
Technikerstraße 13 - 6020 Innsbruck - Austria

Tel.: +43 512 507 53803 Fax: +43 512 507 53898

https://applied-math.uibk.ac.at

AppliedMathematics

Preprint-Series: Department of Mathematics - Applied Mathematics

Dictionary Learning from Incomplete Data

Valeriya Naumova and Karin Schnass

Nr. 34
19. April 2017 Leopold-Franzens-Universität Innsbruck

1

Dictionary Learning from Incomplete Data
Valeriya Naumova and Karin Schnass

F

Abstract

This paper extends the recently proposed and theoretically justified iterative thresholding and K residual means
algorithm ITKrM to learning dicionaries from incomplete/masked training data (ITKrMM). It further adapts the algorithm
to the presence of a low rank component in the data and provides a strategy for recovering this low rank component
again from incomplete data. Several synthetic experiments show the advantages of incorporating information about the
corruption into the algorithm. Finally, image inpainting is considered as application example, which demonstrates the
superior performance of ITKrMM in terms of speed at similar or better reconstruction quality compared to its closest
dictionary learning counterpart.

Index Terms

dictionary learning, sparse coding, sparse component analysis, thresholding, K-means, erasures, masked data, cor-
rupted data, inpainting

1 INTRODUCTION

Many notable advances in modern signal processing are based on the fact that even high-dimensional
data follows a low complexity model. One such model, which has become an important prior for many
signal processing tasks ranging from denoising and compressed sensing, to super-resolution, inpainting
and classification is sparsity in a dictionary, [11], [6], [8], [10], [37], [12], [36], [26]. In the sparse model each
datum (signal) can be approximated by the linear combination of a small (sparse) number of elementary
signals, called atoms, from a pre-specified basis or frame, called dictionary. In mathematical terms, if we
represent each signal by a vector yn ∈ Rd and collect the entire dataset in the matrix Y = (y1, . . . , yN) ∈
Rd×N , the sparse model can be formalised as

Y = ΦX where X is columnwise sparse. (1)

Here the dictionary matrix Φ contains K normalised vectors (atoms) φk, stored as columns in Φ =
(φ1, . . . , φK) ∈ Rd×K , and each vector-column xn ∈ RK of the matrix X = (x1, . . . , xN) ∈ RK×N contains
only few nonzero entries. Since the model expressed in Eq. (1) has proven to be very useful in signal
processing, the natural next question is, how to automatically learn a dictionary Φ, providing sparse
representations for a given data class. This problem is also known as dictionary learning, sparse coding
or sparse component analysis. By now there exist not only a multitude of dictionary learning algorithms to
choose from, [2], [13], [14], [17], [18], [20], [33], [19], but also theoretical results have started to accumulate,
[16], [34], [4], [1], [27], [28], [15], [5], [35], [3]. As our reference list is necessarily incomplete we also point
to the surveys [26], [29] as trailheads for algorithms and theory respectively.
One common assumption on which all algorithms and associated theories are based is that large numbers
of clean signals are available for learning the dictionary. However, this assumption is often not valid in
actual applications. Motivated by a real-life prediction task in diabetes therapy management, in this paper
we will consider the following problem: How do we learn a dictionary when there are only a few or no
clean training signals available?

V. Naumova is with Simula Research Laboratory AS, Martin Linges 17, Fornebu, Norway, valeriya@simula.no.
K. Schnass is with the Department of Mathematics, University of Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria,
karin.schnass@uibk.ac.at.

Admin
am_pp_logo_01

2

08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07

Time, hours

0

50

100

150

200

250

300

B
lo

o
d
 G

lu
c
o
s
e
 V

a
lu

e
s

Fig. 1: Examples of blood glucose profile of two patients (solid and dashed lines, respectively) during
inpatient stay for three days. Each curve represents blood glucose profile for a 24 hour-period from 08:00
till 07:59 next day. Notice signal dropouts for several hours for at two out of six glucose traces.

Diabetes is currently considered one of the global healthcare challenges of the century, with more than
380 million people affected worldwide. The biggest challenge in diabetes management is the prediction of
blood glucose levels from past and current measurements. The most recent advances in the field are based
on the observation that purely data-driven algorithms lead to more clinically accurate results than the
ones based on physiological models or a combination of both [23]. Due to recent technological advances,
blood glucose measurements can be provided on a close-to continuous basis, every 5 to 10 minutes, by a
Continuous Glucose Monitoring (CGM) device, which is inserted under the skin. However, in addition to
mandatory unpleasant calibration procedures of the device several times a day, CGM quite often returns
obviously wrong, e.g. rapidly oscillating or negative, estimations of the blood glucose level and suffers
from frequent signal dropouts, Figure 1, [32]. The latter are especially common during the night, and can
be particularly dangerous since there is no warning for low glucose levels, which in extreme cases can
lead to coma or even death. One task is therefore prediction of glucose levels even with signal dropouts.
This can be interpreted as inpainting (into the future) and a data-driven approach could be to learn a
dictionary for the class of CGM signals and to use dictionary based inpainting. The obvious problem
is that the CGM signals for learning are quite difficult to obtain and suffer from dropouts themselves.
Therefore, any dictionary learning algorithm, or any other data-driven approach, needs to make use of
all possible information and include the corrupted signals by properly modelling the corruption and
accounting for it in the learning.
To solve the problem of learning from incomplete data, we propose an algorithm called Iterative Thresh-
olding and K residual Means for Masked data (ITKrMM). As the name suggests, it is built upon the inclusion
of a signal corruption model into the theoretically-justified and numerically efficient Iterative Thresholding
and K residual Means (ITKrM) algorithm, [30].
In order to model the data corruption/loss process, we will adapt the concept of the binary erasure
channel. In this model, the measurement device sends a value and the receiver either receives the value
or it receives a message that the value was not received (’erased’). The model is used frequently in
information theory due to its simplicity and its abstraction towards modelling various types of data
losses. At the same time, this setting provides information on the location of the erasures and, thus, we
can employ the concept of a mask M to describe the corrupted data as My. Without loss of generality, we
will think of a mask M as orthogonal projection onto the linear span of vectors from the standard basis
(ej)j or simply as diagonal matrix with M(j, j) ∈ {0, 1}. We further extend the algorithms to account for
the presence of low-rank component in the data, which appears in many real-life signals and, as we will

Admin
am_pp_logo_01

3

illustrate below, should be treated cautiously in the considered context.
To evaluate the accuracy and efficiency of the algorithm, we perform various numerical tests on synthetic
data. We also demonstrate the practical usefulness of the algorithms to inverse problems, by considering
an image inpainting task.
The dictionary learning community does not directly address the problem under consideration. However,
several recent works by Elad and co-authors [21], [22] introduced a weighted algorithm for dictionary
learning, called weighted K-SVD (wK-SVD), for handling non-homogenous noise in signals. The proposed
construction is also applicable in cases with missing values, such as in colour image demosaicing and
inpainting. We will show that our algorithm not only performs on par with the weighted K-SVD algorithm
but also requires much less computational resources.
Contribution: This paper provides an efficient and simple algorithm for dictionary learning from in-
complete data and the recovery of the low-rank component also from incomplete data. For the sake of
brevity and different interests across communities, we here focus on the methodological description and
extensive numerical justification and aim to provide a theoretical analysis in a follow-up paper.
Outline: The paper is organised as follows: Section II contains the complete problem set-up, explaining
the combined low-rank and sparse model and as well as the corruption model. The ITKrMM algorithm
for dictionary recovery is introduced in Section III. An adaptation of this algorithm for recovery of the
low-rank component from incomplete data together with a short discussion of related works in the field
of matrix completion and dimensionality reduction is provided in Section IV. Section V contains extensive
simulations on synthetic data, while Section VI exemplifies the usefulness of the algorithm to problems
in image processing by applying it to image inpainting. Finally Section VII offers a snapshot of the main
contributions and points out open questions and directions for future work.
Notation: Before finally lifting the anchor, we provide a short reminder of the standard notations used
in this paper. For a matrix A, we denote its (conjugate) transpose by A? and its Moore-Penrose pseudo
inverse by A†. By P (A) we denote the orthogonal projection onto the column span of A, i.e. P (A) = AA†

and by Q(A) the orthogonal projection onto the orthogonal complement of the column span of A, that
is Q(A) = Id − P (A), where Id is the identity operator (matrix) in Rd.
The restriction of the dictionary Φ to the atoms indexed by I is denoted by ΦI , i.e. ΦI = (φi1 , . . . , φiS),
ij ∈ I . The maximal absolute inner product between two different atoms is called the coherence µ of a
dictionary, µ = maxk 6=j |〈φk, φj〉| and encapsulates information about the local dictionary geometry.

2 PROBLEM SET-UP

Our goal is to learn a dictionary Φ from corrupted signals Mnyn, under the assumption that the signals
yn are sparse in the dictionary Φ. There are some notable differences in this problem setting compared to
the uncorrupted situation. First, we cannot without loss of generality assume that the corrupted signals
are normalised, since the action of the mask distorts the signal energy, ‖My‖2 ≤ ‖y‖2, which makes
simple renormalisation impossible.
Another issue in modelling a natural phenomenon is that the signals might not be perfectly sparse but
can only be modelled as the orthogonal sum of a low-rank and a sparse component. An example for such
signals are images, where one usually subtracts the foreground or in other words the signal mean before
learning the dictionary, which consequently will consist of atoms with zero mean [2]. Without taking into
account the existence of the low-rank component one would likely end up with a very ill-conditioned
and coherent dictionary, where most atoms are distorted towards the low-rank component.
Similarly, in our motivating example of the blood glucose data (see Figure 1), we can see at first glance
that the signals vary around a baseline signal and that imposing a sparse structure in a dictionary makes
sense only after subtracting this common component. As before, the atoms in this dictionary should then
be orthogonal to the baseline signal.
In the case of uncorrupted signals one can simply determine the common low-rank component Γ =
(γ1 . . . γL) using one’s preferred method such as a singular value decomposition and subtract its con-
tribution from the signals via ỹn = Q(Γ)yn. Then in a second separate step one can run the dictionary

Admin
am_pp_logo_01

4

learning algorithm on the modified signals ỹn and the resulting atoms will automatically be orthogonal to
the low-rank component Γ. However, in the case of corrupted signals the action of the masks destroys the
structure. So, while the dictionary is orthogonal to the low-rank component, Φ?Γ = 0, this orthogonality
is not preserved by the action of the mask, that is Φ?MΓ 6= 0. As we will see later, the consequence of
this effect is that we have to take the presence of the low-rank component into account when learning
the sparsifying dictionary. Moreover, before even going to the dictionary learning phase, we have to find
a strategy to recover the low-rank component from the corrupted signals.
The third difference is that we get additional constraints on the dictionaries in order for them to be
recoverable. In the case of uncorrupted signals the main criterion for a dictionary to be recoverable is
that its coherence scales well with the average sparsity level S of the signals (Sµ2 . 1) and that all atoms
are somewhat equally and independently used. In our scenario, where we want to learn a dictionary
from corrupted data, we impose another criterion for the recoverability of the dictionary, which is the
robustness of the dictionary to corruption. For instance, we will not have a chance to recover an atom
φk if its presence in a signal always triggers the same corruption pattern M0 which distorts the atom,
M0φk 6= φk. This means that we have to assume some sort of independence between the signals yn and
the corruption, represented by the masks Mn. Similarly, it will be very hard to recover a dictionary,
whose incoherence is not robust towards corruption. To avoid this complication, we assume that the
dictionary and the low-rank component consist of ’flat’ atoms, where ‖φk‖∞ � 1 resp. ‖γ`‖∞ � 1. A
more detailed discussion why this is a suitable assumption can be found in Section III. For the moment
we just want to point out that this is in line with the potential application of the learned dictionaries to
signal reconstruction tasks such as inpainting. There the information in the corrupted part of an image
needs to be encoded by the rest of the image, which is the case if the image is sparsely represented by
flat atoms.
Summarising these considerations, we arrive at the following signal model, which we will use as inspi-
ration for the development of the algorithms, and as basis for the planned theoretical analysis.
Signal model:
Given a d×L low-rank component Γ with Γ?Γ = IL and a d×K dictionary Φ, where Γ?Φ = 0 and L� K
the signals are generated as,

y = s · Γv + Φx+ r√
1 + ‖r‖22

≈ s(Γv + ΦIxI), (2)

where ‖v‖22 + ‖x‖22 = 1 and |I| = S.
The scaling parameter s is distributed between smin and smax and accounts for signals with different
energy levels.
The low-rank component is assumed to be present in every (most signals) and irreducible, meaning the
coefficients v are dense and E(vv?) is a diagonal matrix. Also the average contribution of a low-rank
atom should be larger than that of a sparse atom, E(|v(`)|)� E(|x(k)|).
The sparse coefficients x should be distributed in a way that for every single signal only S entries in x are
effectively non-zero. All atoms φk should be irreducible and on average contribute equally to the signals
yn. Specifically, no two atoms should always be used together, since in this case they could be replaced
by any other two atoms with the same span. For a more detailed discussion of admissible coefficient
models we refer to [30].
For our derivations we will keep in mind the following simple model: with constant scale and without
noise. The low-rank component is one-dimensional, L = 1, and the low-rank coefficient is equally
Bernoulli distributed on ±cv. The sparse coefficients are constructed by choosing a support I of size
S uniformly at random and setting x(k) = ±c, iid equally Bernoulli distributed, for k ∈ I and x(k) = 0
else. In other words the coefficients restricted to the support are a scaled Rademacher sequence. Following
the above considerations concerning the scalings, we have c2

v + S · c2 = 1 and cv � cS/K.
Similar to the signal model we also summarise our considerations concerning the corruption in a model.

Corruption model:
As mentioned above, the corruption of a signal y is modelled by applying a mask M , where we assume

Admin
am_pp_logo_01

5

that the distribution of the mask is independent of the signal distribution. By receiving a corrupted signal,
we understand that we have access both to the corrupted signal My, and the location of the corruption
in form of the mask M , meaning we receive the pair (My,M).
For the development of the algorithms we will keep two types of corruption in mind. The first type are
random erasures, where the j-th coordinate is received with probability ηj independently of the reception
of the other coordinates, meaning M(j, j) ∼ B(ηj) are independent Bernoulli variables.
The second type are burst errors or sensor malfunctions, as can be observed in the blood glucose example.
We model them by choosing a burst-length τ and a burst-start t, according to a distribution ντ,t. Based
on τ and t we then set M(j, j) = 0 for t ≤ j < t + τ and M(j, j) = 1 else. One simple realisation of
such a distribution would be to have no burst, τ = 0, with probability θ and a burst of fixed size, τ = T ,
which corresponds, for instance, to the time the sensor needs to be reset, with probability 1 − θ. The
burst-start could be uniformly distributed, if the sensor is equally likely to malfunction throughout the
measurement period, or for instance with a higher weight on part of the coordinates, if the sensor is
more likely to malfunction during part of the measurement period, for instance, during the night.
Having defined our problem set-up we are now ready to address the recovery of the dictionary from
corrupted data.

3 DICTIONARY RECOVERY

We will use the iterative thresholding and K residual means algorithm (ITKrM), [30], as base for re-
covering the dictionary. It belongs to the class of alternating projection algorithms, which alternate
between sparsely approximating the signals in the current version of the dictionary and updating the
dictionary based on the sparse approximations. As the name suggests, ITKrM uses thresholding as
sparse approximation algorithm and residual averages for the dictionary update and as such has the
advantage of being computationally light and sequential. Further, there are theoretical results concerning
its local convergence and good experimental results concerning its global convergence. Together with our
expectation that it will be much easier to incorporate the information about corruption into a dictionary
update scheme that uses averages than into one that uses higher order statistics such as singular vectors,
this makes ITKrM a promising starting point.

Algorithm 3.1 (ITKrM - one iteration). Given an input dictionary Ψ, a sparsity level S and N training signals
yn do:
• For all n find Itn = arg maxI:|I|=S ‖Ψ?

Iyn‖1.
• For all k calculate

ψ̄k =
∑

n:k∈Itn

[
Id − P (ΨItn) + P (ψk)

]
yn · sign(〈ψk, yn〉). (3)

• Output Ψ̄ = (ψ̄1/‖ψ̄1‖2, . . . , ψ̄K/‖ψ̄K‖2).

To see how we have to modify the algorithm to deal with corrupted data, it will be helpful to
understand how ITKrM works. ITKrM can be understood as fixed point iteration, meaning the generating
dictionary Φ is a fixed point and locally, around the generating dictionary, one iteration of ITKrM is a
contraction, ‖φk − ψ̄k

‖ψ̄k‖2 ‖2 < κ‖φk −ψk‖2 for all k and some κ < 1. We refer to [30] for details but for the
sake of completeness we will provide some perhaps intuitive background for both the fixed point and
the contraction property.
Assume for a moment that the signals follow the simplest sparse model, that is, they are perfectly S-
sparse in a generating dictionary Φ, meaning yn = ΦInxn(In) for some |In| = S and xn(i) ≈ ±c for
i ∈ In, compare to the model presented in Section II. In particular, they all have the same scaling and
contain neither a low-rank component nor are they contaminated by noise. If we are given the generating
dictionary as input dictionary, Ψ = Φ, then as long as the dictionary is not too coherent compared to
the sparsity level, µ2S . 1, thresholding will recover the generating support, meaning Itn = In. Provided
that the generating support was always recovered, we have P (ΨItn)yn = P (ΦIn)yn = yn and before

Admin
am_pp_logo_01

6

normalisation the updated atom takes the form

ψ̄k =
∑

n:k∈In
P (φk)yn · sign(〈φk, yn〉) =

∑

n:k∈In
|〈φk, yn〉| · φk. (4)

This means that the output dictionary is again the generating dictionary Ψ̄ = Φ or, in other words, that
the generating dictionary is a fixed point of ITKrM. Note also that before normalisation the updated
atom consists of roughly Nk =]{n : k ∈ In} scaled copies of itself because |〈φk, yn〉| ≈ |xn(k)| ≈ c and
therefore

ψ̄k ≈
∑

n:k∈In
cφk = cNkφk. (5)

To provide insight why one iteration of ITKrM acts as contraction, assume again that we know all
generating supports In and that our current estimate for the dictionary consists of all generating atoms
except for the first one, ψk = φk for k ≥ 2. For the first atom we only have some (poor) approximation,
which is, however, still incoherent with all other atoms, 1 > |〈ψ1, φ1〉| � |〈ψ1, φk〉| ≈ d−1/2 for k ≥ 2, or,
in other words, the current estimate ψ1 contains more of the first than of any other generating atom. As
before, one iteration of ITKrM will preserve all atoms ψk = φk for k ≥ 2 and on top of that contract ψ1

towards φ1. To see this, observe that as long as the current estimate contains more of the first than of
any other generating atoms, |〈ψ1, φ1〉| � |〈ψ1, φk〉|, whenever 1 ∈ I for y = ΦIx(I) we have

P (ψ1)y = P (ψ1)ΦIx(I) ≈ x(1)P (ψ1)φ1. (6)

and, similarly,

y − P (ΨI)y = x(1) [φ1 − P (ΨI)φ1] ≈ x(1) [φ1 − P (ψ1)φ1] . (7)

Combining the two estimates we get

ψ̄1 =
∑

n:1∈In

[
Id − P (ΨIn) + P (ψ1)

]
yn · sign(〈ψ1, yn〉) ≈

∑

n:1∈In
xn(1) sign(〈ψk, yn〉) · φ1, (8)

which shows that also a poor approximation ψ1 is quickly contracted towards the generating atom φ1.
In summary, for our modifications we have to ensure to preserve both the fixed point and the contraction
property. For the start, we again assume that the corrupted signals have equal scale, contain no low-rank
component, and are not contaminated by noise, but are perfectly S-sparse, that is Mnyn = MnΦInxn(In).
First, observe that a corrupted signal Mnyn is not sparse in the generating dictionary Φ but in its corrupted
version MnΦ,

Mnyn = MnΦInxn(In) =
∑

i∈In
xiMnφi. (9)

Still, we can recover the support In via thresholding using the corrupted dictionary MnΦ since we have
access to the mask Mn. However, we have to take into account that, strictly speaking, the corrupted
dictionary is not actually a dictionary in the sense that its columns are not normalised. Depending on the
shape of the atoms, flat or spiky, and the amount of corruption, ‖Mn‖2F , the norm of the corrupted atoms
‖Mnφk‖2 can vary between 0 and 1 corresponding to the extreme cases of being completely destroyed,
Mnφk = 0, or perfectly preserved, Mnφk = φk. Therefore the proper dictionary representation of the
corrupted signal is

Mnyn =
∑

i∈In:

Mnφi 6=0

xi‖Mnφi‖2 ·
Mnφi
‖Mnφi‖2

(10)

and, in order to recover the support In via thresholding, we have to look at the inner products between
the corrupted signal and the renormalised non-vanishing corrupted atoms,

Itn = arg max
I:|I|=S

∑

i∈I:
Mnφi 6=0

|〈Mnφi, yn〉|
‖Mnφi‖2

= arg max
I:|I|=S

∑

i∈I
‖P (Mnφi)Mnyn‖2. (11)

Admin
am_pp_logo_01

7

Looking back at the representation of a corrupted signal in the properly scaled corrupted dictionary (10)
we can also see why we assume flatness of the dictionary atoms, i.e. ‖φk‖∞ � 1 for all k. In the ideal
case where for all atoms φk we have ‖φk‖∞ = 1/

√
d the energy of the corrupted atoms will be constant

‖Mnφk‖2 = ‖Mn‖F /
√
d so the dynamic range of the corrupted signal with respect to the corrupted

normalised dictionary is the same as the original dynamic range,

maxi∈In |xi|‖Mnφi‖2
mini∈In |xi|‖Mnφi‖2

=
maxi∈In |xi|
mini∈In |xi|

(12)

However, the less equally distributed over the coordinates the energy of the undamaged atoms is, the
more the energy of the corrupted atoms varies. This leads to an increase of the dynamic range, which in
turn makes it is harder for thresholding to recover the generating support.
The second reason for assuming flat atoms is the increase in coherence caused by the corruption. If the
coherence of two flat atoms is small this means that their inner product is a sum of many small terms with
different signs eventually almost cancelling each other out. Such a sum is quite robust under erasures,
since both negative and positive terms are erased. On the other hand, if the energy of two atoms is less
uniformly distributed, small coherence might be due to one larger entry in the sum being cancelled out
by many small entries. Thus, the erasure of one large entry can cause a large increase in coherence, which
again decreases the chances of thresholding recovering the generating support.
Finally, to see that the flatness-assumption is not merely necessary due to the imperfection of the
thresholding algorithm for sparse recovery, assume that the atoms of the generating dictionary are
combinations of two diracs φi = (δi − δ(i+1))/

√
2, the coefficients follow our simple sparse model and

that the corruption takes the form of random erasures, i.e. Mn(j, j) are iid Bernoulli variables with
P (Mn(j, j) = 0) = η. For large erasure probabilities, η > 1/2, on average about half of the maximally
2S non zero entries of the signals will be erased and so the Dirac dictionary ψi = δi or rather its erased
version will provide as plausible an S-sparse representation to the corrupted signals as the original
dictionary Φ.
To see how to best modify the atom update rule, we first consider the case, where the corruption occurs
always in the same locations, meaning Mn = M . Since we never observe the atoms on the coordinates
where M(k, k) = 0, we can only expect to learn the corrupted dictionary MΦ = (Mφ1 . . .Mφk) or rather
its normalised version (Mφk/‖Mφk‖2). On the other hand, the problem reduces to a simple dictionary
learning problem for MΦ instead of Φ with update rule,

Mψ̄k =
∑

n:k∈Itn

[
Id − P (MΨItn) + P (Mψk)

]
Myn · sign(〈ψk,Myn〉), (13)

where we have used the fact that the projection onto a subdictionary is equal to the projection onto its
normalised version and that sign(〈Mψk,Myn〉/‖Mψk‖2) = sign(〈ψk,Myn〉). Provided that thresholding
always recovers the correct support In, we can conclude directly from above that the normalised corrupted
dictionary will be a fixed point and that the update rule will contract towards it. Indeed, for any corruption
pattern M we know that before normalisation an updated atom Mψ̄k will be contracted towards Nk =
]{n : k ∈ In} scaled copies of the corrupted generating atom Mφk,

∑

n:k∈In

[
Id − P (MΨIn) + P (Mψk)

]
Myn · sign(〈ψk,Myn〉) Nk · cMφk = c ·

∑

n:k∈In
Mφk. (14)

This suggests that for the case of different corruption patterns Mn we can simply replace M by Mn and
the updated atom will be contracted towards the sum of scaled copies of the generating atom, corrupted
with the different patterns,

∑

n:k∈In

[
Id − P (MnΨIn) + P (Mnψk)

]
Mnyn · sign(〈ψk,Myn〉) c ·

∑

n:k∈In
Mnφk. (15)

To then reconstruct the generating atom from the sum of its corrupted copies we just need to count how
often we observe the atom on each coordinate. If each coordinate has been observed at least once, we can

Admin
am_pp_logo_01

8

then obtain the generating atom simply by rescaling according to the number of observations, meaning
we calculate

ψ̄k =
∑

n:k∈Itn

[
Id − P (MnΨItn) + P (Mnψk)

]
Mnyn · sign(〈ψk,Mnyn〉)

and Wk =
∑

n:k∈Itn
Mn,

set ¯̄ψk = W †k ψ̄k and output Ψ̄ = (¯̄ψ1/‖ ¯̄ψ1‖2, . . . , ¯̄ψK/‖ ¯̄ψK‖2).
The last detail we need to account for is the possible existence of a low-rank component Γ; other than
noise or different signal scalings its contribution cannot be expected to average out once we have enough
observations. Fortunately removing the low-rank component is quite straightforward, once we have a
good estimate Γ̃ with P (Γ̃)Γ ≈ Γ. If a signal contains a low-rank component then the corrupted signal will
contain the corrupted component, My = MΓv+MΦIx(I) and we can remove its contribution by a simple
projection Mỹ = Q(M Γ̃)My. However, since the mask destroys the orthogonality between the dictionary
and the low-rank component, we do not get only the sparse contribution MΦIx(I) but also a (small)
contribution of the low-rank component, Q(M Γ̃)MΦIx(I) = MΦIx(I)−P (M Γ̃)MΦIx(I). Thus, to stably
estimate which part of an atom in the support has not been captured yet, we need to remove also the low-
rank contribution and in our update rule replace the projection onto the current estimate of the corrupted
atoms in the support with the projection onto these and the (estimated) corrupted low-rank component,
P (MnΨItn) → P (Mn(Γ̃,ΨItn)). Further, to ensure that the output dictionary is again orthogonal to the
low-rank component, we project the updated atoms onto the orthogonal complement of the (estimated)
low-rank component. Putting it all together, we arrive at the following modified algorithm.

Algorithm 3.2 (ITKrM for corrupted data - one iteration). Given an estimate of the low-rank component Γ̃,
an input dictionary Ψ with Ψ?Γ̃ = 0, a sparsity level S and N corrupted training signals yMn = (Mnyn,Mn) do:
• For all n set Mnỹn = Q(MnΓ̃)Mnyn.
• For all n find Itn = arg maxI:|I|=S

∑
i∈I:Mnφi 6=0

|〈Mnφi,Mnỹn〉|
‖Mnφi‖2 .

• For all k calculate

ψ̄k =
∑

n:k∈Itn

[
Id − P (Mn(Γ̃,ΨItn)) + P (Mnψk)

]
Mnỹn · sign(〈ψk,Mnỹn〉) (16)

and Wk =
∑

n:k∈Itn
Mn. (17)

• Set ¯̄ψk = Q(Γ̃)W †k ψ̄k and output Ψ̄ = (¯̄ψ1/‖ ¯̄ψ1‖2, . . . , ¯̄ψK/‖ ¯̄ψK‖2).

Before we can start testing the modified algorithm, we still need to develop a method for actual
recovery of the low-rank component from corrupted data, which we will do in the next section. In a
follow up paper we hope to provide a theoretical analysis, which confirms that - as planned - the modified
algorithm retains both the fixed point and the contraction property and thus is locally convergent.

4 RECOVERY OF THE LOW-RANK COMPONENT

As already mentioned, in the case of uncorrupted signals the low-rank component can be straightfor-
wardly removed, since Γ will correspond to the L left singular vectors associated to the largest L singular
values of the data matrix. In the case of corrupted signals this is no longer possible since the action of
the corruption will distort the left singular vectors in the direction of the more frequently observed
coordinates. To counter this effect, one would have to include the mask information in the singular
value decomposition. This is, for instance, done by Robust PCA which was developed for the related
problem of low-rank matrix completion [7]. Unfortunately, one of the main assumptions therein is that
the corruption is homogeneously spread among the coordinates, which might not be the case in our
setup. To recover the low rank component, we will, therefore, pursue a different strategy.
Let us assume for a moment that we are looking for only one low-rank atom, L = 1. One interpretation

Admin
am_pp_logo_01

9

of all (masked) signals having a good part of their energy captured by the (masked) low-rank atom is to
say that all (masked) signals are 1-sparse in a dictionary of one (masked) atom. Since we already have
an algorithm to learn dictionaries from corrupted signals, we can also employ it to learn the low-rank
atom. Moreover, since we have an algorithm to learn dictionaries from corrupted signals that contain
a low-rank component, we can iteratively learn the low-rank component atom by atom. Adapting the
algorithm also leads to some simplifications. After all, we do not need to find the sparse support, since
(almost) all signals are expected to contain the one new atom. Summarising these considerations, we
arrive at the following algorithm.

Algorithm 4.1 (low-rank atom recovery from corrupted data - one iteration). Given an estimate of the
previously recovered low-rank component Γ̃ = (γ̃1 . . . γ̃`−1), an input low-rank atom γ̂` and N corrupted training
signals yMn = (Mnyn,Mn) do:
• For all n set Mnỹn = Q(MnΓ̃)Mnyn.
• Calculate

γ̄` =
∑

n

[
Id − P (Mn(Γ̃, γ̂`)) + P (Mnγ̂`)

]
Mnỹn · sign(〈γ̂`,Mnỹn〉) (18)

and W =
∑

n

Mn. (19)

• Set ¯̄γ` = Q(Γ̃)W †γ̄` and output ¯̄γ`/‖¯̄γ`‖2.

Note that for the first low-rank atom in each iteration the update rule reduces to a summation of
the signals aligned according to sign(〈γ̂`,Mnyn〉). We also want to point out that our iterative approach
offers the possibility to automatically choose the size of the low-rank component by comparing the
signal energy captured by the last low-rank atom

∑
n ‖P (Mnγ`)Mnyn‖22 =

∑
n |〈γ`,Mnyn〉|2/‖Mnγ`‖22 to

the signal energy expected to be captured by a dictionary atom 1
K

∑
n ‖Mnyn‖22. A natural choice for

determining L is to stop adding low rank atoms once the ratio between the two energies drops below a
prescribed value. Since this ratio depends very much on the problem at hand, we will not go into more
details here but instead turn to finally testing our algorithms on synthetic data.

5 NUMERICAL SIMULATIONS: SYNTHETIC DATA

We first explore the performance of the adapted algorithms in comparison to their original counter-
parts not using mask information, that is, singular value decomposition for low-rank recovery and for

Signal Model
Given the generating low-rank component Γ and dictionary Φ our signal model further depends on 6 coefficient parameters,

eΓ - the energy of the low-rank coefficients,
bΓ - defining the decay factor of the low-rank coefficients,
S - the sparsity level,
bS - defining the decay factor of the sparse coefficients,
ρ - the noise level and
sm - the maximal signal scale.

Given these parameters, we choose a low-rank decay factor cΓ uniformly at random in the interval [1−bΓ, 1]. We set v(`) = σ`c
`
Γ

for 1 ≤ ` ≤ L, where σ` are iid. uniform ±1 Bernoulli variables, and renormalise the sequence to have norm ‖v‖2 = eΓ. Similarly,
we choose a decay factor cS for the sparse coefficients uniformly at random in the interval [1 − bS , 1]. We set x(k) = σkc

k
S for

1 ≤ k ≤ S, where σ` are iid. uniform ±1 Bernoulli variables, and renormalise the sequence to have norm ‖x‖2 = 1− eΓ. Finally,
we choose a support set I = {i1 . . . iS} uniformly at random as well as a scaling factor s uniformly at random from the interval
[0, sm] and according to our signal model in (2) set

y = s · Γv + ΦIx+ r√
1 + ‖r‖22

,

where r is a Gaussian noise-vector with variance ρ2 if ρ > 0.

TABLE 1: Signal Model

Admin
am_pp_logo_01

10

dictionary learning ITKrM on the signals projected onto the orthogonal complement of the low-rank
component. To do this, we look at two representation pairs, consisting of a low-rank component and a
dictionary, and test the recovery using 6-sparse signals with corruptions of two types, random erasures
and burst errors.
Dictionary & low-rank component: The first representation pair corresponds to the Discrete Cosine
Transform (DCT) basis in Rd for d = 256. As low-rank component we choose the first two DCT atoms,
that is the constant atom and the atom corresponding to an equidistant sampling of the cosine on the
interval [0, π), while the remaining basis elements form the dictionary. For the second pair, we construct
the low-rank component by choosing two vectors uniformly at random on the sphere in Rd for d = 256
and setting Γ the closest orthonormal basis as given by the singular value decomposition. To create the
dictionary, we then choose another 1.5d random vectors uniformly on the sphere, project them onto the
orthogonal complement of the span of Γ and renormalise them. These two representation pairs exhibit
different complexities. The first forms an orthonormal basis, thus is maximally incoherent, and every
element has ‖γ`‖∞ = ‖φk‖∞ =

√
2/d ≈ 0.088. The second dictionary is overcomplete with coherence

0.2788 and the supremum norm of both the low-rank and the dictionary atoms varies between 0.1529
and 0.2754 and averages at 0.1897.
Signals: To create our signals, we use the signal model in (2) with a particular choice of distributions
for the sparse and low-rank coefficients, the scaling factor and the noise, described in Table I. For the
first experiment, we set the parameters to eΓ = 1/3, bΓ = 0.15, S = 6, bS = 0.1, ρ = 1/(4

√
d) and sm = 4,

resulting in 6-sparse signals with dynamic coefficient range between 1 and 0.9−6 ≈ 1.88 and the low-rank
component containing a third of the energy. The signal-to-noise ratio is 16 and the scaling is uniformly
distributed on [0,4].
Corruption: We consider two types of corruptions, whose distributions are described in Table II. The
random erasure patterns depend on 4 parameters determining (the difference in) the erasure probabilities
of the first and second half of the coordinates (p1, p2) and one half and the other half of the signals (q1, q2).
The expected average corruption corresponds to 1−E(

∑
kM(k, k)) = 1− (p1 + p2)(q1 + q2)/4 and in our

experiments varies between 10% and 90%.
The burst error patterns also depend on 4 parameters determining the burstlength T , the probability of
no burst, a burst of size T or of size 2T occurring (p0, pT , p2T where p0 = 1 − pT − p2T), as well as the
probability of the burst occurring among the first half of the coordinates (q). In our experiments, we
consider burstlengths T = 64, 96 with varying burst location and occurrence probabilities, leading to an
empirical average corruption varying between 10% and 60%.
Experimental setup: We use two kinds of experimental setups. In the first, we learn the low-rank
component and then the dictionary always using random initialisations. In particular, to learn the low-
rank component with the adapted algorithm we use 10 iterations for every atom and 30,000 (new)
signals per iteration. As initialisation, we use a vector drawn uniformly at random from the sphere in
the orthogonal complement of the low-rank component recovered so far. For the unadapted low-rank
recovery, we use a singular value decomposition, where the low-rank component corresponds to the first
L left singular vectors of the last 30,000 signals generated for the adapted algorithm. As measure for
the final recovery error, we use the operator norm of the difference between the generating low-rank
component Γ and its projection onto the recovered component Γ̃, that is ‖Γ−P (Γ̃)Γ‖2. This corresponds
to the worst case approximation error of a signal in the span of the generating low-rank component by
the recovered one.
We then learn the dictionary using 100 iterations of ITKrM(M) and 100,000 (new) signals per iteration
from a random initialisation, where the initial atoms are drawn uniformly at random from the sphere in
the orthogonal complement of the respective low-rank component. We measure the recovery success by
the percentage of recovered or rather not recovered atoms, where we use the convention that a generating
atom φk is recovered if there exists an atom ψ̃j in the output dictionary Ψ̃ for which |〈φk, ψ̃j〉| ≥ t for
t = 0.99. To provide a more complete picture, we also indicate the percentage of atoms, that are potentially
recoverable using more training samples or iterations, that is |〈φk, ψ̃j〉| ≥ t for t = 0.90.
In the second setup, we do not learn the low-rank component but provide the dictionary learning
algorithms with the true low-rank component. We then learn the dictionary from a close-by initialisation,

Admin
am_pp_logo_01

11

Erasure Model
Our erasure model depends on 4 parameters,

p1 - the relative signal corruption of the first half of coordinates,
p2 - the relative signal corruption of the second half of coordinates,
q1 - the corruption factor of one half of the signals,
q2 - the corruption factor of the other half of the signals.

Based on these parameters we generate a random erasure mask as follows. First we choose q ∈ {q1, q2} uniformly at random
and determine for every entry the probability of being non-zero as ηj = qp1 for j ≤ d/2 and ηj = qp2 for j > d/2. We then
generate a mask as a realisation of the independent Bernoulli variables M(j, j) ∼ B(ηj), that is P (M(j, j) = 1) = ηj .

Burst Error Model
Our burst error model depends on 4 parameters,

pT - the probability of a burst of length T ,
p2T - the probability of a burst of length 2T ,
T - the burst length,
q - the probability of the burst starting in the first half of the coordinates.

Based on these parameters, we generate a burst error mask as follows. First we choose a burstlength τ ∈ {0, T, 2T} according
to the probability distribution prescribed by {p0, pT , p2T }, where p0 = 1− pT − p2T . We then decide according to the probability
q whether the burst start t occurs among the first half of coordinates, t ≤ d/2, or the second half, t > d/2. Finally, we draw
the burst start t uniformly at random from the chosen half of coordinates and in a cyclic fashion set M(j, j) = 0 whenever
t ≤ j < t+ τ or j < t+ τ − d and M(j, j) = 1 else.

TABLE 2: Mask Models

using 10 iterations with again 100,000 (new) signals per iteration. Here, the initial dictionary atoms are
1:1 linear combinations of a generating atom and a random vector in the sphere orthogonal to it, which
are then projected onto the orthogonal complement of the respective low-rank component. In case of the
close-by initialisation, we measure the recovery success by the maximal error between a generating atom
and its closest match in the output dictionary,

d∞(Φ, Ψ̃) := max
k

min
j
‖φk ± ψ̃j‖2 = max

k
min
j

√
2− 2|〈φk, ψ̃j〉|. (20)

Note that for an atom the recovery threshold t = 0.99 corresponds to an error of
√

0.02 ≈ 0.14. Again
to provide a more complete picture, we also indicate the mean error between all generating atoms and
their closest matches in the output dictionary, d1(Φ, Ψ̃) = 1

K

∑
k minj ‖φk ± ψ̃j‖2.

Figure 2 shows the recovery results for various corruption levels using the corruption adapted algo-
rithms (ITKrMM) and their unadapted counterparts (ITKrM). We can see that for both representation pairs
incorporating the corruption information into the learning algorithms clearly improves the performance.
Another fact immediately visible is that for the adapted algorithms the success rates differ for the two
erasure modalities and decrease with increasing corruption but do not depend much on the particular
distribution of the erasures or bursts as long as they lead to the same average corruption level. In contrast,
the success rates of the unmodified algorithms depend very much on the corruption distribution, and
signals with similar average corruption can lead to very different error rates.
Distinguishing between the different error modalities, we note that, for the low-rank recovery and the
dictionary recovery from a close-by initialisation, the corruption adapted algorithms outperform the
unadapted ones in any setting. For the dictionary recovery from a random initialisation, we again see
that overall the modified algorithm outperforms the unmodified one. So, for both dictionaries ITKrMM
recovers more than 95% of the atoms in all except two cases, while recovery, as well as potential recovery,
via ITKrM completely breaks down at around 60% corruption.
We also observe that corruption can improve the recovery rates of both the unmodified and the modified
algorithms. A similar phenomenon has already been observed for ITKrM in connection with noise and a
lower sparsity level, [30]. So while one might expect the global recovery rates to decrease with increasing
noise and with S, they actually increase. The reason for this is that a little bit of noise or lower sparsity,
like a little bit of corruption, breaks symmetries and suppresses the following phenomenon. Two atoms
converge to the same generating atom and, therefore, another atom has to do the job (is a 1:1 linear

Admin
am_pp_logo_01

12

average corruption in %
10 20 30 40 50 60 70 80 90

lo
w

 r
a

n
k
 r

e
c
o

v
e

ry
 e

rr
o

r

10-1

100

adap., eras.
orig., eras.
adap., burst
orig., burst
error at <.,.> = 0.99

average corruption in %
10 20 30 40 50 60 70 80 90

lo
w

 r
a

n
k
 r

e
c
o

v
e

ry
 e

rr
o

r

10-1

100

adap., eras.
orig., eras.
adap., burst
orig., burst
error at <.,.> = 0.99

(a) (b)

average corruption in %
10 20 30 40 50 60 70 80 90

n
o

t
(e

v
e

n
 p

o
te

n
ti
a

lly
)

re
c
o

v
e

re
d

 a
to

m
s
 i
n

 %

10-3

10-2

10-1

100

ad., er., t99
ad., er., t90
or., er., t99
or., er., t90
ad., bu., t99
ad., bu., t90
or., bu., t99
or., bu., t90
95% found

average corruption in %
10 20 30 40 50 60 70 80 90

n
o

t
(e

v
e

n
 p

o
te

n
ti
a

lly
)

re
c
o

v
e

re
d

 a
to

m
s
 i
n

 %

10-3

10-2

10-1

100

ad., er., t99
ad., er., t90
or., er., t99
or., er., t90
ad., bu., t99
ad., bu., t90
or., bu., t99
or., bu., t90
95% found

(c) (d)

average corruption in %
10 20 30 40 50 60 70 80 90

d
ic

ti
o

n
a

ry
 r

e
c
o

v
e

ry
 e

rr
o

r

10-2

10-1

100

adap., eras., max
adap., eras., mean
orig., eras., max
orig., eras., mean
adap., burst, max
adap., burst, mean
orig., burst, max
orig., burst, mean
error at <.,.> = 0.99

average corruption in %
10 20 30 40 50 60 70 80 90

d
ic

ti
o

n
a

ry
 r

e
c
o

v
e

ry
 e

rr
o

r

10-2

10-1

100

adap., eras., max
adap., eras., mean
orig., eras., max
orig., eras., mean
adap., burst, max
adap., burst, mean
orig., burst, max
orig., burst, mean
error at <.,.> = 0.99

(e) (f)

Fig. 2: Recovery performance of the corruption adapted versus the unadapted learning algorithms for
the DCT (a,c,e) and the random (b,d,f) representation pair in terms of low-rank recovery error (a,b),
percentage of recovered dictionary atoms from a random initialisation (c,d) and dictionary recovery
error from a close-by initialisation (e,f).

Admin
am_pp_logo_01

13

combination) of two generating atoms. For uncorrupted signals there are ongoing efforts to counter this
phenomenon with replacement strategies, which have a straightforward extension to corrupted signals,
[31]. With this extension, we expect all (potential) recovery rates around 90% to increase to 100%, as
happens in the uncorrupted case.
To find out when we gain most from incorporating the mask information, let us have a more detailed

average corruption in %
10 20 30 40 50 60 70 80 90

lo
w

 r
a

n
k
 r

e
c
o

v
e

ry
 e

rr
o

r

10-1

100

adap., type00
adap., type20
adap., type22
adap., type30
orig., type00
orig., type20
orig., type22
orig., type30
<.,.> = 0.99

average corruption in %
20 30 40 50 60 70 80

lo
w

 r
a

n
k
 r

e
c
o

v
e

ry
 e

rr
o

r

10-1

100

adap., type5
adap., type7
orig., type5
orig., type7
<.,.> = 0.99

(a) (b)

average corruption in %
10 20 30 40 50 60 70 80 90

d
ic

ti
o

n
a

ry
 r

e
c
o

v
e

ry
 e

rr
o

r
d
∞

10-2

10-1

100

adap., type00
adap., type20
adap., type22
adap., type30
orig., type00
orig., type20
orig., type22
orig., type30
<.,.> = 0.99

average corruption in %
20 30 40 50 60 70 80

d
ic

ti
o

n
a

ry
 r

e
c
o

v
e

ry
 e

rr
o

r
d
∞

10-2

10-1

100

adap., type5
adap., type7
orig., type5
orig., type7
<.,.> = 0.99

(c) (d)

Fig. 3: Detailed recovery performance of the corruption adapted versus the unadapted learning algorithms
for the random representation pair for various types of random erasures (a,c) and burst errors (b,d).

look at the recovery rates for different types of parameter settings. In case of the random erasures, we
distinguish 4 types. ’type00’ indicates that p1 = p2 with p1 varying between 0.2 and 0.8 and q1 = q2 = 1,
leading to a uniform erasure probability for all coordinates and all signals. ’type20(30)’ indicate that
p2 = p1 + 0.2(0.3) with p1 varying between 0.1 and 0.7(0.6) and again qi = 1, leading to higher erasure
probabilities for the first half of the coordinates, which are however uniform across signals. Finally,
’type22’ indicates that p2 = p1 + 0.2 and qi = pi for p1 varying between 0.4 and 0.8, leading to different
erasure probabilities across coordinates and across signals.
In case of the burst errors we distinguish between ’type5’ corresponding to a uniform burst distribution
and ’type7’ corresponding to a 0.7 probability of the burst occurring in first half of the coordinates. For
each burst type, we consider the burstlength T = 64 with probabilities (pT , p2T) ∈ {(0.5, 0.3), (0.7, 0.3), (0.5, 0.5)},
leading to corruptions between 20% and 40%, and the burstlength T = 96 with the same pairs and
additionally (p0, pT) ∈ {(0.3, 0.7), (0.1, 0.9)} leading to corruptions between 40% and 75%.
For conciseness, we focus on the random low-rank component and dictionary and show only the error of
the low-rank component and the maximal error of the dictionary from a close-by initialisation, which we

Admin
am_pp_logo_01

14

take as indicator of global recovery rates with replacement strategies, Figure 3. Distinguishing between
the different types, we can now see that incorporating the corruption information gives the highest
benefits when the corruption is most unevenly distributed over the signal coordinates. So, for the evenly
distributed random erasures and burst errors, ’type00’ and ’type5’, the low-rank component is still
recovered by both the unadapted and the adapted algorithm, but as soon as there is intercoordinate
variance in the corruption level, type20/22/30’ and ’type7’, the unadapted algorithm starts to lag behind.
For the dictionary recovery, the adapted algorithm already shows advantages for the homogeneous
corruption distributions, ’type00’ and ’type5’, which again become more and more pronounced with
increasing intercoordinate variance of the corruption, ’type20/22/30’ and ’type7’.
The second experiment explores the sensitivity of the algorithms to the flatness/spikyness of the repre-
sentation pairs, measured by ‖γ`‖∞ and ‖φk‖∞. This is done by looking at the recovery of representation
pairs, which form orthonormal bases and whose atoms have their energy concentrated on supports of
size m for m = 4, 8, 16, 32, 64, 128, 256.
Dictionaries & low-rank components: For a given support size m we choose d vectors zk from the unit
sphere in Rm and d supports Ik = i1 . . . im of size m uniformly at random and set B(Ik, k) = zk and zero
else. We then calculate the closest orthonormal basis to B using the singular value decomposition. The
first two elements of this orthonormal basis are chosen as the low-rank component, while the remaining
elements form the dictionary.
Signals, corruptions & setup: For the signal generation we use the same parameters as in the last
experiment and for the corruption we use the random erasure masks of ’type22’ with p1 = q1 = 0.7/0.5
and p1 = q1 = 0.7/0.9 corresponding to 36% and 64% of corruption. The experimental set up for the
recovery of each representation pair is again as in the last experiment.

Figure 4 shows the spikyness of the representation pairs for various support sizes as well as the
corresponding recovery results for the two corruption types. Let us first point out that our construction
based on decreasing atom support sizes indeed leads to representation pairs with increased spikyness
(Figure 4c). As usual the recovery errors incurred by the modified algorithms are much lower than those
of the unmodified ones. For the low-rank component (Figure 4a) the recovery error is very stable and
only starts to deteriorate for m = 4, when the low-rank atom carrying less energy is indeed almost
a spike, ‖γ2‖∞ = 0.8997, meaning 80% of its energy are concentrated on one coordinate. Also for the
dictionary recovery the robustness to spikyness of the adapted algorithm is quite surprising. So for the
1:1 initialisation the maximal atom recovery error stays below the critical error until m = 8 for the low
corruption level (36%) and until m = 16 for the higher corruption level (64%). Even more interesting are
the recovery rates for the random initialisation, which only break down and go below 94% for m = 4 at
the higher corruption level. As in the last experiment, we observe the effect that spikyness like corruption
can lead to better global recovery rates. The effect is more pronounced for the higher corruption level
(64%), where for m = 16 we even have 100% recovery.
We briefly investigated the effect of the signal scaling on the recovery rates of the modified algorithms
for the DCT representation pair and the ’type22’ erasure mask with 36% corruption, with a same setup
as in the first experiment, but found that there was no strong influence. That is, for sm varying between
2 and 128, the low-rank recovery error varies between 0.031 and 0.036, the atom recovery error from the
close-by initialisation varies between 0.007 and 0.012 and the recovery rates from the random initialisation
stay between 95% and 96%.
Similarly, exploring the effect of the sparsity level S, we do not gain much more insights over the
experiments already conducted in the uncorrupted case, [30]. So, fixing all mask and signal parameters
except for the sparsity parameter S, which increases from 4 to 16, the low-rank recovery error stays
constant, the dictionary recovery error from the close-by initialisation increases while the number of not
recovered dictionary atoms from a random initialisation decreases.
In order not to overload the paper, we do not detail these experiments here but refer the interested reader
to the ITKrMM MATLAB toolbox1, which can be used to reproduce all the presented experiments and
many more. Instead we now turn to the application of dictionary learning from corrupted data to image

1. available at http://homepage.uibk.ac.at/∼c7021041/code/ITKrMM.zip

Admin
am_pp_logo_01

15

atom support size
4 8 16 32 64 128 256

lo
w

 r
a

n
k
 r

e
c
o

v
e

ry
 e

rr
o

r

10-2

10-1

100 adap., 36% corr.
adap., 64% corr.
unad., 36% corr.
unad., 64% corr.
95% found

atom support size
4 8 16 32 64 128 256

d
ic

ti
o

n
a

ry
 r

e
c
o

v
e

ry
 e

rr
o

r
d
∞

10-2

10-1

100 adap., 36% corr.
adap., 64% corr.
unad., 36% corr.
unad., 64% corr.
<.,.> = 0.99

(a) (b)

atom support size
4 8 16 32 64 128 256

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

min
mean
max

atom support size
4 8 16 32 64 128 256

n
o

t
re

c
o

v
e

re
d

 a
to

m
s
 i
n

 %

10-3

10-2

10-1

100

adap., 36% corr.
adap., 64% corr.
unad., 36% corr.
unad., 64% corr.
95% found

 !

(c) (d)

Fig. 4: Recovery performance of the corruption adapted versus the unadapted learning algorithms for
random representation pairs with varying atom support sizes and two corruption levels.

inpainting.

6 APPLICATION: IMAGE INPAINTING

To demonstrate the practical value of the ITKrMM algorithm, we here conduct an image inpainting
experiment. Inpainting is the process of filling in missing information or holes in damaged signals, and
our motivating task, the prediction of blood glucose levels, can be cast as inpainting problem. Image
inpainting, in particular, is used for restoration of old analog paintings, denoising of digital photos, and
for removal of objects like text or date stamps from images and has become an active field of research
in the mathematical and engineering communities, with a variety of specifically developed methods and
approaches. Since our goal is to evaluate the ITKrMM algorithm as a robust and simple tool for dictionary
learning from incomplete data, we do not compare our inpainting scheme with state-of-the-art methods
for image inpainting in general, but instead compare the performance of various learned dictionaries for
dictionary based inpainting.
Apart from comparing to the dictionaries and low-rank components of different size learned by ITKrMM,
we also compare to dictionaries learned by weighted KSVD (wKSVD), a modification of KSVD, [2], for
signals affected by non-homogeneous noise or erasures. wKSVD is the most likely algorithm to fit into
our setup and has already been successfully used for image inpainting, [21], [22]. Let us now describe
our setup for dictionary based inpainting.

Admin
am_pp_logo_01

16

Data: For our experiments we consider grayscale images of size 256×256 from a standard image database.
In the first set of experiments, the images are corrupted by erasing each pixel iid with probability 0.3, 0.5
or 0.7, resulting in 30, 50 or 70% erased pixels on average. In the second set of experiments, part of the
pixels from the images are removed using a structured mask, see Figure 6b. We then extract all possible
patches of size p× p pixels from the corrupted image as well as the corresponding mask. We set p = 8 in
case of the randomly erased pixels and p = 12 in case of the structured mask. The vectorised corrupted
patch/mask pairs are then given to the dictionary learning algorithm.
Dictionary & low-rank component: Via ITKrMM we learn dictionaries of size K = 2d−L atoms, where
d = p2 is the dimension of the patches and L denotes the size of the low-rank component. We consider
L = 1 and L = 3. Via wKSVD we learn a dictionary of size K = 2d with the option of keeping the
first atom always equal to the constant atom φ1 ≡ c. This corresponds to ITKrMM with K = 2d− 1 and
L = 1. The ratio 2 between patch dimension and the size of the dictionary together with the low-rank
component makes the dictionary redundant and allows to capture different features, while still allowing
for reasonable computational complexity.
Initialisation & sparsity level: We use the same initialisation strategies as for the synthetic experiments,
ie. random vectors that are orthogonal to the low-rank component resp. atoms that have already been
learned. This means that in case L = 1, before subtracting the low-rank component, the initial dictionaries
for ITKrMM and wKSVD are the same. As sparsity level for the learning step of ITKrMM, we use
S = p− L to keep the comparison between different sizes of the low-rank component fair. Since within
wKSVD the contribution of the constant low-rank atom counts in the sparse approximation step, we use
as sparsity level S = p. For learning the low-rank components we use 10 iterations per low-rank atom
and all available patch/mask pairs and for learning the dictionary we use 40 iterations on all available
patch/mask pairs for both algorithms. Note that the wKSVD version adapted to erasures was originally
designed to adapt an existing patch dictionary, pre-learned on some image data base, to the image patches
at hand rather than to calculate the dictionary from scratch. Still, abusing it to do just that, it works very
well.
Dictionary based inpainting: Dictionary based inpainting relies on the concept that every image patch
y is sparse in a flat patch-dictionary Φ and therefore every damaged/masked patch My is sparse in the
damaged/masked patch dictionary MΦ, that is for if for |I| ≤ S

y ≈ ΦIxI ⇒ My ≈MΦIxI . (21)

To reconstruct the original patch we simply need to recover coefficients x̃I ≈ xI by sparsely approximating
My in MΦ and to set ỹ = Φx̃I . The flatter the dictionary is, the more stable the atoms are to erasures
and the easier it is to recover the correct coefficients. We first reconstruct every damaged image patch via
sparse approximation and then reconstruct the full image by averaging every pixel over all reconstructed
patches in which it is contained. As sparse approximation algorithm we use Orthogonal Matching Pursuit
with a sparsity level of S = 20 in case of the random erasures and S = 30 in case of the structured mask,
[9], [25]. Note that since the damaged dictionary is not normalised we need to account for this in the
OMP selection step and rescale by 1/‖Mφk‖2, simarly to thresholding in the ITKrMM algorithm. Without
this renormalisation less damaged atoms take precedence over better fitting ones.2

Algorithm 6.1 (OMP masked). Given a damaged signal My together with the mask M , a dictionary Φ and a
sparsity level S, initialise r = My, I = ∅ and while |I| < S do
• Atom selection: find j = arg maxMφk 6=0 |〈r,Mφk〉|/‖Mφk‖2.
• Approximation: Set I = I ∪ {j}, xI = (MΦI)

†My and r = My −MΦIxI .
Output xI .

Comparison/Error: We measure the recovery success of the different pairs of dictionaries and low-rank
components by the peak signal-to-noise ratio (PSNR) between the original image Y and the recovered

2. In the original version of wKSVD, which uses OMP as sparse approximation algorithm, the OMP selection step seems
not to have included normalisation. However, we find that including the normalisation step both for learning and inpainting
improves the final performance of the wKSVD dictionary, especially for the 70% corruption level, where it increases the PSNR
by up to 2.9dB.

Admin
am_pp_logo_01

17

version Ỹ . For Y, Ỹ both images of size d1 × d2 the PSNR is defined as

PSNR in dB = log10

(
(maxi,j Y (i, j)−mini,j Y (i, j))2

1
d1d2

∑
i,j(Y (i, j)− Ỹ (i, j))

)
. (22)

In case of the random erasure mask we average over 5 runs, each with a different mask and initialisation,
to account for the variability of the PSNR for different mask realisations. The results of the experiment
are presented in Table III and examples of two images, one corrupted with the 50% mask and the other
with the structured mask, together with their reconstructions and the original images can be found in
Figure 5 and Figure 6. Table III shows that when randomly erasing around 30% of the pixels, inpainting

Corr Algo Barb. Cam. House Man. Pepp. Pir.

30%

Noisy Im. 11.17 10.81 10.11 10.82 11.18 11.70
wKSVD 35.64 32.56 41.42 30.41 38.47 35.06
ITKrMM1 36.04 32.80 41.84 30.85 39.05 35.54
ITKrMM3 37.05 33.07 42.32 30.91 39.67 36.04

50%

Noisy Im. 8.95 8.59 7.88 8.60 8.96 9.47
wKSVD 32.96 29.47 37.99 27.69 35.29 31.95
ITKrMM1 33.12 29.45 37.77 27.94 35.28 32.10
ITKrMM3 33.69 29.44 37.99 27.95 35.33 32.22

70%

Noisy Im. 7.48 7.13 6.42 7.13 7.50 8.01
wKSVD 28.55 25.40 32.93 24.72 30.61 28.34
ITKrMM1 28.91 25.47 32.39 24.76 30.37 28.30
ITKrMM3 28.79 25.25 32.05 24.74 29.78 27.89

19%

Noisy Im. 13.07 12.75 12.01 12.85 13.20 13.67
wKSVD 33.74 30.54 38.36 28.63 34.09 32.39
ITKrMM1 33.31 30.35 37.90 29.02 33.72 32.34
ITKrMM3 33.86 30.36 37.74 29.19 32.93 32.47

TABLE 3: Comparison of the PSNR (in dB) for inpainting of images with various corruption levels based
on dictionaries learned with wKSVD and ITKrMM on all available corrupted image patches.

with the ITKrMM dictionaries always outperforms inpainting with the wKSVD dictionaries. In case of
50% and 70% random erasures as well as for the structured mask, the wKSVD and ITKrMM dictionaries
perform about equally, where for the more textured images (Barbara, Mandrill, Pirate) ITKrMM tends to
have a slight advantage, while for the smooth images (Cameraman, House, Peppers) wKSVD is slightly
better. Another trend we can observe is that for the lower corruption levels ITKrMM with a low-rank
component of size L = 3 improves over a low-rank component of size L = 1, while for the higher
corruption levels it is the other way round. We also conducted experiments with ITKrMM for L = 2.
The performance was for all settings inbetween the case L = 1 and the case L = 3, so we do not include
them here.

To understand why the ITKrMM dictionaries perform better for the small erasure probabilities and
textured images, we have a look at the dictionaries learned with ITKrMM (L=1) and wKSVD on patches
with 30% and 70% corruption for Barbara (Figure 7) and Peppers (Figure 8). For 30% random erasures
we can see (especially on Barbara) that the dictionaries are very similar but that ITKrMM produces
more textured (high frequency) atoms, while wKSVD prefers smooth (low frequency) atoms. Therefore
the ITKrMM dictionary can inpaint finer details and outperforms wKSVD. Looking at the dictionaries
learned on patches from 70% corrupted imagegs, we now see different trends for the two dictionary
types. For ITKrMM the 70% erasure dictionaries are simply noisy versions of their 30% counterparts. For
wKSVD on the other hand the 70% erasure dictionaries contain only noisy versions of the smooth atoms
from their 30% counterparts but not many recognisable noisy versions of the high frequency atoms. In the
case of highly corrupted textured images this puts wKSVD at a disadvantage, while in the case of highly
corrupted smooth images it prevents inpainting with noisy details. This difference in number of textured
vs smooth atoms also explains the different performance of the two dictionary types for the structured
mask on the textured resp. smooth images. Further, it explains why for low random erasures levels and

Admin
am_pp_logo_01

18

(a) original image (b) image with 50% erasures

(c) reconstruction with ITKrMM (L = 1) (d) reconstruction with wKSVD

Fig. 5: Inpainting example: Barbara

textured images ITKrMM with L = 3 improves over ITKrMM with L = 1. As we can see in Figure 9, the
low-rank component consists of smooth (low frequency atoms). Because of the orthogonality constraint
a larger low-rank component therefore increases the presence of textured high frequency atoms in the
dictionary.
Finally, we want to mention that the main advantage of ITKrMM over wKSVD is the significant im-
provement in running time. For the random erasure setting, patch size 8 × 8, ITKrMM with L = 1 is
about 8 times faster than wKSVD, while for the structured erasure setting, patch size 12× 12, ITKrMM
is about 12 times faster than wKSVD3. In general the speed up of ITKrMM over wKSVD becomes more
pronounced the larger S or d resp. K are.
After verifying that ITKrMM indeed learns meaningful and applicable dictionaries also on real data we
now turn to a discussion of our results.

3. as observed by running both algorithms in unoptimised form on the UIBK LEO3e computing cluster consisting of 45 nodes
with 20 Intel Xeon (Haswell) computing cores each, all nodes equipped with 64GB RAM except for two nodes with 512GB RAM

Admin
am_pp_logo_01

19

(a) original image (b) image with cracks

(c) reconstruction with ITKrMM (L = 1) (d) reconstruction with wKSVD

Fig. 6: Inpainting example: Peppers

7 CONCLUSION AND FUTURE DIRECTIONS

Motivated by a real-life problem with corrupted data in diabetes therapy management, we here extended
the iterative thresholding and K residual means (ITKrM) algorithm for dictionary learning to learning
dictionaries from incomplete/masked data (ITKrMM). To account for the presence of a low-rank compo-
nent in the data we further introduced a modified version of the ITKrMM algorithm to recover also the
low-rank component and adapted the ITKrMM algorithm to the potential presence of such a low-rank
component. In extensive tests on synthetic data, we demonstrated that incorporating information about
the corruption (missing coordinates) dramatically improves the dictionary learning performance and that
ITKrMM is able to recover dictionaries from data with up to 80% corruption. We further showed that the
algorithm also learns meaningful dictionaries on corrupted image data and provides noticeable improve-
ments in terms of required computational resources compared to wKSVD, a state-of-the-art algorithm
for dictionary learning/refinement in the presence of erasures. Moreover, when used for inpainting, the
ITKrMM dictionaries perform on a par with their wKSVD counterparts and in case of textured images
ITKrMM leads to notable improvements, since the high frequency atoms in the learned dictionaries are
better preserved. All of the experiments reported in this paper can be reproduced with the ITKrMM

Admin
am_pp_logo_01

20

(a) ITKrMM, 30% erasures (b) wKSVD, 30% erasures

(c) ITKrMM, 70% erasures (d) wKSVD, 70% erasures

Fig. 7: Dictionaries and low-rank atom (left upper corner) learned with ITKrMM and wKSVD on all 8×8
patches of Barbara corrupted with 30% resp. 70% erasure rate.

(a) ITKrMM, 30% erasures (b) wKSVD, 30% erasures

(c) ITKrMM, 70% erasures (d) wKSVD, 70% erasures

Fig. 8: Dictionaries and low-rank atom (left upper corner) learned with ITKrMM and wKSVD on all 8×8
patches of Peppers corrupted with 30% resp. 70% erasure rate.

Matlab toolbox, which is freely available at http://homepage.uibk.ac.at/∼c7021041/code/ITKrMM.zip.
One slight disappointment is that in synthetic experiments with a random initialisation ITKrMM does
not recover the full dictionary. Instead, it recovers some atoms twice and some atoms are 1:1 linear
combinations of two other ground truth atoms. This phenomenon has already been observed in the case
of ITKrM and there are ongoing efforts to counter it with replacement strategies, which also open up the
road to adaptively choosing the sparsity level, the dictionary size and the size of the low-rank component,

Admin
am_pp_logo_01

21

(a) Barbara, L = 1 (b) Barbara, L = 3

(c) Peppers, L = 1 (d) Peppers, L = 3

Fig. 9: Dictionaries and low-rank atoms (left upper corner) learned with ITKrMM on all 8× 8 patches of
Peppers resp. Barbara corrupted with 30% erasure rate.

[31]. Once these strategies for ITKrM are finalised they will have straighforward extensions to the case
of corrupted data, that is ITKrMM.
Most of our active research efforts are currently devoted to extending the local convergence results for
ITKrM to the case of ITKrMM with random erasures, which will hopefully be available in the near future,
[24]. Another interesting future direction consists of designing faster and more efficient algorithms, for
instance, by adaptive patch selection for dictionary learning from incomplete data as it was suggested
in seismic data recovery [38]. More generally, we are interested in extending the concept of learning
dictionaries from data with erasures to more general types of corruption such as for instance blurring,
where the resulting dictionaries can then be used for deblurring.

ACKNOWLEDGEMENTS

V. Naumova acknowledges the support of project ’Function-driven Data Learning in High Dimension’
(FunDaHD) funded by the Research Council of Norway and K. Schnass is in part supported by the
Austrian Science Fund (FWF) under Grant no. Y760. In addition the computational results presented
have been achieved (in part) using the HPC infrastructure LEO of the University of Innsbruck.

REFERENCES

[1] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learning sparsely used overcomplete dictionaries via
alternating minimization. In COLT 2014 (arXiv:1310.7991), 2014.

[2] M. Aharon, M. Elad, and A.M. Bruckstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse
representation. IEEE Transactions on Signal Processing., 54(11):4311–4322, November 2006.

[3] S. Arora, R. Ge, T. Ma, and A. Moitra. Simple, efficient, and neural algorithms for sparse coding. In COLT 2015
(arXiv:1503.00778), 2015.

[4] S. Arora, R. Ge, and A. Moitra. New algorithms for learning incoherent and overcomplete dictionaries. In COLT 2014
(arXiv:1308.6273), 2014.

[5] B. Barak, J.A. Kelner, and D. Steurer. Dictionary learning and tensor decomposition via the sum-of-squares method. In
STOC 2015 (arXiv:1407.1543), 2015.

[6] S. Beckouche, J.L. Starck, and M. Fadili. Astronomical image denoising using dictionary learning. Astronomy and Astrophysics,
556(A132), 2013.

[7] E. Candès, X. Li, Y. Ma, and J. Wright. Robust principle component analysis? Journal of the ACM, 58(3), 2011.

Admin
am_pp_logo_01

22

[8] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete
frequency information. IEEE Transactions on Information Theory, 52(2):489–509, 2006.

[9] G. M. Davis, S. Mallat, and Z. Zhang. Adaptive time-frequency decompositions with matching pursuits. SPIE Optical
Engineering, 33(7):2183–2191, July 1994.

[10] D.L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306, 2006.
[11] D.L. Donoho, M. Elad, and V.N. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of

noise. IEEE Transactions on Information Theory, 52(1):6–18, January 2006.
[12] M. Elad, J.L. Starck, P. Querre, and D.L. Donoho. Simultaneous cartoon and texture image inpainting using morphological

component analysis (mca). Appl. Comput. Harmon. Anal., 19(3):340–358, 2005.
[13] K. Engan, S.O. Aase, and J.H. Husoy. Method of optimal directions for frame design. In ICASSP99, volume 5, pages

2443–2446, 1999.
[14] D.J. Field and B.A. Olshausen. Emergence of simple-cell receptive field properties by learning a sparse code for natural

images. Nature, 381:607–609, 1996.
[15] R. Gribonval, R. Jenatton, and F. Bach. Sparse and spurious: dictionary learning with noise and outliers. IEEE Transactions

on Information Theory, 61(11):6298–6319, 2015.
[16] R. Gribonval and K. Schnass. Dictionary identifiability - sparse matrix-factorisation via l1-minimisation. IEEE Transactions

on Information Theory, 56(7):3523–3539, July 2010.
[17] K. Kreutz-Delgado, J.F. Murray, B.D. Rao, K. Engan, T. Lee, and T.J. Sejnowski. Dictionary learning algorithms for sparse

representation. Neural Computations, 15(2):349–396, 2003.
[18] M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural Computations, 12(2):337–365, 2000.
[19] J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,

34(4):791–804, 2012.
[20] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Journal of Machine

Learning Research, 11:19–60, 2010.
[21] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE Transactions on Image Processing,

17(1):53–69, 2008.
[22] J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representation for image and video restoration. Multiscale

Model. Simul., 7(1):214–241, 2008.
[23] V. Naumova and S. Pereverzyev. Blood glucose predictors: an overview on how recent developments help to unlock the

problem of glucose regulation. Recent Patents on Computer Science, 5:1–11, 2012.
[24] V. Naumova and K. Schnass. Dictionary learning from incomplete data, Part II theory. the near future.
[25] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal Matching Pursuit : recursive function approximation with application

to wavelet decomposition. In Asilomar Conf. on Signals Systems and Comput., 1993.
[26] R. Rubinstein, A. Bruckstein, and M. Elad. Dictionaries for sparse representation modeling. Proceedings of the IEEE,

98(6):1045–1057, 2010.
[27] K. Schnass. On the identifiability of overcomplete dictionaries via the minimisation principle underlying K-SVD. Applied

Computational Harmonic Analysis, 37(3):464–491, 2014.
[28] K. Schnass. Local identification of overcomplete dictionaries. Journal of Machine Learning Research (arXiv:1401.6354),

16(Jun):1211–1242, 2015.
[29] K. Schnass. A personal introduction to theoretical dictionary learning. Internationale Mathematische Nachrichten, 228:5–15,

2015.
[30] K. Schnass. Convergence radius and sample complexity of ITKM algorithms for dictionary learning. accepted to Applied and

Computational Harmonic Analysis (arXiv:1503.07027), 2016.
[31] K. Schnass. Sequential dictionary learning with parameter selection. in preparation, 2017.
[32] M. Schoemaker and C. Parkin. CGM - How good is good enough? in Prediction methods for blood glucose concentration.

Design, use and evaluation, 2015.
[33] K. Skretting and K. Engan. Recursive least squares dictionary learning algorithm. IEEE Transactions on Signal Processing,

58(4):2121–2130, April 2010.
[34] D. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictionaries. In COLT 2012 (arXiv:1206.5882), 2012.
[35] J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery over the sphere. In ICML 2015 (arXiv:1504.06785), 2015.
[36] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse representation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 31(2), 2009.
[37] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution via sparse representation. IEEE Transactions on Image

Processing, 19(11):2861–2873, 2010.
[38] S. Yu, J. Ma, and S. Osher. Monte carlo data-driven tight frame for seismic data recovery. Geophysics, 81(4):V327–V340,

2015.

Admin
am_pp_logo_01

