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Abstract

The development of fast and accurate image reconstruction algorithms is a central
aspect of computed tomography. In this paper we address this issue for photoacoustic
computed tomography in circular geometry. We investigate the Galerkin least squares
method for that purpose. For approximating the function to be recovered we use
subspaces of translation invariant spaces generated by a single function. This includes
many systems that have previously been employed in PAT such as generalized Kaiser-
Bessel basis functions or the natural pixel basis. By exploiting an isometry property
of the forward problem we are able to efficiently set up the Galerkin equation for a
wide class of generating functions and devise efficient algorithms for its solution. We
establish a convergence analysis and present numerical simulations that demonstrate
the efficiency and accuracy of the derived algorithm.

Key words: Photoacoustic imaging, computed tomography, Galerkin least squares
method, Kaiser-Bessel functions, Radon transform, least-squares approach.
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1 Introduction

Photoacoustic tomography (PAT) is an emerging non-invasive tomographic imaging modality
that allows high resolution imaging with high contrast. Applications are ranging from breast
screening in patients to whole body imaging of small animals [4, 45, 27, 58]. The basic
principle of PAT is as follows. If a semitransparent sample is illuminated with a short pulse,
then parts of the optical energy are absorbed inside the sample (see Figure 1.1). This causes
a rapid thermoelastic expansion, which in turns induces an acoustic pressure wave. The
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optical illumination induced acoustic wave

f(x)

p(x,t)

Figure 1.1: Basic principle of PAT. Pulsed optical illumination and subsequent thermal
expansion induces an acoustic pressure wave. The pressure wave is measured outside of the
object and used to obtain an image of the interior.

pressure wave is measured outside of the sample and used for reconstructing an image of the
interior.

In this paper we work with the standard model of PAT, where the acoustic pressure
p : Rd × (0,∞)→ R solves the standard wave equation





∂2
t p(x, t)−∆xp(x, t) = 0 , for (x, t) ∈ Rd × (0,∞) ,

p(x, 0) = f(x) , for x ∈ Rd ,

∂tp(x, 0) = 0 , for x ∈ Rd .

(1.1)

Here d is the spatial dimension, f : Rd → R the absorbed energy distribution, ∆x the spatial
Laplacian, and ∂t the derivative with respect to the time variable t. The speed of sound is
assumed to be constant and has been rescaled to one. We further suppose that f vanishes
outside an open ball BR(0) ⊆ Rd. The goal of PAT is to recover the function f from
measurements of Wf := p|∂BR(0)×(0,∞). Evaluation of W is referred to as the direct problem
and the problem of reconstructing f from (possibly approximate) knowledge of Wf as the
inverse problem of PAT. The cases d = 3 and d = 2 are of actual relevance in PAT (see
[29, 7]).

In the recent years several solution methods for the inverse problem of PAT have been de-
rived. These approaches can be classified in direct methods on the one and iterative (model
based) approaches on the other hand. Direct methods are based on explicit solutions for
inverting the operator W that can be implemented numerically. This includes time reversal
(see [8, 24, 12, 43, 54]), Fourier domain algorithms (see [1, 20, 31, 46, 53, 59]), and explicit
reconstruction formulas of the back-projection type (see [2, 11, 12, 15, 16, 18, 19, 30, 32, 41,
42, 61]). Model based iterative approaches, on the other hand, are based on a discretization
of the forward problem together with numerical solution methods for solving the resulting
system of linear equations. Existing iterative approaches use interpolation based discretiza-
tion (see [9, 47, 48, 52, 62]) or approximation using radially symmetric basis functions (see
[56, 57]). Recently, also iterative schemes using a continuous domain formulation of the
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adjoint have been studied, see [3, 5, 17]. Direct methods are numerically efficient and ro-
bust and have similar complexity as numerically evaluating the forward problem. Iterative
methods typically are slower since the forward and adjoint problems have to be evaluated
repeatedly. However, iterative methods have the advantage of being flexible as one can
easily add regularization terms and incorporate measurement characteristics such as finite
sampling, finite bandwidth and finite detectors size (see [9, 22, 51, 55, 56, 60]). Additionally,
iterative methods tend to be more accurate in the case of noisy data.

1.1 Proposed Galerkin least squares approach

In this paper we develop a Galerkin approach for PAT that combines advantages of direct
and model based approaches. Our method comes with a clear convergence theory, sharp
error estimates and an efficient implementation. The Galerkin least squared method for
Wf = g consists in finding a minimizer of the restricted least squares functional,

fN := arg min{‖Wh− g‖ | h ∈ XN} , (1.2)

where XN is a finite dimensional reconstruction space and ‖ · ‖ an appropriate Hilbert space
norm. If (ϕkN)k∈ΛN is a basis of XN then fN =

∑
k∈ΛN

cN,kϕ
k
N , where cN = (cN,k)k∈ΛN is the

unique solution of the Galerkin equation

ANcN = (〈WϕkN , g〉)k∈ΛN with AN := (〈WϕkN ,Wϕ`N〉)k,`∈ΛN . (1.3)

We call the matrix AN the (discrete) imaging matrix.
In general, both the computation of the imaging matrix as well as the solution of the

Galerkin equation can be numerically expensive. In this paper we demonstrate that for the
inverse problem of PAT, both issues can be efficiently implemented. These observations are
based on the following:

� Isometry property. Using the isometry property of [11, 12] one shows that the
entries of the system matrix are given by R

2
〈ϕkN , ϕ`N〉L2 ; see Theorem 2.2.

� Shift invariance. If, additionally, we take the basis functions ϕkN as translates of
a single generating function ϕ ∈ L2(Rd), then 〈ϕkN , ϕ`N〉L2 = 〈ϕ0

N , ϕ
k−`
N 〉L2 for k, ` ∈

ΛN ⊆ Zd .

Consequently only 2|ΛN | inner products have to be computed in our Galerkin approach
opposed to |ΛN |2 inner products required in the general case. Further, the resulting shift
invariant structure of the system matrix allows to efficiently solve the Galerkin equation.

Note that shift invariant spaces are frequently employed in computed tomography and
include splines spaces, spaces of bandlimited functions, or spaces generated by Kaiser-Bessel
functions. In this paper we will especially use Kaiser-Bessel functions which are often con-
sidered as the most suitable basis for computed tomography [23, 34, 39, 44]. For the use in
PAT they have first been proposed in [56]. We are not aware of existing Galerkin approaches
for tomographic image reconstruction exploiting isometry and shift invariance. However, we
anticipate that similar methods can be derived for other tomographic problems, where an
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isometry property is known (such as X-ray based CT [28, 40]). We further note that our
approach has close relations to the method of approximate inverse, which has frequently
been applied to computed tomography [21, 35, 36, 37, 49, 50]. Instead of approximating
the unknown function using a prescribed reconstruction space, the method of approximate
inverse recovers prescribed moments of the unknown and is somehow dual to the Galerkin
approach.

1.2 Outline

The rest of this article is organized as follows. In Section 2 we apply the Galerkin least
squares method for the inverse problem of PAT. By using the isometry property we derive a
simple characterization of the Galerkin equation in Theorem 2.2. We derive a convergence
and stability result for the Galerkin least squares method applied to PAT (see Theorem 2.3).
In Section 3 we study shift invariant spaces for computed tomography. As the main results
in that section we derive an estimate for the L2-approximation error using elements from the
shift invariant space. In Section 4 we present details for the Galerkin approach using sub-
spaces of shift invariant spaces. In Section 5 we present numerical studies using our Galerkin
approach and compare it to related approaches in the literature. The paper concludes with
a conclusion and a short outlook in Section 6.

2 Galerkin approach for PAT

Throughout the following, suppose d ≥ 2, let BR(0) := {x ∈ Rd | ‖x‖ < R} denote the open
ball with radius R centered at the origin, and let L2

R(Rd) := {f ∈ L2(Rd) | f(x) = 0 for x ∈
Rd \BR(0)} denote the Hilbert space of all square integrable functions which vanish outside
BR(0). For two measurable functions g1, g2 : ∂BR(0)× (0,∞)→ R we write

〈g1, g2〉t :=

∫

∂BR(0)

∫ ∞

0

g1(z, t)g2(z, t) t dt ds(z) , (2.1)

provided that the integral exists. We further denote by Y the Hilbert space of all functions
g : ∂BR(0)× (0,∞)→ R with ‖g‖2

t := 〈g, g〉t <∞.

2.1 PAT and the wave equation

For initial data f ∈ C1
c (BR(0)) consider the wave equation (1.1). The solution p : Rd ×

(0,∞) → R of (1.1) restricted to the boundary of BR(0) is denoted by W̄f : ∂BR(0) ×
(0,∞) → R. The associated operator is defined by W̄ : C1

c (BR(0)) ⊆ L2
R(Rd) → Y : f 7→

W̄f

Lemma 2.1 (Isometry and continuous extension of W̄).

(a) For all f1, f2 ∈ C1
c (BR(0)) we have 〈f1, f2〉 = 2

R
〈W̄f1,W̄f2〉t.

(b) W̄ uniquely extends to a bounded linear operator W : L2
R(Rd)→ Y.
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(c) For all f1, f2 ∈ L2
R(Rd) we have 〈f1, f2〉 = 2

R
〈Wf1,Wf2〉t.

Proof. (a): See [11] for d even and [12] for d odd.
(b), (c): Item (a) implies that W is bounded with respect to the norms of L2

R(Rd) and Y
and defined on a dense subspace of L2

R(Rd). Consequently it uniquely extends to a bounded
operator W : L2

R(Rd) → Y . The continuity of the inner product finally shows the isometry
property on L2

R(Rd).

We call W the acoustic forward operator. PAT is concerned with the inverse problem of
estimating f from potentially noisy and approximate knowledge of Wf . In this paper we
use the Galerkin least squares method for that purpose.

2.2 Application of the Galerkin method

Let (XN)N∈N and (YN)N∈N be families of subspaces of L2
R(Rd) and Y , respectively, with

dimXN = dimYN < ∞. Further let QN denote the orthogonal projection on YN and
suppose g ∈ Y . The Galerkin method for solving Wf = g defines the approximate solution
fN ∈ XN as the solution of

QNWfN = QNg . (2.2)

In this paper we consider the special case where YN = WXN , in which case the solution of
(2.2) is referred to as Galerkin least squares method. The name comes from the fact that
in this case the Galerkin solution can be uniquely characterized as the minimizer of least
squares functional over XN ,

ΦN(fN) :=
1

2
‖WfN − g‖2

t → min
fN∈XN

(2.3)

Because ΦN is a quadratic functional on a finite dimensional space and W is injective,
(2.3) posses a unique solution. Together with the isometry property we obtain the following
characterizations of the least squares Galerkin method for PAT.

Theorem 2.2 (Characterizations of the Galerkin least squares method). For g ∈ Y and
fN ∈ XN the following are equivalent:

(1) QNWfN = QNg;

(2) fN minimizes the least squares functional (2.3);

(3) For an arbitrary basis (ϕkN)k∈ΛN of XN , we have

ANcN = dN (2.4)

where

� cN := (cN,k)k with fN =
∑

k∈ΛN
cN,kϕ

k
N ;

� dN := (〈WϕkN , g〉t)k∈ΛN ;

� AN := (R
2
〈ϕkN , ϕ`N〉L2)k,`∈ΛN .
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Proof. The equivalence of (1) and (2) is a standard result for the Galerkin squares method
(see, for example, [26]). Another standard characterization shows the equivalence of (1) and
(3) with the system matrix AN = (〈WϕkN ,Wϕ`N〉t)k,`∈ΛN . Now, the isometry property given
in Lemma 2.1 shows 〈WϕkN ,Wϕ`N〉t = R

2
〈ϕkN , ϕ`N〉L2)k,`∈ΛN and concludes the proof.

In general, evaluating the matrix entries 〈WϕkN ,Wϕ`N〉t can be difficult. For many basis
functions an explicit expression for WϕkN is not available including the natural pixel basis,
spaces defined by linear interpolation, or spline spaces. Hence WϕkN has to be evaluated
numerically which is time consuming and introduces additional errors. Even if WϕkN is given
explicitly, then the inner products 〈WϕkN ,Wϕ`N〉L2 have to be computed numerically and
stored. For large N this can be problematic and time consuming. In contrast, by using the
isometry property in our approach we only have to compute the inner products 〈ϕkN , ϕ`N〉.
Further, in computed tomography it is common to take ϕkN as translates of a single function
ϕ0
N . In such a situation the inner products satisfy 〈ϕkN , ϕ`N〉 = 〈ϕ0

N , ϕ
`−k
N 〉 and therefore only

a small fraction of all inner products actually have to be computed.

2.3 Convergence and stability analysis

As another consequence of the isometry property we derive linear error estimates for the
Galerkin approach to PAT. We consider noisy data where the data gδ ∈ Y is known to
satisfy

‖Wf 0 − gδ‖ ≤ δ , (2.5)

for some noise level δ ≥ 0 and unknown f 0 ∈ L2
R(Rd). For noisy data we define the Galerkin

least squares solution by

f δN = arg min
{
‖Wh− gδ‖t | h ∈ XN

}
. (2.6)

We then have the following convergence and stability result.

Theorem 2.3 (Convergence and stability of the Galerkin method for PAT). Let f 0 ∈
L2
R(Rd), gδ ∈ Y, δ ≥ 0 satisfy (2.5) and let f δN be defined by (2.6). Then, the following

error estimate for the Galerkin method holds:

‖f δN − f 0‖ ≤ min{‖h− f 0‖ | h ∈ XN}+

√
2

R
δ . (2.7)

Proof. We start with the noise free case δ = 0. The definition of f δN and the isometry
property of W yield

f 0
N = arg min

{
‖Wh− g0‖t | h ∈ XN

}

= arg min
{
‖Wh−Wf 0‖t | h ∈ XN

}

= arg min
{
‖h− f 0‖ | h ∈ XN

}
.

This shows f 0
N = PXNf

0 and yields (2.7) for δ = 0.
Now consider the case of arbitrary δ. Because Ran(W) is closed we can assume without

loss of generality that gδ ∈ Ran(W). The data therefore takes the form gδ = Wf δ for some
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f δ ∈ L2
R(Rd). As in the case δ = 0 we easily verify f δN = PXNf

δ. Therefore, by the triangle
inequality and the isometry property of W we obtain

‖f δN − f 0‖ ≤ ‖f δN − f 0
N‖+ ‖f 0

N − f 0‖
≤ ‖PXn(f δ − f 0)‖+ min{‖h− f 0‖ | h ∈ XN}

≤
√

2

R
‖Wf δ −Wf 0‖t + min{‖h− f 0‖ | h ∈ XN} .

Together with ‖Wf δ −Wf 0‖t = ‖gδ −Wf 0‖t ≤ δ this concludes the proof.

The error estimate in Theorem 2.3 depends on two terms: the first term depends on the
approximation properties of the space XN and the second term on the noise level δ. As easily
verified both terms are optimal and cannot be improved. The second term shows stability
of our Galerkin least squares approach. Under the reasonable assumption that the spaces
XN satisfy the denseness property

∀f ∈ L2
R(Rd) : lim

N→∞
min{‖h− f‖ | h ∈ XN} = 0 ,

the derived error estimate further implies convergence of the Galerkin approach.

3 Shift invariant spaces in computed tomography

In many tomographic and signal processing applications, natural spaces for approximating
the underlying function are subspaces of shift invariant spaces. In this paper we consider
spaces VT,s,ϕ that are generated by translated and scaled versions of a single function ϕ ∈
L2(Rd),

VT,s,ϕ := span({ϕkT,s | k ∈ Zd}) ⊆ L2(Rd) . (3.1)

Here span denotes the linear hull, and X stands for the closure with respect to ‖ · ‖L2 of a
set X and

ϕkT,s(x) :=
1

T d/2
ϕ
( x
T
− sk

)
for T, s > 0 and k ∈ Zd . (3.2)

We have chosen the normalization of the generating functions ϕkT,s in such a way that
‖ϕkT,s‖L2 = ‖ϕ‖L2 for all T, s, k. In this section we derive conditions such that any L2 func-
tion can be approximated by elements in VT,s,ϕ. Further, we present examples of generating
functions that are relevant for (photoacoustic) computed tomography.

Any tomographic reconstruction method uses, either explicitly or implicitly, a particu-
lar discrete reconstruction space. This is obvious for any iterative procedure as it requires
a finite dimensional representation of the forward operator that can be evaluated numeri-
cally. However, also direct methods use an underlying discrete image space. For example,
standard filtered backprojection algorithms usually reconstruct samples of a bandlimited
approximation of the unknown function. In such a situation, the underlying discrete signal
space consists of bandlimited functions. In this paper we allow more general shift invariant
spaces.

The following properties of the generating function and the spaces VT,s,ϕ have been re-
ported desirable for tomographic applications (see [44, 56]):
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(V1) ϕ has “small” spatial support;

(V2) ϕ is rotationally invariant;

(V3) (ϕkT,s)k∈Zd is a Riesz basis of VT,s,ϕ;

(V4) ϕ satisfies the so called partition of unity property.

Conditions (V1) and (V2) are desirable from a computational point of view and often help
to derive efficient reconstruction algorithms. The properties (V3) and (V4) are of more
fundamental nature as these conditions imply that any L2 function can be approximated
arbitrarily well by elements in VT,s,ϕ as T → 0 (with s kept fixed; the so called stationary
case). In [44] it has been pointed out that the properties (V1)-(V4) cannot be simultaneously
fulfilled. This implies that for taking s independent of T , the spaces VT,s,ϕ have a limited
approximation capability in the sense that for a typical function f , the approximation error
minu∈VT,s,ϕ‖f − u‖2

L2 does not converge to zero as T → 0 and s is kept fixed.
Despite these negative results, radially symmetric basis functions are of great popularity

in computed tomography (see for example, [23, 33, 34, 39, 44, 57, 56]). In this paper we
therefore propose to also allow the shift parameter s to be variable. Under reasonable
assumptions we show that the approximation error converges to zero for s → 0. This
convergence in particularly holds for radially symmetric generating functions having some
decay in the Fourier space, including generalized Kaiser-Bessel functions which are the most
popular choice in tomographic image reconstruction.

3.1 Riesz bases of shift invariant spaces

Recall that the family (ϕkT,s)k∈Zd is called a Riesz basis of VT,s,ϕ if there exist A,B > 0 such
that

∀c ∈ `2(Zd) : A‖c‖2
`2 ≤

∥∥∥
∑

k∈Zd
ckϕ

k
T,s

∥∥∥
2

L2
≤ B‖c‖2

`2 , (3.3)

where ‖c‖2
`2

:=
∑

k∈Zd |ck|2 is the squared `2-norm of c = (ck)k∈Zd . A Riesz basis of VT,s,ϕ
can equivalently be defined as a linear independent family of frames and the constants A
and B are the lower and upper frame bounds of (ϕkT,s)k∈Zd , respectively. In the following we

write ϕ̂ for the d-dimensional Fourier transform defined by ϕ̂(ξ) := (2π)d/2
∫
Rd ϕ(x)e−iξ•xdx

for ϕ ∈ L2(Rd) ∩ L1(Rd) and extended to L2(Rd) by continuity.
The following two important Lemmas are well known in the case that d = T = 1 (see [38,

Theorem 3.4]). Since we did not find ready references for the general case, for convenience
of the reader we provide short proofs in Appendix A.

Lemma 3.1 (Riesz basis property). The family (ϕkT,s)k∈Zd is a Riesz basis of VT,s,ϕ with
frame bounds A and B, if and only if

A

(2π)d
≤ 1

sd

∑

k∈Zd
|ϕ̂(ξ + 2π

s
k)|2 ≤ B

(2π)d
for a.e. ξ ∈ [0, 2π

s
]d . (3.4)

Proof. See Appendix A.1.
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The following Lemma implies that for any Riesz basis (ϕkT,s)k∈Zd one can construct an
orthonormal basis of VT,s,ϕ that is again generated by translated and scaled versions θkT,s(x) :=

T−d/2θ(x/T − sk) of a single function θ ∈ L2(Rd).

Lemma 3.2 (Orthonormalization). Let (ϕkT,s)k∈Zd be a Riesz basis of VT,s,ϕ.

(a) (ϕkT,s)k∈Zd orthonormal ⇐⇒ ∑
k∈Zd |ϕ̂(ξ + 2π

s
k)|2 = sd

(2π)d
for a.e. ξ ∈ Rd.

(b) (θkT,s)k∈Zd is an orthonormal basis of VT,s,ϕ, where θ ∈ L2(Rd) is defined by

θ̂(ξ) =
sd/2ϕ̂(ξ)

(2π)d/2
√∑

k∈Zd |ϕ̂(ξ + 2π
s
k)|2

. (3.5)

Proof. See Appendices A.2 and A.3.

According to Lemma 3.2, for theoretical purposes one may assume that the considered
basis of VT,s,ϕ is already orthogonal. From a practical point of view, however, it may be
more convenient to work with the original non-orthogonal basis. The function ϕ may have
additional properties such as small support or radial symmetry which may not be the case
for θ. Also it may not be the case that θ is known analytically.

3.2 The L2-approximation error

We now investigate the L2-approximation error in shift invariant spaces,

∀f ∈ L2(Rd) : min
u∈VT,s,ϕ

‖f − u‖L2 = ‖f −PT,sf‖L2 , (3.6)

as well as its asymptotic properties. Here and in the following PT,s : L2(Rd)→ VT,s,ϕ denotes
the orthogonal projection on VT,s,ϕ. It is given by PT,sf =

∑
λ∈Λ〈f, eλ〉eλ, where (eλ)λ∈Λ is

any orthogonal basis of VT,s,ϕ. For the stationary case s = 1, the following Theorem has
been obtained in [6].

Theorem 3.3 (The L2-approximation error). Let (ϕkT,s)k∈Zd be a Riesz basis of VT,s,ϕ and
define

Eϕ(s, T ξ) := 1− |ϕ̂(Tξ)|2∑
k∈Zd |ϕ̂(Tξ + 2kπ/s)|2 for ξ ∈ Rd and T, s > 0 . (3.7)

Then, for every f ∈ W r
2 (Rd) with r > d/2 we have

‖PT,sf − f‖L2 =

[∫

[− π
Ts
, π
Ts

]d
|f̂(ξ)|2Eϕ(s, T ξ)

] 1
2

+Rϕ(f, Ts) , (3.8)

where the remainder can be estimated as

Rϕ(f, Ts) ≤ ‖f‖W r
2

(
Ts

π

)r√√√√
∑

n∈Zd\{0}

1

‖n‖2r
for T, s > 0 . (3.9)
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Proof. Let (θkT,s)k∈Zd denote the orthonormal basis of the space VT,s,ϕ as constructed in
Lemma 3.2. Further, for every n ∈ Zd define Qn := 2π

Ts
n + [− π

Ts
, π
Ts

]d and define functions
fn ∈ L2(Rd) by its Fourier representation

f̂n(ξ) =

{
f̂(ξ) if ξ ∈ Qn ,

0 if ξ 6∈ Qn .

Then we have f =
∑

n∈Zd fn and PT,sf − f =
∑

n∈Zd PT,sfn − fn .
Now for every n ∈ Zd, we investigate the approximation error ‖PT,sfn − fn‖2. We have

‖PT,sfn − fn‖2 = ‖fn‖2 −∑k∈Zd |〈fn, θkT,s〉|2. Further,

〈fn, θkT,s〉 = 〈f̂n, θ̂kT,s〉

= T d/2
∫

Qn

f̂n(ξ)θ̂(Tξ)e−iT sξ•kdξ

= T d/2
∫

[− π
Ts
, π
Ts

]d
f̂n(ξ − n)θ̂(T (ξ − n))e−iT s(ξ−n)•kdξ

= T d/2d̂n,k ,

where d̂n,k is the k-th Fourier-coefficient of the 2π/(Ts)-periodization of ξ 7→ f̂n(ξ−n)θ̂(T (ξ−
n)). Due to Parseval’s identity we have

∑

k∈Zd
|〈fn, θkT,s〉|2

= T d
∑

k∈Zd
|d̂n,k|2

= T d
(2π)d

(sT )d

∫

Qn

|f̂n(ξ)|2|θ̂(Tξ)|2dξ

=

∫

Qn

|f̂n(ξ)|2 |ϕ̂(Tξ)|2∑
k∈Zd |ϕ̂(Tξ + 2kπ/s)|2dξ.

Therefore we obtain

‖PT,sfn − fn‖2 =

∫

Qn

|f̂n(ξ)|2
(

1− |ϕ̂(Tξ)|2∑
k∈Zd |ϕ̂(Tξ + 2kπ/s)|2

)
dξ

=

∫

Qn

|f̂n(ξ)|2Eϕ(s, T ξ)dξ .

Next notice that for n ∈ Zd \ {0} and ξ ∈ Qn ⊆ Rd we have ‖ξ‖ ≥ π
Ts
‖n‖. Therefore we

can estimate

‖PT,sfn − fn‖ ≤
(
Ts

π

)r (
1

‖n‖

)r (∫

Qn

‖ξ‖2r|f̂n(ξ)|2Eϕ(s, T ξ)dξ

) 1
2

.
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Together with the triangle inequality and the Cauchy-Schwarz inequality for sums we obtain

‖PT,sf − f‖
≤
∑

n∈Zd
‖PT,sfn − fn‖

≤
(∫

Q0

|f̂(ξ)|2Eϕ(s, T ξ)dξ

) 1
2

+

(
Ts

π

)r∑

n6=0

1

‖n‖r
(∫

Qn

‖ξ‖2r|f̂n(ξ)|2dξ
) 1

2

≤
(∫

Q0

|f̂(ξ)|2Eϕ(s, T ξ)dξ

) 1
2

+

(
Ts

π

)r(∑

n6=0

1

‖n‖2r

) 1
2 (∫

Rd\Q0

‖ξ‖2r|f̂(ξ)|2dξ
) 1

2

≤
(∫

Q0

|f̂(ξ)|2Eϕ(s, T ξ)dξ

) 1
2

+

(
Ts

π

)r(∑

n6=0

1

‖n‖2r

) 1
2

‖f‖W r
2
.

Here the sum
∑

n6=0 ‖n‖−2r is convergent because r > d/2. After recalling that Q0 =

[−π/(Ts), π/(Ts)]d, the above estimate yields (3.8).

Note that the remainder in Theorem 3.3 satisfies Rϕ(f, Ts) → 0 as Ts → 0. Conse-
quently, for every sequence (TN , sN)N∈N we have limN→∞‖PTN ,sNf − f‖2

L2 = 0 if TNsN → 0
and ∫

[− π
TNsN

, π
TNsN

]d
|f̂(ξ)|2

(
1− |ϕ̂(TNξ)|2∑

k∈Zd|ϕ̂(TNξ + 2kπ/sN)|2
)

︸ ︷︷ ︸
=Eϕ(sN ,TN ξ)

→ 0 .

By Lebesgue’s monotone convergence theorem this holds if Eϕ(sN , TNξ) almost everywhere
converges to 0 as N → ∞. In the following Theorem we consider two possible sequences
where this is the case.

Theorem 3.4 (Asymptotic behavior of Eϕ). Let ϕ ∈ L2(Rd) be such that ϕ̂(0) > 0 and that
ϕ̂ is continuous in 0. Then the following hold:

(a) For every s ∈ (0,∞) we have that limT→0 Eϕ(s, T ξ) = 0 almost everywhere if and only
if

1

ϕ̂(0)

∑

m∈Zd
ϕ(x−ms) = 1 for almost every x ∈ Rd . (3.10)

Equation (3.10) is called the partition of unity property.

(b) Suppose ϕ̂(ξ) = O(‖ξ‖−p) as ‖ξ‖ → ∞ for some p > d/2. Let (TN)N∈N and (sN)N∈N
be bounded sequences in (0,∞) with sN → 0 as N →∞. Then

lim
N→∞

Eϕ(sN , TNξ) = 0 for every ξ ∈ Rd . (3.11)
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Proof. (a) We have

lim
T→0
Eϕ(s, T ξ) = 0 for a.e. ξ ∈ Rd

⇐⇒ lim
T→0

∑

k 6=0

|ϕ̂(Tξ + 2kπ/s)|2 = 0 for a.e. ξ ∈ Rd

⇐⇒ ∀k ∈ Zd \ {0} : ϕ̂(2kπ/s) = 0

⇐⇒ ∀k ∈ Zd \ {0} :

∫

Rd
ϕ(x)ei2πx•k/sdx = 0

⇐⇒ ∀k ∈ Zd \ {0} :

∫

[0,s]d

∑

m∈Zd
ϕ(x−ms)ei2πx•k/sdx = 0

⇐⇒
∑

m∈Zd
ϕ(x−ms) = ϕ̂(0) for a.e. x ∈ Rd .

(b) As ϕ̂(ξ) = O(‖ξ‖−p) for ‖ξ‖ → ∞ there exist R,C > 0 such that for ‖ξ‖ > R we have
|ϕ̂(ξ)| ≤ C‖ξ‖−p. Further, for all ξ ∈ Rd we have ‖TNξ− 2πk/sN‖ → ∞. Therefore it exists
N0 ∈ N, such that for all N ≥ N0 we have ‖TNξ − 2πk/sN‖ > c and ‖TNξ‖ ≤ 1

2
‖2πk/sN‖.

Therefore, for all N ≥ N0 we have
∑

k 6=0

|ϕ̂(TNξ −
2π

sN
k)|2 ≤ C

∑

k 6=0

‖TNξ −
2π

sN
k‖−2p

≤ C
∑

k 6=0

∣∣∣∣‖
2π

sN
k‖ − ‖TNξ‖

∣∣∣∣
−2p

≤ C
∑

k 6=0

∣∣∣∣‖
2π

sN
k‖ − 1

2
‖2π

sN
k‖
∣∣∣∣
−2p

≤ C
(sN
π

)2p∑

k 6=0

‖k‖−2p ,

which implies (3.11). Note that
∑

k 6=0 ‖k‖−2p is convergent because p > d/2.

From Theorems 3.3 and 3.4 one concludes that the system of (ϕkT,s)k∈Zd yields a vanishing
approximation error minu∈VT,s,ϕ‖f − u‖2

L2 in either of the following cases:

(a) ϕ satisfies the partition of unity property, s is fixed and T → 0;

(b) ϕ̂(ξ) = O(‖ξ‖d/2+ε) for ‖ξ‖ → ∞, T is bounded and s→ 0.

In both cases one could derive quantitative error estimates. We do not investigate this issue
further since our main emphasis is pointing out that allowing s to vary yields asymptotically
vanishing approximation error without the partition of unity property. This is relevant since
the partition of unity property cannot be satisfied by any radially symmetric compactly
supported function. Below we study two basic examples for generating functions where
Theorems 3.3 and 3.4 can be applied. These are Pixel (or voxel) basis functions and gener-
alized Kaiser-Bessel functions. We focus on these basis functions since the pixel basis has
been the most common choice in early tomographic image reconstruction while generalized
Kaiser-Bessel functions are currently considered as the method of choice.
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3.3 Example: The pixel basis

The pixel basis (also called voxel basis in the case d > 2) has been frequently used for
image representation in early tomographic image reconstruction (see, for example [13, 23,
25]). It consists of scaled and translated version of the indicator function of the hyper-cube
[−1/2, 1/2[d

χ : Rd → R : x 7→
{

1 if x ∈ [−1/2, 1/2[d

0 otherwise .
(3.12)

For every T, s > 0, the family (χkT,s)k∈Zd with χkT,s(x) = T−d/2χ((x − Tsk)/s) clearly forms
a Riesz basis of

VT,s,χ = span{χkT,s | k ∈ Zd} .
In order to investigate the approximation properties of VT,s,χ, note that the Fourier transform
of χ is given by

χ̂ : R→ C : ξ 7→ (2π)−d/2 sinc

(
ξ

2

)
:= (2π)−d/2

d∏

j=1

sinc

(
ξj
2

)
, (3.13)

where sinc(a) := sin(a)/a for a 6= 0 and sinc(0) := 1. We see χ̂(ξ) = O(‖ξ‖−d) as ‖ξ‖ → ∞.
From Theorem 3.3 we therefore conclude that any of the spaces VT,s,χ yields an asymptotically
vanishing approximation error for s→ 0 (when T is bounded).

The pixel basis also allows to consider the stationary case where s is a constant and where
T tends to 0. In fact, from the proof of Theorem 3.3 we see that χ satisfies the partition of
unity property if and only if sinc(πk/s) = 0 for every k 6= 0. This in turn is the case if and
only if s = 2−m for some m ∈ N. The case s = 1 seems the most natural one, since it uses
non-overlapping basis functions filling the whole space Rd. The non-overlapping case is in
fact used in existing tomographic image reconstruction algorithms; see [13, 23, 25]. Further,
note that the number of basis elements χkT,s for which its center mk := Tsk is contained in
the unit cube [−1, 1]d is given by (2/(Ts) + 1)d and that T is inversely proportional to the
essential bandwidth of the basis function. Therefore, the choice s = 1 yields to a minimal
number of pixel basis functions representing a function with given support and essential
bandwidth.

3.4 Example: Generalized Kaiser-Bessel functions

As often argued in the literature on tomographic image reconstruction, the lack of conti-
nuity and rotation invariance are severe drawbacks of the pixel basis functions for image
reconstruction. Therefore in [33] the generalized Kaiser-Bessel (KB) functions have been
introduced and proposed for image reconstruction.

The generalized KB functions in Rd form a family of functions that depend on three
parameters m ∈ N, γ ≥ 0 and a > 0, where m ∈ N is referred to as the order, γ ≥ 0
the taper parameter and a > 0 is the support parameter. More precisely, the KB function
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ϕ( · ;m, γ, a) : Rd → R of order m is defined by

ϕ(x;m, γ, a) :=





(√
1− ‖x‖2/a2

)m Im
(
γ
√

1−‖x‖2/a2
)

Im(γ)
if ‖x‖ ≤ a

0 otherwise ,
(3.14)

where Im is the modified first kind Bessel function. The window taper γ describes how spiky
the basis function is and a is the support radius. The order allows to control the smoothness
and the taper parameter allows to further tune the shape of the basis function.

The Fourier transform ϕ̂( · ;m, γ, a) of the KB function ϕ( · ;m, γ, a) can be computed to
(see [33])

ϕ̂(ξ;m, γ, a) :=





adγm

Im(γ)

Id/2+m

(√
γ2−a2‖ξ‖2

)

(√
γ2−a2‖ξ‖2

)d/2+m if a‖ξ‖ ≤ γ

adγm

Im(γ)

Jd/2+m

(√
a2‖ξ‖2−γ2

)

(√
a2‖ξ‖2−γ2

)d/2+m otherwise .

(3.15)

Here Jm denotes the first kind Bessel function of order m. The known asymptotic decay
Jd/2+m(r) = O(r−1/2) implies that the asymptotic behavior of the generalized KB function
is ϕ̂(ξ;m, γ, a) = O(‖ξ‖−(d/2+m+1/2)). From Theorem 3.3 we therefore conclude that for any
choice of m, a and γ, the spaces

VT,s,ϕ( · ;m,γ,a) = span{ϕkT,s( · ;m, γ, a) | k ∈ Zd}
yield vanishing approximation error when s → 0 and T keeps bounded. Note that the
parameter a plays exactly the same roles as the parameter T . Therefore without loss of
generality one could omit a in the definition of the KB functions. However we include it
since it is standard to consider the KB functions as a family of three parameters.

Note that the KB function (as any other radially symmetric basis function with compact
support) does not satisfy the partition of unity condition. Therefore Theorem 3.3 implies
(for sufficiently regular functions) that the asymptotic approximation error saturates; that
is, we have

lim
T→0
‖PT,sf − f‖2

L2 = Aϕ,s‖f‖2
L2 with Aϕ,s :=

∑
k 6=0 |ϕ̂(2kπ/s)|2∑
k∈Zd |ϕ̂(2kπ/s)|2 .

Keeping m = 2, a = 2 and s = 1 fixed, in [44] it has been proposed to select the taper pa-
rameter γ in such a way that the asymptotic approximation error given by Aϕ,s is minimized.
Although such a procedure does not overcome the saturation phenomenon, the saturation
effect (for given order and given redundancy factor) is minimized. Oppose to that, our theory
shows that taking s variable and non-constant overcomes the saturation phenomenon.

4 The Galerkin approach for PAT using shift invariant

spaces

In this section we give details how to efficiently implement the least squares Galerkin method
using subspaces of a shift invariant space. This is in contrast to the use of a general recon-
struction space, where both the computation of the system matrix and the solution of the
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Galerkin equation can be slow. For shift invariant spaces the system matrix takes a very
special form which allows an efficient implementation.

Let ϕ ∈ L2(Rd) be such that the elements ϕkT,s form a Riesz basis of VT,s,ϕ; see Section 3.
Moreover, let (TN)N∈N and (sN)N∈N be two sequences of positive numbers describing the sup-
port and the redundancy of the basis functions, respectively. We consider the reconstruction
spaces

XN :=

{∑

k∈ΛN

ckϕ
k
N | k ∈ ΛN

}
⊆ VTN ,sN , (4.1)

where ϕkN := ϕkTN ,sN are the basis functions (with ϕkTN ,sN as in (3.2)), and ΛN := {k ∈ Zd |
mk := TNsNk ∈ BR(0)} denotes the set of all k ∈ Zd such that the mid-point mk of the k-th
basis function is contained in ∈ BR(0). Then dimXN = |ΛN | is the number of basis elements
used for image representation.

When applied with the reconstruction space XN our Galerkin approach to PAT analyzed
in Section 2 takes the form (see Theorem 2.2)

fN =
∑

k∈ΛN

cN,kϕ
k
N , (4.2)

where

� AN := (R
2
〈ϕkN , ϕ`N〉L2)k,`∈ΛN is the system matrix ;

� dN := (〈WϕkN , g〉t)k∈ΛN is the right hand side;

� cN := (cN,k)k solves the Galerkin equation ANcN = dN .

As discussed in the following subsection, for the shift invariant case the system matrix AN

takes a very special form which significantly simplifies the computations. Further, for our
choices of the basis functions the right hand can be computed efficiently as described in
Subsection 4.2 below.

4.1 Evaluation of the system matrix

For any N ∈ N and any k, ` ∈ ΛN , the entries of the system matrix AN satisfy

〈ϕkN , ϕ`N〉 =
1

T dN

∫

Rd
ϕ

(
x

TN
− sNk

)
ϕ

(
x

TN
− sN`

)
dx

=

∫

Rd
ϕ (y − sNk)ϕ (y − sN`) dy

=

∫

Rd
ϕ (x)ϕ (x− sN(`− k)) dy

= 〈ϕ0
1,sN

, ϕ`−k1,sN
〉 .

Hence instead of computing and storing the whole system matrix required by standard
Galerkin methods, in our approach only the values 〈ϕ0

1,sN
, ϕn1,sN 〉 where n = ` − k with
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`, k ∈ ΛN have to be computed and stored. The total number of such inner products is
bounded by 4|ΛN |. In the case where ϕ has small support this number is actually much
smaller since 〈ϕk1,sN , ϕ`1,sN 〉 vanishes if the supports of ϕk1,sN and ϕ`1,sN do not overlap.

In this paper we consider the (non-overlapping) pixel basis (see Subsection 3.3) and
the KB functions in two spatial dimensions (see Subsection 3.4). The pixel basis is an
orthonormal system and therefore the system matrix is the identity. The KB functions
are radially symmetric. In such a situation we compute the entries 〈ϕ0

1,sN
, ϕ`−k1,sN

〉 of the
system matrix AN approximately as follows. We numerically computed the inner products
〈ϕ0

1,sN
, ϕk1,sN 〉L2 for all k ∈ Z2 with ‖k‖2 ≤ 2a using the rectangle rule. For this we discretized

the square [−a, a]2 by an equidistant Cartesian grid with M ×M grid points (xi, yj) and
computed

〈ϕ0
1,sN

, ϕk1,sN 〉L2 ' (2a)2

(M − 1)2

M∑

i=1

M∑

j=1

ϕ0
1,sN

(xi, yj)ϕ
k
1,sN

(xi, yj) .

The resulting system matrix is a tensor product of Toeplitz matrices.

4.2 Evaluation of the right hand side

In the practical application instead of the continuously sampled data g = Wf only dis-
crete data g(zi, tj)i,j are known, where tj = j T/Nt are Nt equidistant time points in the
interval [0, T ] and zi are Ndet points on the measurement surface ∂BR(0). In our numerical
implementation we approximate the right hand side in the Galerkin equation as follows:

〈WϕkN , g〉t '
T

Nt − 1

Ndet∑

i=1

Nt∑

j=1

wi(WϕkN)(zi, tj)g(zi, tj)tj . (4.3)

Here wi are appropriate weights accounting for the density of the sampling points. The
right hand side in (4.3) may be interpreted as the exact inner product 〈WϕkN , g

δ〉t for some
approximate data gδ ' g, which allows application of our convergence and stability result
derived in Theorem 3.4.

In some situations (for example for the KB functions and other radially symmetric basis
functions in three dimensions), the solution of WϕkN is available analytically (see [10, 56]).
In our numerical solutions we use the pixel basis and the KB basis functions two spatial
dimensions, where we are not aware of explicit representations for the corresponding solution
of the wave equation. In this case we numerically compute Wϕ using the well known solution
formula for the wave equation (1.1),

Wf(z, t) = (∂tAtMf)(z, t) :=
1

2π

∂

∂t

∫ t

0

∫

S1

rf(z + rω)√
t2 − r2

ds(ω)dr . (4.4)

Here

∀(z, r) ∈ ∂BR(0)× (0,∞) : Mf(z, r) :=
1

2π

∫

S1
f(z + rω)ds(ω) ,

∀(z, t) ∈ ∂BR(0)× (0,∞) : Atg(z, t) :=

∫ t

0

rg(z, r)√
t2 − r2

dr ,
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denote the spherical means transform of a function f : R2 → R with support in BR(0), and
the Abel transform of a function g : ∂BR(0)×(0,∞)→ R in the second variable, respectively.
The solution formula (4.4) is used to numerically compute WϕkN required for evaluating the
right hand side of the Galerkin equation as outlined in the following.

� For a symmetric basis function of the form ϕ(x) = ϕ̄(‖x‖) the corresponding solution of
the wave equation also is radially symmetric. Hence in order to approximate WϕkN we
numerically approximate Wϕ0

1,sN
((rn, 0), tj) for Nr equidistant radii rn ∈ [0, 2R] and

using a numerical approximation of W by discretizing the spherical Radon transform
as well as the Abel transform in (4.4). As a next step, for any basis functions ϕkN , we
approximately compute

WϕkN(zi, tj) = Wϕ0
1,sN

((‖zi − k‖, 0), tj)

at any detector points zi ∈ ∂BR(0) and discrete time points tj by replacing the right
hand side with the piecewise linear interpolation in the first argument using the known
values Wϕ0

1,sN
((rn, 0), tj).

� In the case of the pixel basis, the spherical means MχkN have been computed analyt-
ically and evaluated at the discretization points (zi, tj). Subsequently, the wave data
WϕkN(zi, tj) are computed by numerically evaluating the Abel transform in (4.4).

5 Numerical studies

In this section we present results of our numerical studies for our Galerkin least squares
approach, where the approximation space XN is taken as the subspace of a shift invariant
space. We further compare our results with related approaches in the literature. We re-
strict ourselves to the case of two spatial dimensions and take R = 1 for the radius of the
measurement circle.

For all presented numerical results, the function f is taken a superposition of indicator
functions as shown in top left image in Figure 5.1. The corresponding discrete data

g(zi, tj) ' (Wf)(zi, tj) for i = 1, . . . Ndet and j = 1, . . . , Nt , (5.1)

where zi = (cos(i2π/Ndet), sin(i2π/Ndet)) denote the equidistant detector locations and tj =
jT/Nt the discrete time points, have been computed numerically by implementing (4.4). For
that purpose we discretized the spherical Radon transform as well as the Abel transform
in (4.4). We take T = 3 as the final measurement time, Ndet = 100, Nt = 376 for the
discretization of the data and Nx = 300 for discretizing the function. Note that the data are
computed in a way that is completely different from the Galerkin system which avoids any
inverse crime.

5.1 Reconstruction results using Kaiser-Bessel Functions

We first investigate the case where ϕ = ϕ( · ;m, a, γ) is a KB function. The parameters m
and γ determine the shape and smoothness of the KB function, whereas a determines its
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support. It is therefore reasonable to fix m and γ. Here we choose the fixed parameters
m = 1 and γ = 2. Further, a determines the support of the KB function, which is also
controlled by the parameter T . Therefore also this parameter can be fixed; without loss of
generality we take a = 2. This effects that for s = 1 the functions ϕkN show sufficient overlap.
Since the total number of basis functions which are centered in the square [−1, 1]2 is equal
to N2 with N = 2/(sT ) + 1 it is reasonable to consider combinations of the parameters s
and T where the product sT remains constant.
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Figure 5.1: Reconstruction results using the proposed KB Galerkin approach.
Top left: Phantom f . Top right: Reconstruction with s = 0.8081, T = 0.025. Bottom left:
Reconstruction with s = 1.0101, T = 0.02. Bottom right: Reconstruction with s = 1.3636
and T = 0.0148.

The proposed KB Galerkin approach for the inverse PAT problem consists in solving the
Galerkin equation (4.2). Therefore the system matrix and the right hand side are computed
in Matlab as described in Section 4 and the direct solver mldivide is used for numerically
computing the solution of (4.2). Figure 5.1 shows reconstructions using the KB Galerkin
reconstruction for N = 100 and step size parameters s = 0.8081, s = 1.0101 and s = 1.3636,
respectively. One notices that actually all considered step size parameters yields quite good
results.
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N = 50 N = 100

s T eN(s, f) s T eN(s, f)

1.4286 0.0286 0.0412 1.4141 0.0143 0.0336

1.3776 0.0296 0.0379 1.3636 0.0148 0.0299

1.3265 0.0308 0.0351 1.3131 0.0154 0.0298

1.2755 0.0320 0.0352 1.2626 0.0160 0.0303

1.2245 0.0333 0.0369 1.2121 0.0167 0.0307

1.1735 0.0348 0.0401 1.1616 0.0174 0.0320

1.1224 0.0364 0.0439 1.1111 0.0182 0.0345

1.0714 0.0381 0.0427 1.0606 0.0190 0.0367

1.0204 0.0400 0.0428 1.0101 0.0200 0.0384

0.9694 0.0421 0.0403 0.9596 0.0211 0.0335

0.9184 0.0444 0.0391 0.9091 0.0222 0.0392

0.8673 0.0471 0.0412 0.8586 0.0235 0.0366

0.8163 0.0500 0.0432 0.8081 0.0250 0.0322

0.7653 0.0533 0.0464 0.7576 0.0267 0.0365

Table 5.1: Relative L2-reconstruction errors For different choices of s the recon-
struction error eN(s, f) with is evaluated for N = 50 and N = 100. Recall that s is the step
size and T = 2/(s(N − 1)) determines the size of the KB basis functions.

5.2 Parameter selection for the KB functions

Choosing optimal parameters seems a difficult issue. In the following we numerically inves-
tigate the optimal choice of the parameters s and T for a fixed number of basis functions N2

with N = 50 and N = 100, respectively. For that purpose we compute the L2-reconstruction
error

eN(s, f) :=

∑N
i=1

∑N
j=1 |fN(xi, yj)− f(xi, yj)|2∑N
i=1

∑N
j=1 |f(xi, yj)|2

. (5.2)

for different choices of s and T satisfying the side condition sT = 2/(N − 1). Here fN :=∑
k∈ΛN

cN,kϕ
k
N is the Galerkin reconstruction given by (4.2) and the evaluation points (xi, yj)

for evaluating the error in (5.2) are taken as the elements on {sNTNk | k ∈ Z2} ∩ [−1, 1]2.
In Table 5.1 we show these relative L2 reconstruction errors. From Table 5.1 one finds that
for the considered function optimal choices for the step size parameter are s = 1.3265 for
N = 50 and s = 1.3636 for N = 100.

From Table 5.1 one notices an irregular behavior of the reconstruction error in depen-
dance on s and N . To better understand this issue recall that for a given basis function

19

Admin
am_pp_logo_01



−20 −10 0 10 20

−20

−10

0

10

20

−20

−10

0

10

20

−20

0

20

−15

−10

−5

0

−5 0 5

−5

0

5

Figure 5.2: Logarithmic plots of the Fourier transforms of the basis func-
tions. Top: Fourier transform log(|ϕ̂( · ; 1, 2, 2)|) of the KB basis function. Bottom: Fourier
transform log(|sinc( · )|) of the pixel basis function χ.

ϕ = ϕ( · ;m, a, γ) the best the L2-approximation error using functions ϕkT,s is given by (see
Theorem 3.3)

‖PT,sf − f‖L2 =

∫
[
− π
Ts
, π
Ts

]2|f̂(ξ)|2
(

1− |ϕ̂(Tξ)|2∑
k∈Zd |ϕ̂(Tξ + 2kπ/s)|2

)
,

where it is assumed that the Fourier transform of f is sufficiently small outside [−π/(Ts), π/(Ts)]2.
Hence for fixed N a “good” choice of s should be made at least in such a way that

Sϕ(s,N, ξ) :=

∑
k 6=0|ϕ̂

(
2

s(N−1)
ξ − 2kπ

s

)
|2

|ϕ̂
(

2
s(N−1)

ξ
)
|2 is “small” for ‖ξ‖ ≤ π(N − 1)

2
.

(We have taken T = 2/(s(N − 1)) and f̂ is supposed to be unknown.) Figure 5.2 shows that
absolute value of the radially symmetric Fourier transform of the basis function ϕ( · ; 1, 2, 2)
in a logarithmic plot. This shows a complicated dependence of Sϕ(s,N, ξ) on s, N and ξ and
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indicates that a simple universally valid answer how to optimally chose parameters seems
difficult. We further note that Sϕ(s,N, ξ) does not contain error due to frequency content
outside [−π/(Ts), π/(Ts)]2. Nevertheless, theoretical error estimates in combination with
numerical studies can give precise guidelines for selecting good parameter for the practical
applications. The quality of the reconstruction depends on the parameters of the KB function
m, γ, a as well as on s and T (note that T has a similar role as a). In the paper [44] the
authors studied optimizing the parameter γ (in the limit T → 0) while the parameters
s = 1, a = 2 and m = 2 have been kept fixed. For that purpose they choose the parameter
γ in ϕ(· ; 2, 2, γ) such that the limiting residual error Sϕ(1, 0, ξ) =

∑
k 6=0 |ϕ̂(2kπ)|2 (that is

independent of ξ) becomes minimal. As we argued above the drawback of such an approach
is that taking s fixed does not yield vanishing asymptotic error as N → ∞. Allowing s to
depend on N overcomes this issue but makes the parameter selection more complicated.
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Figure 5.3: Comparison of reconstruction methods. Top left: KB Galerkin approach
using 40 CG iterations. Top right: Fully discrete KB reconstruction using 40 CG iterations.
Bottom left: FBP algorithm. Bottom right: Galerkin reconstruction using pixel basis.
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5.3 Comparison with state of the art reconstruction methods

We compare our Galerkin approach using KB functions with other state of the art approaches
for PAT image reconstruction. We used the same phantom as above and the same wave
data Wf for all reconstruction methods. We selected 100 × 100 basis functions. For the
KB Galerkin approach we use the generating function ϕ( · ; 1, 2, 2) with step size parameter
s = 0.8081 and correspondingly T = 0.025.

The KB Galerkin-least squares approach is compared to the following methods:

� Discrete-discrete KB imaging model [56]. We compare our method also to the
DD (discrete-discrete) image reconstruction approach using KB functions proposed in
[56]. There the same basis functions for approximating the unknown function are used,
fN =

∑
k∈ΛN

cN,kϕ
k
N . Opposed to our Galerkin approach, for recovering the coefficients

in the basis expansion one forces WfN to exactly interpolate the discrete data values
g(xi, tj). This is equivalently characterized as the minimizer of following discrete data
least squares functional over XN ,

1

2
‖BNcN − gN‖2 → min

cN
(5.3)

where BN := (WϕkN(xi, tj))i,k and gN := (g(xi, tj))i,j. Note that in [56] it has further
been proposed to add an additional regularization term to (5.3), which we do not
consider here.

� Filtered backprojection (FBP) algorithm. For the filtered backprojection algo-
rithm we implemented the explicit inversion formula

f(x) =
2

R
(W∗tWf) (x)

= − 1

π

∫

∂D1

∫ ∞

|x−p|

∂t(tWf(p, t))√
t2 − |x− p|2

dtds(p) for all x ∈ BR(0) . (5.4)

The inversion formula has been derived in [12] for odd spatial dimension and in [11]
for even dimension. The inversion formula (5.4) can be efficiently implemented in the
form of a filtered backprojection algorithm requiring O(N3) floating operations, where
N ×N is the number of reconstruction points, see [7, 11]. For a fair comparison, the
number of reconstruction points in the filtered backprojection algorithm is taken equal
to the number of basis functions in the KB Galerkin approach.

� Galerkin reconstruction using the pixel basis.

Here reconstruction space is generated by 100× 100 basis functions given by piecewise
constant functions on a square of length 2/100 (see Section 3.3). Since the pixel basis
forms an orthonormal system it holds AN = IN . The right hand side of the matrix
equation is computed as described in Section 4.

The minimizer of the optimization problem (5.3) is given as the solution of the nor-
mal equation BT

NBNc = BT
NgN . The matrix BT

NBN is less structured and less sparse than

22

Admin
am_pp_logo_01



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

−0.5

0

0.5

1

1.5

Figure 5.4: Comparison of reconstruction methods for data with 5% noise.
Top left: KB Galerkin approach using 40 CG iterations. Top right: Fully discrete KB
reconstruction using 40 CG iterations. Bottom left: FBP algorithm. Bottom right: Galerkin
reconstruction using pixel basis.

our Galerkin matrix AN . We observed that the direct solver in Matlab was much slower
than for the Galerkin method (more than a minute compared to a fraction of a second)
and therefore we decided to use iterative methods for its solution. In particular we found
the CG algorithm to perform good, which has been used for the results shown below. For
better comparison we also computed the KB Galerkin solution using the CG method. Iter-
atively addressing the arising equations has the advantage that they are applicable for three
dimension image reconstruction as well.

In Figure 5.3 we show reconstruction results with the above methods applied to the
simulated data obtained on a standard desktop PC. Computing the right hand side in the
Galerkin equation took about 1.95 seconds for the KB functions and 2.04 for the pixel basis.
The solution of the KB Galerkin equation took 0.31 seconds with the direct Matlab solver
and 0.11 seconds using 40 steps of the CG equation. The solution of the discrete equation
took about 76.17 seconds with the direct Matlab solver and 5.01 seconds using 40 steps
of the CG equation. The used filtered backprojection algorithm took about 0.08 seconds.
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One observes that computing the right hand side is currently the most time consuming
part in the Galerkin approach. Since we have to compute N2 inner products and each
inner product consist of a sum over NdetNt components, the numerical effort of that step
is O(N4) if we take Ndet = O(N) and Nt = O(N). By exploiting the special structure of
the basis functions and the wave operator we believe that it might be possible to derive
O(N3) algorithm for evaluating the right hand side. In such a situation we would reach
the computational performance of the FPB algorithm with more flexibility and a potentially
better accuracy. Further note that the matrix BT

NBN in the DD approach is not sparse
which explains why the CG method for the Galerkin approach is faster than the CG method
for the DD approach. In three spatial dimension, both the DD approach (see [56]) and the
Galerkin approach yields to a sparse system matrix and therefore both have similar and
good numerical efficiency in this case.

In order to investigate the stability of the above algorithms with respect to noise we
repeated the above computation after Gaussian white noise with variance equal to 5% of
the L2-norm of the data. The results are shown in Figure 5.4. Table5.2 summarizes the L2-
reconstruction for different noise level and different reconstruction errors. We see that the
methods using the KB functions perform best in terms of the L2-reconstruction error. Note
that the early stopping of the CG methods has a regularization effect. This partially explains
the smaller reconstruction error of the method using the CG iteration. We emphasize that
we did not select the number of iterations to minimize the reconstruction error. The KB
Galerkin using the direct solver in Matlab also gives quite small error, which indicates that
early stopping is not a very important issue in terms of the stability. Finally note that for
noisy data all results can be improved by incorporating regularization (see, for example, [14]
for the FBP algorithm and [56] for the DD approach).

noise (%) Galerkin Galerkin (CG) DD approach (CG) FBP Pixel

0 0.0323 0.0306 0.0314 0.0347 0.0283

2.5 0.0830 0.0748 0.0783 0.2064 0.1249

5 0.1411 0.1272 0.1140 0.3897 0.2092

Table 5.2: Relative L2-reconstruction errors for N = 100, s = 0.8081 using
different reconstruction methods and different noise levels. The Galerkin,
the Galerkin (CG) and DD-approach (CG) we use the the KB basis function ϕ( · ; 1, 2, 2).
For the methods using the CG algorithm 40 iterative steps have been perfomed.

6 Conclusion and outlook

In this paper we studied (least-squares) Galerkin methods for photoacoustic tomography with
spherical geometry (and arbitrary dimension). We implemented our Galerkin approach for
two spatial dimensional and presented numerical results demonstrating that yields accurate
results. The considered approach yields to solution of the Galerkin equation ANcN = bN ,
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where the system matrix AN has size N2 × N2 with N2 denoting the number of basis
elements. For a general reconstruction space, the system matrix to be computed and stored
is dense and unstructured. In this paper we showed that by using the isometry property of
[11, 12] in combination with translation invariant reconstruction spaces, the system matrix is
sparse and has simple structure. This can be used to easily set up the Galerkin equation and
efficiently solve the Galerkin equation. This is in contrast to existing model based approaches
for two-dimensional PAT, that do not yield to a sparse system matrix and numerical solvers
for the arising equation (such as the CG algorithm) are numerically more expensive.

There are several possible interesting extensions and modifications of our image recon-
struction approach. One intended line of research is the extension of our algorithm to three
spatial dimension. For that purpose we believe that it is most promising to use iterative
methods (such as the CG algorithm) for solving the Galerkin equation. One advantage in
this case is that the system matrix is not required to be explicitly stored. For that purpose
we will further derive more efficient ways how to evaluate the right hand side in the Galerkin
equation which is, at least for the presented algorithm in two spatial dimensions, the most
time consuming part. Another practically important extension of our framework is to incor-
porate finite detector size, finite bandwidth of the detection system and allowing incomplete
data. In such cases it will be necessary to include additional regularization to stabilize the
reconstruction process. We intend to apply our algorithm to experimental data and to study
the optimal parameter choices in such a situation. Finally it would be interesting to extend
our approach to more general measurement surfaces.

A Remaining proofs

A.1 Proof of Lemma 3.1

We have that (ϕkT,s)k∈Zd is a Riesz basis with frame bounds A,B > 0 of VT,s,ϕ if and only if

∀c ∈ `2(Zd) : A‖c‖2
`2 ≤

∥∥∥
∑

k∈Zd
ckϕ

k
T,s

∥∥∥
2

L2
≤ B‖c‖2

`2 .

Suppose c ∈ `2(Zd) and set f :=
∑

k∈Zd ckϕ
k
T,s. The Fourier transform of f is given by

f̂(ξ) = T d/2
∑

k∈Zd cke
−iT sξ•kϕ̂(Tξ). Now define ĉ : R → C by ĉ(η) :=

∑
k∈Zd cke

−isη•k. By
Plancherel’s identity and the 2π/s-periodicity of ĉ we get

‖f‖2
L2 = ‖f̂‖2

L2

= T d
∫

Rd
|ĉ(Tξ) ϕ̂(Tξ)|2dξ

=

∫

Rd
|ĉ(η)|2 |ϕ̂(η)|2dη

=

∫

[0,2π/s]d

∑

m∈Zd
|ĉ(η + 2π

s
m)|2 |ϕ̂(η + 2π

s
m)|2dη
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=

∫

[0,2π/s]d
|ĉ(η)|2

∑

m∈Zd
|ϕ̂(η + 2π

s
m)|2dη .

Parseval’s identity for ĉ(η) =
∑

k∈Zd cke
−isη•k gives

‖c‖2
`2 =

∑

k∈Zd
|ck|2 =

sd

(2π)d

∫

[0,2π/s]d

∣∣∣
∑

k∈Zd
cke
−iηks

∣∣∣
2

dη .

Therefore we get the inequalities

A
sd

(2π)d

∫

[0,2π/s]d
|ĉ(η)|2dη ≤

∫

[0,2π/s]d
|ĉ(η)|2

∑

m∈Zd
|ϕ̂(η + 2π

s
m)|2dη

≤ B
sd

(2π)d

∫

[0,2π/s]d
|ĉ(η)|2dη .

The last chain of inequalities is satisfied for all c ∈ `2(Zd) if and only if (3.4) holds, which
concludes the proof of Lemma 3.1.

A.2 Proof of Lemma 3.2 (a)

For all k ∈ Zd we have

〈ϕ`s,T , ϕ`s,T 〉 = T d
∫

Rd
|ϕ̂(Tξ)|2e−i(sTk)•ξdξ

= T d
∫

[0,2π/s]d

∑

k∈Zd
|ϕ̂(Tξ + 2π

s
k)|2e−i(sTk)•ξdξ

=

∫

[0,2π/s]d

∑

k∈Zd
|ϕ̂(η + 2π

s
k)|2e−i(sk)•ηdη ,

where for the last equality we used the substitution η = Tξ. Hence 〈ϕ`s,T , ϕ`s,T 〉 = δ`,k holds
if and only if

∑
k∈Zd |ϕ̂(ξ + 2π

s
k)|2 = sd/(2π)d.

A.3 Proof of Lemma 3.2 (b)

Making the ansatz θ(η) :=
∑

k∈Zd ckϕ(η − sk) and taking the Fourier transform yields

θ̂(Tξ) =
∑

k∈Zd
cke
−ikTsξϕ̂(Tξ) =: ĉ(Tξ) ϕ̂(Tξ).

By (a), the family (θkT,s)k∈Zd with θkT,s(x) := T−d/2θ(x/T − sk) is orthonormal if and only if

sd

(2π)d
=
∑

k∈Zd
|θ̂(Tξ + 2π

s
k)|2
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=
∑

k∈Zd
|ĉ(Tξ + 2π

s
k)|2| ϕ̂(Tξ + 2π

s
k)|2

= |ĉ(Tξ)|2
∑

k∈Zd
|ϕ̂(Tξ + 2π

s
k)|2.

This is fulfilled if and only if ĉ(Tξ) = ( s
2π

)d/2(
∑

k∈Zd |ϕ̂(Tξ + 2π
s
k)|2)−1/2, which yields (3.5).

Further one readily verifies that (θkT,s)k∈Zd is a Riesz basis of its span and contains the element
ϕT,0. This implies that (θkT,s)k∈Zd spans VT,s,ϕ and concludes the proof of Lemma 3.2.
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