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Abstract

In this paper we consider the reconstruction problem of photoacoustic tomography (PAT)
with a flat observation surface. We develop a direct reconstruction method that employs reg-
ularization with wavelet sparsity constraints. To that end, we derive a wavelet-vaguelette de-
composition (WVD) for the PAT forward operator and a corresponding explicit reconstruction
formula in the case of exact data. In the case of noisy data, we combine the WVD reconstruc-
tion formula with soft-thresholding which yields a spatially adaptive estimation method. We
demonstrate that our method is statistically optimal for white random noise if the unknown
function is assumed to lie in any Besov-ball. We present generalizations of this approach and,
in particular, we discuss the combination of vaguelette soft-thresholding with a TV prior. We
also provide an efficient implementation of the vaguelette transform that leads to fast image
reconstruction algorithms supported by numerical results.

Key words: Photoacoustic tomography, image reconstruction, wavelet-vaguelette decomposi-
tion, variational regularization, sparsity constraints, wavelet-TV regularization.

AMS subject classification: 49N45, 65N21, 92C55.

1 Introduction

Photoacoustic tomography (PAT) is a novel coupled-physics (hybrid) modality for non-invasive
biomedical imaging that combines the high contrast of optical tomography with the high spatial
resolution of acoustic imaging [7, 65, 98, 95, 100]. Its principle consists in illuminating a sample by
an electromagnetic pulse that, due to the photoacoustic effect, generates pressure waves inside of the
object; see Figure 1. The generated pressure waves (the acoustic signals) then propagate through
the sample and beyond, and the pressure is recorded outside of the sample. Finally, mathematical
algorithms are used to reconstruct an image of the interior (see, for example, [66, 81, 100]).
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In this paper we work with the standard model of PAT, where the acoustic pressure u: R? x
(0,00) — R solves the standard wave equation (see (3)). The goal of PAT is to recover the
initial pressure distribution (at time ¢ = 0), given by a function h : R? — R, from measurements
Uh = ulgm, x(0,00) Of the pressure that is recorded on the hyperplane OH . Here, H denotes the
half space R~ x (0, 00). That is, we assume that we know u on 9H, = R?~! x {0} (the acquisition
surface), and our goal is to reconstruct h from (possibly approximate) knowledge of Uh. This is an
inverse problem, which amounts to an (approximate) inversion of the operator U. We will refer to
that problem as the inverse problem of PAT with a planar acquisition geometry. Note that similar
approaches can be considered for other acquisition geometries as well.

optical pulse optical absorption/ induced acoustic wave

¢¢¢ ¢¢¢ ¢¢ thermal expansion

Figure 1: BASIC PRINCIPLE OF PAT. A semitransparent sample is illuminated with a short optical
pulse. Due to optical absorption and subsequent thermal expansion an acoustic pressure wave is
induced within the sample. The pressure waves are measured outside of the sample and used to
reconstruct an image of the interior.

In the case of exact data Uh, several approaches have been derived for solving the inverse problem
of PAT considering different acquisition geometries. This includes time reversal (see [16, 60, 39, 76,
92]), Fourier domain algorithms (see [59, 2, 68, 101, 64, 61, 13, 77, 36, 4]), analytic reconstruction
formulas of back-projection type (see [79, 38, 39, 51, 53, 58, 67, 73, 99]), as well as iterative
approaches [31, 57, 80, 82, 87, 102, 96, 97]. For the case of noisy data, it is well known that iterative
methods (including variational methods and sparse reconstructions) tend to be more accurate than
analytic methods.

Among those iterative techniques, sparse regularization approaches have gained a lot of attention
during the last years as they have proven to perform well for noisy data as well as for incomplete data
problems. One of their main advantages consists in their ability to combine efficient regularization
with good feature preservation and to (to some extent) to compensate for the missing data [10, 44,
85, 54]. However, these advantages of sparse regularization methods come with the cost of typically
significantly longer reconstruction times than FBP-type approaches. This is because the forward
and adjoint operators have to be evaluated repeatedly. Due to that reason, FBP type methods (or
other direct approaches) are often preferred over the more elaborate sparse regularization techniques
[3, 5, 16, 83, 84].

In this paper we develop numerically efficient reconstruction method for PAT with planar geometry
that effectively deals with noisy data ¢ = Uh + z, where regularization is achieved by enforcing
sparsity constraints in the reconstruction with respect to wavelet coefficients of h. More precisely,
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we derive a direct method for calculating a minimizer the ¢!-Tikhonov functional

1
By (h) = 5 [UR —g|* + D wal(¥a, b, (1)
AEA

where (10))xea denotes an orthonormal wavelet basis and wy > 0 are weights. To achieve that,
as one of our main results, we construct a wavelet-vaguelette decomposition for the operator U.
That is, given a wavelet basis (1))rea, We construct a system (vy)rea in ran (U) that, in the case
of exact data g = Uh, gives rise to an inversion formula of the form h =), kx(Uh,vy)¥x. Given
noisy data g = Uh + z, we show that a combination of this formula with soft-thresholding s,,,
namely

h* = Zﬁ,\ sw({g,vr))¥x, (2)
X

provides a minimizer of the functional (1). Additionally, we derive an efficient algorithm for the
vaguelette transform g — ({g,v5))x and provide an implementation for the WVD reconstruction
(2). Moreover, we show order optimality of our method in the case of deterministic noise as well
as is the case of Gaussian random noise. We also consider generalizations of our method and, in
particular, we show how WVD reconstruction can be combined with an additional TV-prior.

Sparse regularization has been widely used as a reconstruction method for general inverse problems
and there is a vast literature on that topic (see, for example, [14, 30, 40, 48, 49, 52, 69, 86, 88, 94]).
In the statistical setting, ¢!-Tikhonov regularization is known as LASSO [91, 11, 103, 78] or basis
pursuit [22]. In most cases, the reconstructions are computed by employing iterative algorithms
(such as iterative soft-thresholding) to minimize the ¢!-Tikhonov functional [12, 26, 27, 30, 37, 8].
As mentioned above, those methods have the disadvantage to be slower than FBP type methods,
as the forward and adjoint problem have to be solved repeatedly.

Wavelet-vaguelette decompositions and generalizations like biorthogonal curvelet decompositions
and shearlet decompositions have been derived for the classical Radon transform in 2D, see [1, 33,
17, 25, 63]. To the best of our knowledge, this paper is the first to provide a WVD for photoacoustic
tomography as well as an efficient direct implementation of sparse regularization using wavelets for
that case.

Organization of the paper In section 2 we review the mathematical principles of PAT with
a flat observation surface and collect results required for our further analysis. In Section 3 we
derive the WVD for the forward operator. The WVD is then used to define the soft-thresholding
estimator in Section 4. In that section we also discuss the equivalence to variational estimation such
as ('-Tikhonov regularization. The efficient implementation of the estimator requires and efficient
implementation of the vaguelette transform. Such an algorithm is derived in Section 5, where we
also present results of our numerical simulation

2 PAT with a flat observation surface

Let C§°(H.) denote the space of compactly supported functions f: R? — R that are supported in
the half space H := R x (0,00), where d > 2. We write (z,y) € R! x R = R? and consider
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the initial value problem

(0? — Agy)u(z,y,t) =0, (z,y,t) € R x (0, 00),
u(z,y,0) = h(z,y), (z,y)€R? (3)
8tu( z,y, ) = 07 ($,y> € Rd7

with f € Cj°(Hy). We assume that the pressure data is observed on the hyperplane 0H, =
R x {0} and define the corresponding PAT forward operator as

U: C°(H, ) — C*(RY)

(UR) (1) = {“@’O’t% for £ > 0,

0, else,

where u denotes the unique solution of (3). Our aim is to recover f from exact or approximate
knowledge of Uh. We are particularly interested in the cases d = 2 and d = 3, as they are of
practical relevance in PAT (see [66, 15]). Nevertheless, in what follows, we consider the case of
general dimension since this does not introduce additional difficulties.

2.1 Isometry property

The following isometry property for the wave equation is central in the analysis we derive below.
For odd dimensions, it has been obtained in [13], and for even dimensions in [72]; see also [9].

Lemma 1 (Isometry property for the operator U). For any f € C°(Hy) we have

oo 2 00 2
Rd-1 Jo t R4-1 J0 Yy

Proof. See [13] for d odd and [72] for d even. O

From Lemma 1 it follows that U extends to an isometry on the space cl(C§°(Hy)) with respect

to the scalar product (h,g)o = [pa-1 [y h(m)g(z) dydz. In view of the isometry property and the
desired wavelet-vaguelette decomposition, 1nstead of the operator U, it is more convenient to work
with the modified operator

A: GR(HL) - CX(RY)
-1/2 4 o yl/2 . -
(Af)(x,t) = {(t Uoy/#)(f)(z,t) fort>0, (5)

0, else.

It is not hard to see that A is an isometry with respect to the inner product

(hy g) 1ogas,) = / / W, y)g(@y) dt de.
Rd-1Jo

We have the following result.

Lemma 2 (Isometry property for the operator A). Let A be defined as in (5). Then, the following
assertions hold:
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(a) For all f € Cg°(Hy) we have [|Afl g2,y = [f1l L2, -

(b) The operator A uniquely extends to an isometry A: L?>(Hy) — L?(H,).

Proof. (a) According to Lemma 1 for every f € Cg°(H; ) we have
N B A VICTTE e
= [, [ e s P ads
rR-1 Jo
o0 1/2 2
:/ / U =N@OF 4w
Rd—1 Jo t

00 |,,1/2 2
:/ / [y /2 f(z,y)] dy da.
RA—1 Jo Yy

- /Rd—l /OOOW“;’ y)[*dy dz.

(b) The set C§°(H,) is dense in L?(H;) and, according to (a), the operator A is an isometry on
C°(H, ). Consequently, it follows from the general Hilbert space theory that the operator A can be
extended in a unique manner to an isometry A: L?(H,) — L?(R?). Finally, from the construction
of A it is clear that A (L*(Hy)) C L*(H,). O]

2.2 TIsometric extension to L*(RY)

For the following considerations it will be convenient to apply the operator A to functions that
are defined on R? rather than on the half space H,. That is, we need to extend the operator
A: L?(H,) — L*(H,) in a meaningful way to an operator A: L2(R?) — L%(R?). One possibility
to do this would be to consider the wave equation (3) with initial data f € C§°(R?) and then to
proceed as above. However, any function that is odd in the last variable would be in the kernel of
the resulting operator. Therefore, we use a different extension that leads to an isometric operator
on L%(R%).

To that end, we define the operator S: L?(R?) — L?(R%) by (Sf)(x,y) := (Sf)(z,—y). Then S
is an isometric isomorphism with S™' = S and S(L?(H,)) = L*(H_), where H_ is defined in an
obvious way. We are now able to define the announced extension of A.

Definition 3. We define the operator A: L*(R%) — L?(R%) by
A(f) = A (Prag,)f) + (S0 AoS) (Prag ) f) (6)

Here and below Py f denotes the orthogonal projection onto a closed subspace V of L>(R?).

Theorem 4. The operator A: L*(R?) — L2(R?) is an isometry.

Proof. Any function f € L?(R?) can be written in the form f = Prog,yf+Prem_)f and satisfies
HfH%2 = HPL2(H+)J£H%2 + |’PL2(H7)f|\%2. From Definition 3 and Lemma 2 we then conclude that
IAflI7> = [ fll72 for every f e L*(RY). O
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In what follows, we will also consider the operator
Us dom (U) € I2(RY = LR b (/20 Ao ly )

as a densely defined operator on L?(R%). Here, dom (U) is the set of all (equivalence classes of)
functions h: R? — R such that |y| /2 h € L2(RY).

2.3 Explicit expressions for A and its dual

In this section we will state explicit expressions for the operator A and its dual. For that purpose,
we consider the spherical Radon transform M, which is defined as follows:

Wz, 1) € OHL x (0,00):  (Mf)(@,r) i= —

= W - flz+rw)dS(w), (7)

where §"7! := {z € R" | [z| = 1} denotes the unit sphere in R™ and |S"!| is its surface measure.
A simple calculation (application of Fubini’s Theorem) shows that the dual M* of the operator M

is given by
o o(a i)
M*g)(z,y) =
( g)( y) |Sn—1| Rn—1 (||Z—y||2—|—x2)(”_1)/2

The operator M* is called spherical backprojection operator, because (M*g) (x, z) integrates the
function g over all spheres (z,r) that pass through the point (z, 2).

ds(z). (8)

We will also consider the (fractional) differentiation operators

Dl = {E(Qt)lat)“ , for p e N, ()

@26)719)" TP A, for peN—-1/2.

The formal L? adjoints of those operators are given by (D})* = (=1)“D}t™! for u € N and
(DY)* = (‘U”HﬂA*thHpt*l for p € N—1/2, where

(A*g)(t) = jﬁ? too \/%ds, for t € (0,00).

We are now able to provide explicit expressions for the operator A and its dual A*.

Lemma 5. We have

T _ n— n—
Vf € C°(H,): Af:m\gm)(t 1/2p(n=3)/2 2Myl/?f), (10)
* T *yn— n— *,
Vge OF(H,): Afg= 2r\(£/2) (yl/zM 2D/ 1/2g) . (11)

Proof. The identity (10) follows from the well known explicit expression for the solution of the wave
equation (see [28, page 682] and [35, page 80]). The identity (11) follows from (10) by applying
calculation rules for the adjoint. [
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3 Wavelet vaguelette decomposition (WVD)

In this section, for a given wavelet basis (1)) )aea of R?, we construct the WVD of the operators U
and A that we defined in the previous section and prove inversion formulae for the case of exact
data. To that end, we particularly will make use of the isometry relation that we proved in Section
2.

The basic idea of the WVD is to start with an orthogonal wavelet basis and to construct a possibly
non-orthogonal basis system of the image space in such a way that the operator and the prior
information are simultaneously (nearly) diagonalized [33]. For readers convenience, we summarized
some basic facts about wavelets in Appendix A.

3.1 The idea of the WVD

Let K: dom (K) C L*R?%) — L2?(R%) be a linear, not necessarily bounded, operator and let
(¥A)aea be an orthonormal wavelet basis of LQ(Rd). The construction of a wavelet-vaguelette
decomposition for the operator K amounts to finding families (uy )y, (vy)x in L?(R%) satisfying the
following properties:

(WVD1) Quasi-singular relations (with A = (j, k,¢)):

Ky = Kkjvy,
K uy = K9y .

(WVD2) Biorthogonal relations: (uy,vy)pz = 6y x.

(WVD3) Near-orthogonality relations:

Ve e 12(A HZ C)\U)\H , = llellg, (12)
Ve e £2(A): HZCWHLQ = Jell,, - (13)
AEA

Here, f < g means that there are constants A, B > 0 such that Ag < f < Bg.

Such a decomposition (¢, ux, vy, kj)aen (if it exists) is called a WVD for the operator K. Given
such WVD for an operator K, one can always obtain an explicit inversion formula for the operator
K of the form

Vfedom(K): f=> r;(Kfux)2is. (14)
AEA
Note the analogy between (14) and the SVD decomposition. The numbers x; depend here only
on the scale parameter j and have the same meaning as singular values in the SVD. Thus, &; are
referred to as quasi singular values. Similarly to the SVD, the decay of the quasi singular values
rj reflects the the ill-posedness of the inverse problem g = Kf.

A WVD decomposition has been constructed for the classical computed tomography modeled by
the two dimensional Radon transform, where x; = 27 /2; see [33]. In the case of the two dimensional
Radon transform, a generalization of the WVD, a so-called biorthogonal curvelet decomposition
was constructed in [17]. In [25], the authors derived biorthogonal shearlet decompositions for two
and three dimensional Radon transforms.
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In the case of photoacoustic tomography, there are no such decompositions available so far. In the
next subsection, we establish a WVD for the operators U and A, which serve as forward operators
for PAT with a planar observation surface, and so automatically obtain an inversion formula for
exact data.

3.2 Construction of the WVD for PAT

Let (1y)rea be a wavelet basis of L2(R?). The desired wavelet-vaguelette decomposition of U and
A is in fact a direct consequence of the isometry relation of Theorem 4.

Theorem 6 (The WVD for PAT). For every A € A define uy := Ay and let vy = uy. Then, the
family (P, ux, vx, Daca is a WVD for the operator A. Moreover, we have the inversion formulae

Vf e L*(RY): F= (Afun)2 (15)
AEA

Vh € dom (U) : h=3" <Uh,f1/2uA>L2 Y/ 24h. (16)
AEA

Proof. We start with an arbitrary function f € L%(R?%) and express this function in terms of a
wavelet expansion f = Yy (f,¥a)r20x with respect to (¢x)rea. Then according to the isometry
property (uy)xea is an orthonormal basis of ran (A) and further A*uy = ). In particular, this
amounts to a WVD decomposition with vy = uy and x; = 1. Further, (15) is a consequence of the
WVD. Next, let f =y~ /2h be an element in dom (U). Then

(Afoun) e = (7 URun) | = (U720,
Consequently, applying (15) yields (16). O

Note that the identity (16) in Theorem 6 is an explicit inversion formula for the operator U in the
spirit of a WVD. Instead of an orthonormal wavelet basis it uses the family (y'/ 23p\), which is
non-orthogonal with respect to the L? inner product. Restricted to functions in LQ(Rd) that vanish
outside K := K, US(K ), where K, € H is any compact subset, the operator h ~ |y|'/2h is an
isomorphism. Then, (|y|"/2¥x)xea allows to characterize the Besov norm || - || By, of any function
that is supported in K. ’

Figure 2 shows a vertical, a horizontal and a diagonal Daubechies 10 wavelet and the corresponding
vaguelettes obtained by application of the operator A.

4 Inversion from noisy data

In what follows, we assume (¥))xea to be an orthonormal compactly supported wavelet basis of
L?(RY). Further, by (uy)xea we denote the corresponding vaguelette basis of ran (A) C L?*(R%)
that satisfies Ay = uy.

If exact data are available, then the WVD decomposition (15) provides an exact reconstruction
formula for the unknown f. However, in practical applications the data Af (or Uh) are only
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Figure 2: WAVELETS AND VAGUELETTES.

known up to some errors (e.g. noise). We therefore assume that we are given erroneous (noisy)
data

g=Af+z, (17)
where z is the error term and f the exact unknown. We consider both the deterministic and the

stochastic case, in which different models for z are assumed:

m In the deterministic case, we assume that a bound ||z||;2 < d is available.

m In the stochastic case, we assume that z = §Z, where Z is a white noise process.

In the deterministic situation the constant 6 > 0 is referred to as the noise level; in the stochastic
case it is the noise standard deviation. The goal in both situations is to estimate the unknown
f € L2(R?) from data in (17).

4.1 Vaguelette-thresholding estimator

In Section 3 we have shown that the reproducing formula f = A*Af =3\ 1 (Af,ux) 2 ¥ holds
in the case of exact data. If the data is corrupted by noise, i.e., g = Af + z, the inner products
(A f,uy) 2 cannot be computed exactly. Instead, they are estimated by first evaluating (g, ux) 2
and then applying the soft-thresholding operation

y+w ify<-—w
sw: R—=R:y— <0 if y € [—w,w] (18)
y—w ify>w

with appropriate thresholds w = w;.
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Definition 7 (WVD soft thresholding estimator). For any nonnegative sequence w = (wj);, the
WVD soft thresholding-estimator for the solution of (17) is defined by

Su: L2(RY) — LA(RY): g — stj«g,%\)m)%, (19)
/\

with the nonlinear soft-thresholding function s, defined in (18).

In the deterministic case we assume that the error term z is known to satisfy ||z|| < §. In this case,
due the isometry property of the operator A, one obtains a stable reconstruction by applying the
adjoint A*,

Vfe L’ (RY):  sup||f— A*(Af+2)|=90. (20)

llzll<s

As the adjoint operator satisfies A* = Sy, i.e., A* corresponds to the WVD-thresholding estima-
tor with w = 0, it follows that also the class of WVD-thresholding estimators yields the optimal
error estimate. Without additional knowledge about the noise there is no need to apply the WVD
soft-thresholding estimator with w # 0, even if the function f is known to belong to some smooth-
ness class, such as a Sobolev or Besov ball. However, if a portion of the noise energy is known to
correspond to high frequency components, then using non-zero thresholds may significantly out-
perform A* given that f belongs to some smoothness class. For example, this happens in the case
of stochastic white noise, where the energy-spectrum is uniformly distributed.

4.2 Optimality of vaguelette-thresholding

Suppose z = §Z, where Z is a white noise process. In the case of random noise, it is common
to measure the performance of an estimator R: L?(R%) — L?(R?) in terms of the worst-case
risk [33, 62, 32, 93] of a subset M C L?(R%),

A(R,6, M) = sup E (IIf — R(AS +52)|32) (21)
fem

Further define the nonlinear minimax risk, the minimax risk using the WVD estimator (19) and
the linear minimax risk, respectively by

AN(5, M) == inf sup E (||f —R(Af+ 5Z)H2Lz) ,
R fem

Aw(,M) = inf sup E(|[f = Su(Af +62)|3:) .
wel0,00)N fem

ALOM) = intoup B (1] - R(AS +07)[:)

From the definition it is clear that no reconstruction method R: L?(R?) — L?(R?) can have worst-
case risk A(R,J, M) smaller than the non-linear minimax risk Ax(d, M). We are in particular
interested in asymptotic behavior for the case § — 0 and M is a ball in a Besov space.

Theorem 8. Suppose that r > d(1/p — 1/2) and let M be a ball in the Besov-norm having the
form

M={fer®)||/l
Then, as 6 — 0, the following hold

By, < Q} for some 0 > 0. (22)

10


Admin
am_pp_logo_01


(a) An(6,M) = 57547,
(b) Aw (9, M) < cw Ax(9, M) for some constant cyw > 0,

rd(1/2-1/p_)

(c) ApL(6, M) =< 5210 qpith p— = min{2,p}.
Proof. Follows from [33, Theorem 4] for the special case k; = 1. O

Theorem 8 implies that, despite its simplicity, the WVD-thresholding estimator is order optimal
on any Besov-ball and the rate cannot be improved by any other estimator (up to some constant
factors). On the other hand, if p < 2, then the exponent in the linear minimax rate is strictly
smaller than the exponent in the non-linear minimax rate, T;L_f&{i% Ii _)) < +:l 73 Therefore, no
linear estimator can give the optimal convergence order. In particular, this implies that the WVD-
thresholding estimator outperforms filter based regularization methods including the truncated

SVD or quadratic Tikhonov regularization.

4.3 Variational characterizations and extensions

The WVD-based soft thresholding estimation can be characterized via various variational minimiza-
tion schemes that, as we shall discuss later, in turn offer several extension of the WVD-estimators.

Theorem 9 (Variational characterizations of vaguelette thresholding). Let (w;); be a sequence of
thresholds and let g, f € LQ(Rd). Then the following assertions are equivalent:

(1) f = Sw(g);
(2) f = avgmin {J 1A = gl* + Cen wylr, )] | £ € LARY};

(3) f 18 the unique solution of the constraint optimization problem

. 1 2
o5 1f1IZ2 )
- A
such that max M <1.
AEA W

Proof. (1) % (2): Let f denote the minimizer of & [|Af — g[|*+3ycp w [(¥x, f)]- Because (uy)ren
is an orthonormal basis of ran (A) we have ||Af — g||* = ||73mn(A)L(g)||2 + > aen [(Af = g, un)|?.

Further, >\ o wj [(¥x, )] = > aen wj [{un, A f)], which shows that f is the unique minimizer of

ST LUAS — gown)? +wi | un, AS)] -

AEA

The latter functional is minimized by minimizing every summand

D((Af,un)wy) = 5 [(Af,wn) — (g, wn) ] +w; |(ux, Af)|

independently in the first argument. The minimizer is given by one-dimensional soft thresholding
which gives (f, 1) = (Af, ux) = su, (g, ur)) and therefore f = S, (g).

11
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(1) < (3): Let f denote the solution of (23). Using that (yx)rea is an orthogonal basis and
¥ = A*uy, shows that f can be equivalently characterized as the minimizer of

min %Z\(Af,qu

feL2(RY)
AEA A (24)
such that max w <1.
AEA W

The minimization problem (24) can again be solved separately for every component (A f, u,) which
is again given by the one-dimensional soft thresholding (A f,ux) = su,;((g,ux)). As above this

implies f = Sw(9). O

The variational characterizations of Theorem 9 have several important implications. First, they
provide an explicit minimizer for the ¢!-Tikhonov functional

1
Ry (f) = 5 AL = gl* + 3wy ltwn. I

A€A

which in general has to be minimized by an iterative algorithm, such as the iterative soft thresh-
olding algorithm and its variants [26, 27, 30, 8]. For the analysis of ¢!-Tikhonov regularization
for inverse problems see [30, 48, 49, 69]. Another important consequence is that the WVD-soft
thresholding estimator can be generalized in various directions. In particular, one can get a gen-
eralization of (23) by replacing the L?-norm in (23) by an appropriate regularization functional J
(for example, J can be chosen as the total variation norm, see Section 5.3). That is, instead of
solving the problem (23), one aims at solving the problem

fegg(%d) TU) (
_ 25)
such that max w <1,
AEA wy

This generalization constitutes a hybrid version that combines the WVD estimator with more
general regularization functionals 7. Such hybrid approaches have been introduced independently
in [18, 34, 70, 89] (see also [21, 24]). It is also related to the Dantzig and multiscale estimators of
[19, 41, 43, 50, 56, 74].

5 Numerical implementation

In this section, we provide algorithms for the calculation of the vaguelette transform and the
corresponding WVD estimator. Moreover, we consider a hybrid version of the WVD estimator
that combines wavelets and TV regularization and discuss its implementation. We also present
some numerical examples. Throughout the following (¢)xea denotes an orthonormal wavelet
basis of L?(R%) and (uy)xea is the corresponding orthogonal vaguelette basis of ran (A) C L?(R%)
defined by uy = A, (see Section 3).
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Figure 3: LIMITED VIEW PROBLEM. If data is are collected with finite aperture @), not all features of
f can be stably recovered. Only singularities (x, &) can be reconstructed for which =+ R¢ intersects

Q.

5.1 Practical aspects

The considered noisy data model (17) assumes that the data can be collected on the whole hyper-
plane OH . However, this is not feasible in practice since the data can be collected only on a finite
subset. In this subsection we discuss the effects of partial (or limited view) data and discretization.

First, we address the limited data issue. In the considered imaging setup, the data is collected on a
subset Q x [0, 7] where @ C R?~! is the finite measurement aperture (see Figure 3) and T' € (0, 00)
the maximal measurement time. Such partial or limited view data can be modeled by

g(.’E, t) = (XQX[O,T} Af) (x> t) ) (26)

where xgx[0,7] denotes the characteristic function of @ x [0,7]. Using partial data g, only certain
features of h can be reconstructed in a stable way, see [6, 45] and Figure 3. Consequently, the
practical problem of reconstructing h from partial data, is a limited data problem and therefore
severely ill-posed. It is therefore common to incorporate a-priori information into the reconstruc-
tion and so to regularize the reconstruction. In this work, we are doing it in two ways: First,
we incorporate wavelet sparsity assumptions. This is what the WVD estimator does, which is
implemented by evaluating fT = > xen (9, ur) 2 ¥a. The partial reconstruction fTis a “good”
approximate reconstruction for f, since it recovers all visible boundaries of f correctly and can be
evaluated stably. Second, we combine wavelet sparsity with TV regularization by using the using
the hybrid estimator (25) to impose even more regularization.

Another practical restriction is that only a finite number of samples of the pressure can be measured.
Assuming equidistant sampling and limited view data g as in (26) with Q@ = [0,7]%"!, the actual
sampled data are given by

gln,m] = g(nAn,mAy) + z[n,m], (n,m)e{1,.... N} " x{1,...,m}. (27)

Here N and M are natural numbers, Ay := X/N and Ay; := T'/M are the sampling step sizes
and z[n,m| decribes the noise in the data. Using Shannon sampling theory it ca be shown that
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(27) is correctly sampled for Ay = Ay < 7/, where Q is the essential bandwidth of f; see [59].
The precise analysis of discretization effects on the considered vaguelette estimators is beyond the
scope of this paper.

5.2 Implementation of the vaguelette transform

Analogously to the wavelet transform, we can define the vaguelette transform of g € L?(R?) corre-
sponding to the operator A by Vg = ({(ux,g)2) - From the representation uy = Ay and the
definition of vaguelette transform we have

Vge L2RYVAEA: (Vg)(\) = (AU, g) 12 = (hn, A*g) 2 (28)

Hence, the vaguelette transform can be computed by first applying the adjoint A* to the data g
and then calculating the wavelet transform of A*g.

Algorithm 1 Discrete vaguelette transform

1: Compute Bg € RN *M with Bg[n, m] ~ A*g(nAy, Apy)
2: Compute the discrete wavelet transform WBg

Assuming discrete data g € RV M of the form g[n, m] = g(nAy, mAy), the discrete vaguelette
transform can efficiently be computed by Algorithm 1. Both the steps in this algorithm are well
known and numerically efficient. For the first step we use a numerical approximation of A* by
numerically implementing (11) with a filtered backprojection (FBP) algorithm (see [15, 16]). For
evaluating the second step we use the implementation of the fast discrete wavelet transform provided
by the MATLAB function wavedec?2.

5.3 Implementation of the reconstruction algorithms

For the numerical experiments, that will be presented in the next section, we implement the WVD
soft-thresholding estimator defined by (19) as well as a hybrid vaguelette-TV approach defined by
(25) with J(f) = ||f|lpy being the TV norm of f. In both cases we choose ¢ as a half of the so
called universal threshold o/2log(N¢M) that can be derived from extreme value theory [32, 55].

The implementation of the WVD soft-thresholding estimator is summarized in Algorithm 2. It is
based on the discrete vaguelette transform that was presented in Algorithm 1.

Algorithm 2 WVD soft-thresholding estimator.

1: Compute vaguelette coefficients ¢ = Vg by applying Algorithm 1
2: Apply soft thresholding to ¢ using threshold ¢
3: Apply the inverse wavelet transform

Given discrete data, the hybrid vaguelette-TV approach can be written in the form

min £y such that [[W(Bg— 1) <4q, (29)
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where B denotes the discrete FBP operator. One recognizes that (29) can be implemented by ap-
plying a hybrid wavelet-TV denoising algorithm to Bg. Following [42], we rewrite the optimization
problem (29) in the form

r?,ivn I£llrv + iy <wy such that f+v=3Bg, (30)
and introduce the associated augmented Lagrangian operator
Le(8,v, ) = el + iggus<u) + (1T +v—Bg) + o[£ +v—Bgl3.
Then, (30) can be solved by the alternating direction method of multipliers (ADMM), introduced
in [46, 47], which alternatingly performs minimization steps with respect to £ and v and maximiza-

tion steps with respect to u. The resulting ADMM algorithm for solving (29) is summarized in
Algorithm 3.

Algorithm 3 Hybrid vaguelette-TV approach

cfo=vo=po =0

. for kZO,l,...,Niter do
£h1 € argmin } £ — (Bg — vi — )3+ ¢y
Vi1 = q(Bg — £1 — cpy) / max{q, [Bg — £ry1 — cpupll2}
firr1 = pu + ¢ (fp1 + Vg1 — Bg)

end for

@ ek Wy

For performing the f-update in Algorithm 3 we have to solve the unconstraint total variation
minimization problem 3 || — (Bg — vj, — cur)|l3 + ¢ ||£|lpy- For this purpose we use Chambolle’s
dual projection algorithm [20].

5.4 Numerical examples

In this section we present a numerical example testing the vaguelette soft-thresholding and the
hybrid approach. For that purpose we consider a simple phantom that consists of the superposition
of three uniformly absorbing spheres as illustrated in the top image in Figure 4. The data g =Af
are computed numerically using an implementation according to (10). To simulate data errors, we
added i.i.d Gaussian noise with standard deviation ¢ = 0.25. The relative ¢?-error in the noisy
data g’ is ||g® — g||2/||g]|2 = 1.05.

Results of our reconstruction from noisy data are shown Figure 5. The top image shows the non-
regularized reconstruction f‘SFBP =A g‘s, the middle image the vaguelette-thresholding reconstruction
f%va and the bottom image the reconstruction with the hybrid vaguelette-TV method £ flybrid. Fig-
ure 6 shows corresponding difference images between the reconstructions and the true phantom f.
One clearly observes that the vaguelette estimators significantly reduce the error in the reconstruc-
tion. This can be quantified by the relative ¢>-errors, which are equal to ||£4gp — £[|2/||f]]2 = 0.66
for the unregularized reconstruction, [£%~p — £ll2/[/f]l2 = 0.38 for the vaguelette thresholding
estimator ”fflybrid — £||2/||£||2 = 0.42 for the hybrid estimator. The relative ¢>-error for the hybrid
reconstruction is slightly larger than for the vaguelette-thresholding estimator. This is reasonable
since the vaguelette-thresholding estimator minimizes the ¢2-norm (see (23)) among all potential
reconstructions f that are compatible with the data, whereas the hybrid estimator minimizes the
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Figure 4: PHANTOM, DATA AND RECONSTRUCTION FROM (NOISE FREE) PARTIAL DATA. One
notices the typical limited view artifacts in the form of smearing out of almost vertical boundaries.

total variation. However, in some more appropriate error measure the hybrid reconstruction may
outperform the thresholding estimator. Further note that all reconstruction methods contain some
limited data artifacts, which cannot removed completely by wavelet methods [6, 45, 59, 75, 90].

6 Conclusion

In this paper we developed a regularization framework using wavelet sparsity in photoacoustic to-
mography. For that purpose we derived wavelet-vaguelette (WVD) decompositions (see Theorem 6)
and an easy but efficient implementation of the corresponding vaguelette transform (see Algorithm
1). Using the WVD we derived an explicit formula for minimizing the sparse Tikhonov functional
that can be implemented without any iterative reconstruction procedure (see Algorithm 2). The
considered regularization approach has been shown to provide optimal error estimates in the de-
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Figure 5: RECONSTRUCTIONS FROM NOISY DATA.

terministic as well as in the stochastic setting (see Theorem 8). In order to account for wavelet
artifacts we also developed hybride regularization methods combining wavelet sparsity with total
variation (see Algorithm 3). Numerical results demonstrate the feasibility and efficiency of our
reconstruction approaches. Future work will be done to extend our approach to more general
measurements geometries in PAT and also to different Radon type inverse problems.

A Orthogonal wavelets

We recall some basic facts about orthogonal wavelets as we need them for our purpose (in particular
in Section 3). For task of function estimation, wavelets are known to sparsely represent many signals
and, hence, they can be used to effectively encode prior information. Another useful property of
wavelets consists in the ability to characterize several classical smoothness measures (eg. Sobolev
and Besov norms) in terms of the decay properties of wavelet coefficients. We will also use that
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Figure 6: DIFFERENCES BETWEEN RECONSTRUCTIONS FROM NOISY DATA AND THE ORIGINAL
PHANTOM.

property in Section 4. For a detailed introduction to wavelets we refer to [23, 29, 71].

A.1 One-dimensional wavelets

We first briefly recall the basic definitions and notations of orthonormal wavelet bases (wavelet
ONB) in one spatial dimension, which will be then extended to higher dimensions.

The construction of a wavelet ONB is based on the concept of a multiresolution analysis (MSA),
which is given by a sequence subspaces (V}) ez in L? (R) that satisfy the following requirements
(see [23, 29, 71]):

m For all j € Z it holds that V; C Vj4.
m The union (J;cy V; is dense in L% (R).

] ijZ Vj = {0} .
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m For every j € N, we have f € V; <= f(5) € V1.
m There is a function ¢ € L? (R) such that the translates (o(- — k))gez constitute an ONB of
the scaling space Vj.

The function ¢ is called scaling function and the spaces V; are called scaling (or approzimation)
spaces at scale j. To each scaling space Vj, one can associate a wavelet (or detail) space Wj, that
are defined to be the orthogonal complements of V; in V1, i.e., V11 = V; @ W;. Because of the
above properties it holds that, for each j € Z and t € R, the functions

s gy (1) = 2920 (27t — k)

constitute an ONB for the scaling space V. One can also show that from the existence of the scaling
function it follows that there exists a so-called generating wavelet (or mother wavelet) ¢ € L? (R)
such that, for each j € Z and t € R, the functions

Vik () =202 (27t — k)

constitute an ONB for the spaces W;. Hence, we have that, for every j € Z, the following mappings
are bijections:

Vi = C(Z): f— ((pjn: ) | K€LY,
W; = 2(Z): [ (jn, f) | keZ).

The above constructions provide the following decompositions of the signal space L? (R) into the
sum of the scaling spaces V; and the wavelet spaces W;, or into a sum of only wavelet spaces:

L*(R)=Voo W, = Pw;
j=20 JEL

From these decomposition we immediately get the following decompositions of signals f € L? (R):

F=Y {feordeor+ DD (fvim) i

keZ J=0 kezZ
=3 (i
jez kez

The coefficients of the above decomposition are called the wavelet and scaling coefficients of f,
respectively, and the corresponding mapping that maps f to those coefficients is called the wavelet
transform of f. A detailed construction of orthogonal (and biorthogonal) wavelet systems together
with many interesting details may be found, for example, in [23, 29, 71].

A.2 Wavelets in higher dimension

Wavelet bases in higher dimensions can be defined by taking tensor products of the one-dimensional
wavelet and scaling functions. As a concrete example consider L?(R?) = L?(R) ® L?(R) and let
1,¢: R — R be the generating wavelet and scaling functions, respectively. Then, an orthogonal
wavelet basis of L?(IR?) is defined by translates and scaled versions of the (tensor product) functions

P (2,y) € R? = 9h(2)p(y)
@) (z,y) € R? = o(2)Y(y)
P& (2,y) € R? > h(2)(y) .
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The corresponding scaling functions at scale j € Z of two variables are defined as translated and
scaled versions of

O (z,y) = p(x)p(y).

Analogously to the above construction in two dimensions, one can define a wavelet ONB in R? by
a tensor product construction. In this case we get 2¢ — 1 different generating wavelets () and
one generating scaling function ¢(©). Therefore, a wavelet ONB in R? is system (1) )rea in L2(R%),
where the index A = (j, k, ) consists of three parameters, the scale index j € Z, the location index
k € Z% and the orientation index e € {1,2, 20— 1}. The wavelet basis elements are again
defined as dilates and translates of the generating wavelets 1():

Yjge(a) = 279429 Pz — k). (31)
If we also add the index set A_j := {0} x Z¢ and consider the scaling functions defined by
o) = 2772002z — k),

the we get similar decompositions to the one-dimensional case:

2¢_1
F= {fvordeor+ Y > D> (ke Ve
k‘GZd ]20 k‘EZd e=1

241

— Z Z Z (f, Vi ke)Vjhe-

JEZL kezd e=1

For f € L?(R%) we define the wavelet transform as
W) A= R X W (A) = (P, f) - (32)

Then the wavelet transform W: L? (]Rd) — 2 (A) : f — WS is an isometric isomorphism with the
reproducing property f = W*W{.

A.3 Besov spaces

Orthonormal wavelet bases can be used to characterize smoothness of functions in terms of the decay
properties of wavelet coefficients. In particular, wavelets provide a convenient and a numerically
efficient way to characterize Besov spaces and calculate Besov smoothness of functions, see [23].
Skipping the details, we here only mention that the Besov spaces Bf,’q(Rd) can be defined by the
condition, that the Besov norm

j d d
J— . . q . . @ a
1fllsy, = D2 WF G, I with s =7+ b’
JeN
is well defined and finite. We note that, the given definition of || -||5- is an equivalent norm to
P,q

the classical definition of Besov norms. The above characterization holds as long as the generating
wavelet has m > r vanishing moments and is m-times continuously differentiable.

In Section 4, we use the above characterization of Besov norms in terms of wavelet coefficients in
order to evaluate the performance of our method for functions that lie in balls of Besov spaces
B;q(]Rd) for some given norm parameters p, ¢ > 1 and smoothness parameter r > 0.
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