals used per iteration were constructed according to the setup described
in Section II-B with Ω the 200× 100 Dirac-DCT operator.

Unfortunately, as can be seen in Figure 1(left), this choice
typically yields way too small stepsizes because of possible
outliers in the data. The small stepsizes in turn lead to a slow

decrease of the objective function and slow convergence of
the algorithm. Therefore we will lower our expectations and
be satisfied, if we step towards lower values on average. This
suggests as suitable choice

αk = αmediann
2〈Gk, yn〉〈γk, yn〉 − 2〈γk, yn〉2〈Gk, γk〉
〈Gk, yn〉2 − 〈γk, yn〉2〈Gk, Gk〉

.

(6)

The median has the advantage of being stable with respect to
outliers and yielding descent for at least half of the yn. The
scaling factor α ∈ (0, 1) ensures that we have a descent for
more than half of the yn and therefore decrease the target
function value. The disadvantage of choosing the stepsize
according to (6) is that it cannot be done sequentially, since
it presumes the knowledge of Gk, which is only available
after processing all N signals of the current iteration. This
would make it necessary to store all N signals yn just
to compute the descent parameter, which is certainly not
viable in online learning. However, observe that Gk is it-
self an empirical estimator of Eyχ{y : k∈Jy}2〈γk, y〉y?, where
Jy = arg min|J|=` ‖ΓJy‖22 and hence Gk can be computed
sequentially. We will use this fact and the stability of the
median to construct the descent parameters sequentially. We
first compute an approximation G̃k to the gradient Gk using
95% or more generally N − L = N(1 − ε) of the total N
signals. For the remaining signals in addition to updating G̃k,
we compute and store the L = εN quantities

α
(n)
k =

2〈G̃k, yn〉〈γk, yn〉 − 2〈γk, yn〉2〈G̃k, γk〉
〈G̃k, yn〉2 − 〈γk, yn〉2〈G̃k, G̃k〉

. (7)

Once all N signals have been processed, we compute the
median of the α

(n)
k , scale it with a fixed prefactor α < 1

and perform the gradient step. The choice of the prefactor
is quite delicate since too small α will decrease the learning
rate of the algorithm while too large α increase the risk of
not decreasing the target value at all. Experiments suggest to
choose α between 0.1 and 0.3. From Figure 1 (right) we can
see that for larger sizes of α the algorithm decreases the target
function sooner, but in the end does not reach small values.
For very small α the 500 iterations that were performed were
not enough to decrease the target function sufficiently.
We summarise the first version of the algorithm, which takes as
input parameters the current estimate of the analysis operator
Γ ∈ RK×d, the cosparsity parameter `, N training signals
Y = (y1, y2, . . . , yN ), the scaling factor α and the parameter
ε in Table I. Looking at the algorithm, we see that the first
computationally expensive task is determining the sets Jn.
This has to be done for each of our N sample vectors via
determining the ` smallest entries in the product Γyn. The
matrix-vector product takes (2d − 1)K operations, searching
can be done in one run through the K resulting entries,
yielding an overall runtime complexity of O(dKN) for this
step. The next expensive step is determining the step size
α. Each of the εN fractions can be evaluated with O(dNε)
operations, finding the median via quicksort can on average
be done in O(εN log(εN)). Performing the gradient descent
step is now cheap, as all of the used expressions have already
been calculated. Overall, performing the aforementioned tasks
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SAOL(Γ, `, Y, α, ε) - (one iteration)

• For all n:
– Find Jn = arg min|J|=` ‖ΓJyn‖22.
– For all k ∈ Jn update Gk = Gk + 2〈γk, yn〉y?n.
– If n > N − L = (1− ε)N store

α
(n)
k =

2〈Gk, yn〉〈γk, yn〉 − 2〈γk, yn〉2〈Gk, γk〉
〈Gk, yn〉2 − 〈γk, yn〉2〈Gk, Gk〉

.

• Set αk := αmediannα
(n)
k .

• Set γ̄k =
(
γk − α(k)Gk

)
.

• Output Γ̄ = ( γ̄1
‖γ̄1‖2 , . . . ,

γ̄K
‖γ̄K‖2 )?.

TABLE I
THE SAOL ALGORITHM

for k = 1, . . . ,K, for this step, we get a runtime complexity
of O(dKN + εdN log(εN))) = O(dKN) per iteration. Note
that the storage requirements are only O(dK), amounting to
storing the current iterate of the operator Γ. To see how the
algorithm performs we will next conduct some experiments
both on synthetic and image data.

B. Experiments on synthetic data

In the first set of experiments2, we use synthetic data gener-
ated from a given (target) analysis operator Ω. A data vector y
is generated by choosing a vector z from the unit sphere and
a random subset Λ of ` analysers. We then project z onto the
orthogonal complement of the chosen analysers, contaminate
it with Gaussian noise and normalise it, see Table II. The
cosparse signals generated according to this model are very
isotropic and thus do not exhibit the pathologies we described
in the counterexample at the beginning of the section.
Target operator: As target operator for our experiments with

synthetic data, we used a Dirac-DCT operator of size 200×100
consisting of the identity matrix in the upper 100 rows and
the DCT basis in the lower 100 rows. For illustration Figure 3
shows the Dirac-DCT operator of size 40× 20.

2All experiments can be reproduced using the SAOL Matlab toolbox
available at http://homepage.uibk.ac.at/∼c7021041/code/SAOL.zip.

Signal model(Ω, `, ρ)
Input:
• Ω ∈ RK×d - target analysis Operator,
• ` - cosparsity level of the signals w.r.t. Ω,
• ρ - noise level.

Generation of the signals is done in the following way:
• Draw z ∼ N (0, Id), r ∼ N (0, ρ2Id) and Λ ∼ U(

([K]
`

)
).

• Set

y =
(1− Ω†ΛΩΛ)z + r

‖(1− Ω†ΛΩΛ)z + r‖
. (8)

The matrix (1 − Ω†ΛΩΛ) is a projector onto the space of all cosparse
signals with cosupport Λ, so generating our signals in this way makes
sure that they are (up to some noise) cosparse.

TABLE II
SIGNAL MODEL

Training signals: In each iteration of the algorithm, we use
214 = 16384 signals drawn according to the signal model in
Table II with cosparsity level ` ∈ {80, 88, 96} and noiselevel
ρ = 0 resp. ρ = 0.2/

√
d.

Initialisation & setup: We use both a closeby and a random
initialisation of the correct size. For the closeby initialisation,
we mix the Dirac-DCT operator 1:1 with a random operator
and normalise the rows, that is our initialisation operator is
given by Γ0 = Dn(Ω +R), where R is a K × d matrix with
rows drawn uniformly at random from the unit sphere Sd−1

and Dn is a diagonal matrix that ensures that the rows of
Γ0 are normalised. For the random initialisation we simply
set Γ0 = R. The correct cosparsity level ` is given to the
algorithm and, as suggested by Figure 1, a prefactor α = 0.1
is chosen for the median, which is calculated from 5% of the
signals, ε = 0.05. The results have been averaged over 20 runs
with different initialisations.
Recovery threshold: We use the convention that an analyser
ωk is recovered if maxj |〈ωk, γj〉| ≥ 0.99.
The results of our first experiment are shown in Figure 2.
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Fig. 2. Recovery rates of SAOL from signals with various cosparsity levels
` in a noiseless (top) and a noisy setting (bottom), using a random (left) and
a closeby (right) initialisation.

For the closeby initialisation we get (almost) perfect recovery
of the target operator for all cosparsity levels, both in the
noisy and the noiseless setting, which indicates that locally our
algorithm performs as expected. For the random initialisation
the algorithm tends to get saturate at around 70% recovery for
all parameter settings. This is not surprising, as the nonconvex
optimisation we perform depends heavily on the initialisation.
In case of the closeby initialisation, we automatically set each
of the rows of the starting operator near the desired row in
the target operator. In contrast for the random initialisation
it is very likely that two rows of the initialised operator lie
close to the same row of the target operator. Our gradient
descent algorithm then tends to find the nearest row of the
target operator and thus we get multiple recovery of the same
row. As we have prescribed a fixed number of rows, another
row must be left out, which leads to the observed stagnation
of the recovery rates and means that we are trapped in a local
minimum of our target function. Figure 3 illustrates this effect
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for the Dirac-DCT operator in R40×20.
Since the phenomenon of recovering duplicates is not only

Fig. 3. Operator learned with SAOL from a random initialisation (left) vs the
original Dirac-DCT operator (right). The rows of the learned operator have
been reordered and the signs have been matched with the original operator
for easier comparison. For the learning 200 iterations with 8192 noiseless
12-cosparse signals, constructed according to the model in Table II, and a
prefactor α = 0.1 were used.

as old as analysis operator learning but as old as dictionary
learning, [1], there is also a known solution to the problem,
which is the replacement of coherent analysers or atoms.

C. Replacement

A straightforward way to avoid learning analysis operators
with duplicate rows is to check after each iteration, whether
two analysers of our current iterate Γ are very coherent.
Under the assumption that the coherence of the target operator
µ(Ω) = maxi 6=j∈[K] |〈ωi, ωj〉| is smaller than some threshold
µ(Ω) ≤ µ0, we know that two rows of γi, γj are likely
to converge to the same target analyser, whenever we have
|〈γi, γj〉| > µ0. In this case, we discard one of two analysers,
redraw it uniformly at random from the unit sphere Sd−1 and
continue with the next iteration. Since, unlike dictionaries,
analysis operators can be quite coherent and still perform
very well, it is recommendable to be conservative and set the
coherence threshold µ0 rather high, in the extreme case as
high as the recovery threshold 0.99.
Figure 4 shows the recovery results of our algorithm with
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Fig. 4. Recovery rates of SAOL with replacement from signals with various
cosparsity levels ` in a noiseless (left) and a noisy setting (right), using a
random initialisation.

the added replacement step for µ0 = 0.99, when using a

random initialisation and the same settings as described in
Section II-B.
In the noiseless case, even when we employ the replacement
strategy, we do not manage to get full recovery. If we introduce
a small amount of noise, this problem vanishes and the
algorithm returns the original operator. This is due to the
dithering effect of the noise, which breaks symmetries in the
synthetic data, and which we can assume to be present in all
real life data, in particular the image data which we will use
in our second set of experiments.

D. Experiments on image data

To get an indication how our algorithm performs on real
data, we will use it to learn a quadratic analysis operator on
all 8× 8 patches of the 256× 256 Fabio image, cf. Figure 10.
Since we do not have a reference dictionary for comparison
this time, we look at the target function after each iteration.
We initialise the analysis operator Γ ∈ R64×64 randomly as
for the synthetic data and set the cosparsity level ` = 57, the
parameter ε = 0.05 and the replacement threshold µ0 = 0.99.
For each iteration we choose 15000 out the available 62001
patches of Fabio uniformly at random as training signals.
Figure 5 shows the decay of the target function for several
scaling factors α as well as the learned operator for α = 0.1.
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Fig. 5. Decay of the target function using SAOL with various prefactors α
(left) for the Fabio image and the recovered operator for α = 0.1 (right).

Figure 5 (left) shows again how the size of the prefactor α
affects the stability of the algorithm. We can also see that
since the stepsize has to be chosen rather small, training of
the analysis operator takes a significant number of iterations,
which is rather disappointing. Increasing the stepsize to speed
up convergence has the opposite effect and results in failure
to minimise the target function. Still, if we look at the learned
operator for α = 0.1, we can see the merit of our method.
The operator seems to consist of pooled edge detectors, which
are known to cosparsify grayscale images. Note also that the
d × d analysis operator is naturally very different from any
d × d dictionary we could have learned with corresponding
sparsity level S = d− `, see e.g [16]. This is due to the fact
that image patches are not isotropic, but have their energy
concentrated in the low frequency ranges. So while both the
d×d dictionary and analysis operator will not have (stable) full
rank, the dictionary atoms will tend to be in the low frequency
ranges, and the analysers will - as can be seen - tend to be in
the high frequency ranges.
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We also want to mention that for image data the replacement
strategy for µ0 = 0.99 is hardly ever activated. Lowering the
threshold results in continuous replacement and refinding of
the same analysers. This phenomenon is again explained by
the lack of isotropy and the shift invariant structure of the patch
data, for which translated and thus coherent edge detectors, as
seen in Figure 5, naturally provide good cosparsity.
Encouraged by the learned operator we will explore in the
next section how to stabilise the algorithm and accelerate its
convergence.

III. THE IMPLICIT SAOL ALGORITHM - ISAOL

Due to the stepsize problems on real data, we need to rethink
our approach and try to enforce stability of the algorithm. In
standard gradient descent, for each row of Γ, we have the
iteration

γ̄k = γk − α∇fN (Γ)k. (9)

Rewriting yields

γ̄k − γk
α

= −∇fN (Γ)k, (10)

which can be interpreted as an explicit Euler step for the
system of ordinary differential equations

γ̇k = −∇fN (Γ)k, k ∈ [K]. (11)

As it is the simplest integration scheme for ordinary differen-
tial equations, the explicit Euler scheme is known to have a
very limited region of convergence with respect to the stepsize.
In our case, this means that we have to choose extremely
small values for the descent parameter α in order to achieve
convergence.
The tried and tested strategy to get rid of stability issues when
numerically solving differential equations is to use an implicit
scheme for the integration [8], [9]. We will use this as an
inspiration to obtain a more stable learning algorithm.
We shortly recall the notion of an implicit integration scheme.
Suppose we want to solve the differential equation ẋ =
f(x). If we discretise x(t) and approximate the derivative by
ẋ(tn) ≈ x(tn)−x(tn−1)

tn−tn−1
, we have to choose whether we use

the approximation ẋ(tn) = f(x(tn)) or ẋ(tn) = f(x(tn−1)).
Choosing f(x(tn−1)) yields the explicit Euler scheme, which
in our setting corresponds to the SAOL algorithm. If we
choose f(x(tn)) we obtain the implicit Euler scheme and need
to solve

x(tn)− x(tn−1)

tn − tn−1
= f(x(tn)). (12)

If f(x) = Ax is linear, this leads to the recursion

x(tn) = (1− (tn − tn−1)A)−1x(tn−1), (13)

and in each step we need to solve a system of linear equa-
tions. This makes implicit integration schemes inherently more
expensive than explicit schemes. However, in return we get
additional stability with respect to the possible stepsizes. If f
is a nonlinear function, the inversion is more difficult and can
often only be approximated for example via a Newton method.

ISAOL(Γ, `, Y ) - (one iteration)

• For all n:
– Find Jn = arg min|J|=` ‖ΓJyn‖22.
– For all k ∈ Jn update Ak = Ak + yny?n.

• Set γ̄k = γk (1 +Ak)−1.
• Output Γ̄ = ( γ̄1

‖γ̄1‖2 , . . . ,
γ̄K
‖γ̄K‖2 )?.

TABLE III
THE ISAOL ALGORITHM

Mapping everything to our setting, we observe that the gra-
dient ∇fN (Γ) is nonlinear because the sets Jn depend on
Γ. Still, due to the special structure of the gradient ∇fN (Γ),
it has a simple linearisation, ∇fN (Γ)k = 2γk

∑
n : k∈Jn

yny
?
n.

We can now use the current iterate of Γ to compute the matrix
Ak(Γ) :=

∑
n : k∈Jn

yny
?
n and to linearise the equation. For

our operator learning problem, we get the following linearised
variant of the implicit Euler scheme

γ̄k − γk
α

= −γ̄kAk(Γ), (14)

leading to the recursion

γ̄k = γk(1+ αAk(Γ))−1. (15)

Due to the unconditional stability of the implicit Euler
scheme [9], we can take α constant 1. In order to stay within
the oblique manifold, we again perform a projection to the
unit sphere after each step. The final algorithm is summarised
in Table III.
Let us again take a short look at the computational complexity

of the implicit algorithm and the price we have to pay for
increased stability. As in the previous section, we need to
compute all products of the vectors yn with the current iterate
Γ, cost O(NKd). Furthermore, in each step we need to solve
K linear systems of size d × d amounting to an additional
cost of O(Kd2). So altogether for one step, we arrive at
O(NKd+Kd2) = O(NKd). However, in constrast to SAOL,
if we want to preserve sequentiality of the algorithm we have
to store the K matrices Ak in each step, amounting to an
additional spatial complexity of O(Kd2). In a non-sequential
setting and in case N < Kd this can be reduced to the storage
cost of the data matrix O(Nd).

A. Experiments on synthetic data

As in the previous section, we first try our new algorithm on
synthetic data. For this, we again learn an operator from data
generated with the Dirac-DCT operator. The setup is the same
as in Section II-B and the results are shown in Figure 6. Note
that the recovery with ISAOL is slightly slower than in the case
of SAOL, Figure 2. This happens because for synthetic data
the SAOL algorithm is able to choose fairly large stepsizes.
The ISAOL algorithm is more pessimistic and takes slightly
longer to converge. In the next section we will see that this
trend is drastically reversed for image data, where the stepsize
chosen by the SAOL algorithm tends be much smaller.
Finally, since the implicit algorithm per se, like SAOL, does
not penalise the recovery of two identical rows, cf. Figure 3,
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Fig. 6. Recovery rates of ISAOL from signals with various cosparsity levels
` in a noisy setting, using a random (left) and a closeby (right) initialisation.

we need to again use the replacement strategy introduced in
Section II-C. The simulation results, using replacement with
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Fig. 7. Recovery rates of ISAOL with replacement from signals with various
cosparsity levels ` in a noiseless (left) and a noisy setting (right), using a
random initialisation.

µ0 = 0.99 and the usual setup are shown in Figure 7. We
see that contrary to the SAOL algorithm the ISAOL algorithm
achieves full recovery not only for noisy but also for noiseless
data, see Figure 4. This comes, however, at the cost of a
significant number of iterations.

B. Experiments on image data

Finally, we want to see how the stabilised algorithm per-
forms on real data. We use the same image (Fabio) and setup
as in Section II-D to learn a square analysis operator for 8×8
patches, cf. Figure 5.
As can be seen in Figure 8, the training is much faster now,
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Fig. 8. Decay of the target function using (I)SAOL for the Fabio image
(left) and the operator recovered by ISAOL (right).

because the stepsize does not have to be chosen as fine as in
the previous section. The decrease in the objective function is
very fast compared to SAOL, and we see that already after a
few iterations the algorithm stabilises and we obtain similar
checkerboard-like structures as in Figure 5. As for SAOL we
observe that the replacement strategy for µ0 = 0.99 is hardly
ever activated and that lowering the threshold results in finding

and replacing the same translated edge detectors.
We are now ready to compare the performance of the devel-
oped algorithms to their closest counterparts Analysis SimCO
(ASimCO) and Incoherent Analysis SimCO (IASimCO),
where IASimCo is ASimCo with a replacement strategy, [3].

IV. (I)SAOL VS. (I)ASIMCO

We again conduct experiments on both synthetic and image
data. For the synthetic data we use the same setup as described
in Section II-B, that is we try to recover the Dirac-DCT
operator in R200×100 from 214 = 16384 signals drawn in
each iteration according to the signal model in Table II with
cosparsity level ` = 96 and noiselevel ρ = 0.2/

√
d. For SAOL

we choose α = 0.1 and ε = 0.05. As replacement threshold
for both algorithms we use µ0 = 0.8 corresponding to the
threshold of the out-of-the-box version of IASimCO, available
on the authors’ homepage, which was used here.
Figure 9 (left) shows the recovery rates of the 4 algorithms.
We can see that ISAOL starts out fastest, followed by SAOL
and IASimCo but is then overtaken first by SAOL and then
IASimCO. The fact that after 1000 iterations IASimCO fin-
ishes as close second after SAOL, while ASimCO saturates at
around 70% recovery suggests that for perfectly isotropic data
the replacement strategy employed in IASimCO is more effi-
cient than our random replacement strategy. When comparing
the average calculation times per iteration on a 3.1 GHz Intel
Core i7 Processor, we find that SAOL is about 2 times faster
than (I)ASimCO, while ISAOL is about 1.5 times slower.
In the experiment on image data, we learn an overcomplete
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Fig. 9. Recovery rates of (I)ASimCo and (I)SAOL from 96-cosparse signals
in a noisy setting (left). Decay of the target function using (I)ASimCo and
(I)SAOL to learn a 128× 64 operator for the House image (right).

operator with 128 rows from the 8×8 patches of the 256×256
(unnormalised) House image contamined with Gaussian noise
with σ = 12.8, corresponding to PSNR ≈ 25. Motivated
by the choice of parameters in [3] we choose as cosparsity
level ` = 50, initialise randomly and in each iteration use
20000 randomly selected patches out of the available 62001.
As usual for SAOL we use α = 0.1 and ε = 0.05. Since for
image data our replacement strategy is hardly ever activated,
we directly omit it to save computation time. (I)ASimCo are
again used in their out of the box versions. Figure 9 shows that
the ISAOL algorithm indeed minimises the target function in
a fraction of the iterations necessary for the SAOL algorithm,
which in turn is much faster than (I)ASimCO. Already after
100 iterations the ISAOL algorithm has essentially finished
minimising the objective function, whereas SAOL needs 1000
iterations to get to approximately the same value of the
objective function. Both ASimCO and IASimCo lag behind
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a

Fig. 10. Images used for learning and denoising. Top: Fabio, House, Peppers;
Bottom: Cameraman, Barbara, Mandrill.

and, as indicated by the shape of the curve, would need much
more than 1000 iterations to approach a comparable target
function value. Finally note that the equal performance of
ASimCO and IASimCO again indicates that for image data
replacement strategies hardly make a difference.
Encouraged by this good performance we will in the next
section apply both our algorithms to image denoising.

V. IMAGE DENOISING

In this section we will compare the performance of analysis
operators learned by (I)SAOL in combination with Tikhonov
regularisation for image denoising to the performance of oper-
ators learned by (I)ASimCO. For easy comparison we use the
same setup as in [3], where (I)ASimCo is compared to several
other major algorithms for analysis operator learning, [12],
[19], [10], [14], [4], and found to give the best performance.
Learning setup: We follow the setup for the House image in

the last section. Our training data consists of all 8×8 patches
of one of the 256×256 images from Figure 10 corrupted with
Gaussian white noise of level σ = 12.8 resp. σ = 45 leading
to a PSNR of approximately 15dB resp. 25dB. The analysis
operators of size 128×64 are initialised by drawing each row
uniformly at random from the unit sphere, and then updated
using in each step 20000 randomly selected patches of the
available 62001 and a cosparsity level ` ∈ {40, 50, 60, 70, 80}.
The same initialisation is used for all four algorithms. For
(I)ASimCo and SAOL we use 2000 and for ISAOL 500
iterations. For SAOL we choose as usual α = 0.1 and ε = 0.05
and again we omit the replacement step for (I)SAOL.
Denoising setup: For the denoising step we use a standard
approach via Tikhonov regularisation based on the learned
analysis operator Ω, [5], [6]. For each noisy patch y we solve,

ŷ = arg min
z

λ‖Ωz‖1 + ‖z − y‖2 (16)

for a regularisation parameter λ ∈
{0.002, 0.01, 0.05, 0.1, 0.3, 0.5}. We then reassemble the
denoised patches ŷ to the denoised image, by averaging
each pixel in the full image over the denoised patches
in which it is contained. To measure the quality of the
reconstruction for each cosparsity level ` and regularisation
parameter λ we average the PSNR of the denoised image
over 5 different noise realisations and initialisations. Table IV

shows the PSNR for optimal choice of ` and λ for each of
the algorithms. We can see that all four algorithms give a
comparable denoising performance. In the lower noise regime
(I)ASimCO has a slight advantage for the untextured images,
Peppers and Cameraman, while for the textured images,
House, Barbara and Mandrill, (I)SAOL provides better
results. In the high noise regime (I)SAOL always performs
slightly better. The optimal parameters are quite stable across
images and algorithms and seem to only depend on the noise
levels. In the lower noise regime the optimal parameter λ for
(I)ASimCo is 0.1 or 0.3, while for (I)SAOL it is 0.05 or 0.1
In the high noise regime the optimal parameter λ for all four
algorithms is 0.01. It is interesting to observe that (I)ASimCO
always has the best performance for the highest co-sparsity
level in the training ` = 80. For (I)SAOL this is only true in
the higher noise regime, where the zeros tend to be masked
by the noise. In the lower noise regime the performance is
stable for ` between 60 and 80. For the interested reader we
provide the denoising results on Barbara and Peppers for all
parameter choices in the appendix, Figure 11.
After confirming that our algorithms indeed learn useful
operators also on real data we now turn to a discussion of
our results.

VI. DISCUSSION

We have developed two algorithms for analysis operator
learning based on projected stochastic gradient descent, SAOL
and ISAOL. The algorithms perform slightly better than the
state of the art algorithms (I)ASimCO, [3], which are similarly
gradient descent based and have slightly higher but comparable
computational complexity per iteration, in terms of recov-
ery rates resp. reduction of the objective function. Another
advantage of SAOL is that it is sequential with a memory
requirement corresponding to the size of the operator,O(dK)).
In contrast ASimCO either is non sequential with a memory
requirement of the order of the data matrix, O(dN), or in a
sequential setting needs O(LN) training sample correspond-
ing to the L evaluations of the objective function necessary
for the line search. ISAOL, which is more stable than SAOL,
is sequential when accepting a memory requirement O(d2K)
and in a non sequential setting has again memory requirement
O(dN).
Considering image denoising via Tikhonov regularisation
as application of analysis operator learning, we see that
the (I)SAOL operators give slightly better results than the

Algorithm σ(PSNR) Pep Cam Hou Bar Man
ASimCO

12.8(25)

31.29 30.35 30.99 30.49 28.31
IASimCO 31.32 30.31 30.59 30.33 28.05

SAOL 31.26 30.27 32.67 30.88 28.76
ISAOL 31.08 30.24 32.73 30.85 28.62

ASimCO

45(15)

24.53 23.31 26.80 25.23 23.07
IASimCO 24.32 23.05 26.34 25.13 22.91

SAOL 24.50 23.24 26.53 25.12 23.30
ISAOL 24.64 23.39 27.05 25.32 23.33

TABLE IV
PERFORMANCE OF (I)ASIMCO AND (I)SAOL FOR DENOISING FOR

DIFFERENT PICTURES AND NOISE LEVELS.
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(I)ASimCo operators for textured images or high noise levels
(up to 1.5dB) and slightly worse results for untextured images
and low noise levels (at worst 0.1dB).
A Matlab toolbox to reproduce all the experiments reported
in this paper can be found at http://homepage.uibk.ac.at/
∼c7021041/code/SAOL.zip.
While the good performance of the developed algorithms
certainly justified the effort, one our main motivations for
considering a projected gradient descent approach to analysis
operator learning was to derive convergence results similar
to those for dictionary learning, [16]. However, even a local
convergence analysis, turns out to be quite different and much
more complicated than for dictionary learning. The main
reason for this is that sparsity is more robust to perturbations
than co-sparsity. So for an S-sparse signal y = ΦIxI and a
perturbed dictionary Ψ with ‖ψk − φk‖2 < ε for balanced xI
the best S-term approximation in Ψ will still use the same
support I . In contrast if y is `-cosparse with respect to an
analysis operator Ω, ΩΛy = 0, then for a perturbed operator
Γ with ‖γk − ωk‖2 < ε the smallest ` entries of Γy will
not all be located in Λ. To get a local convergence result one
has to deal with the fact that only part of the cosupport is
preserved. We expect that for most signals containing k in the
cosupport with respect to Ω k will also be in the cosupport with
respect to Γ. Unfortunately the mathematical tools necessary
to quantify these statements are much more involved that the
comparatively simple results necessary for the convergence
of dictionary learning and so the local convergence analysis
remains on our agenda for future research.
Another research direction, we are currently pursuing, is
inspired by the shape of the analysis operators learned on
noiseless images. The translation invariance of the edge de-
tector like analysers suggests to directly assume translation
invariance of the analysis operator. Such an operator has two
advantages, first, learning it will require less training samples
and second, since it can be reduced to several translated mother
functions it will be cost efficient to store and apply.
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APPENDIX A
CONDITION ON αk

So satisfy the condition in (3) we need 〈γk−αkGk, yn〉2 ≤
β−2
k 〈γk, yn〉2 for βk = ‖γk − αkGk‖−1

2 . Expanding the inner
products we see that this is equivalent to,

〈γk, yn〉2 − 2αk〈γk, yn〉〈Gk, yn〉+ α2
k〈Gk, yn〉2 ≤

〈γk, yn〉2(1− 2αk〈Gk, γk〉+ α2
k〈Gk, Gk〉).

Fig. 11. PSNR for denoising of the Barbara and Peppers images for various
cosparsity levels and regularisation parameters. From top to bottom: Barbara
(PSNR 25), Peppers (PSNR 25), Barbara (PSNR 15), Peppers (PSNR 15).

Since we want αk 6= 0, this is equivalent to

− 2〈γk, yn〉〈Gk, yn〉+ αk〈Gk, yn〉2 ≤
− 2〈γk, yn〉2〈Gk, γk〉+ αk〈γk, yn〉2〈Gk, Gk〉,

so after doing the housekeeping we arrive at the condition,

αk ≤ 2
〈γk, yn〉〈Gk, yn〉 − 〈γk, yn〉2〈Gk, γk〉
〈Gk, yn〉2 − 〈γk, yn〉2〈Gk, Gk〉

.

APPENDIX B
SOME DENOISING RESULTS

We here provide the full denoising results for all used pa-
rameter choices λ ∈ {0.002, 0.01, 0.05, 0.1, 0.3, 0.5}, cospar-
sity levels ` ∈ {40, 50, 60, 70, 80} and both noise levels for
the images Barbara and Peppers, Figure 11.
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[17] M. Seibert, J. Wörmann, R. Gribonval, and M. Kleinsteuber. Learning
co-sparse analysis operators with separable structures. IEEE Transac-
tions on Signal Processing, 64(1):120–130, 2016.

[18] M. Yaghoobi, S. Nam, R. Gribonval, and M.E. Davies. Analysis operator
learning for overcomplete cosparse representations. In EUSIPCO11,
pages 1470–1474, 2011.

[19] M. Yaghoobi, S. Nam, R. Gribonval, and M.E. Davies. Constrained
overcomplete analysis operator learning for cosparse signal modelling.
IEEE Transactions on Signal Processing, 61(9):2341–2355, 2013.

Admin
am_pp_logo_01


