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Abstract

In this article, we revisit iterative methods for solving the inverse problem of photoacoustic
tomography in free space. Recently, there have been interesting developments on explicit for-
mulations of the adjoint operator, demonstrating that iterative methods could be an attractive
choice for photoacoustic image reconstruction. In this work, we propose several modifications
of current formulations of the adjoint operator which help speed up the convergence and yield
improved error estimates. We establish a stability analysis and show that, with our choices of
the adjoint operator, Landweber’s and the CG methods can achieve a linear rate of convergence
either in L2 or H1 norm under the visibility condition. In addition, we analyze the normal
operator from the microlocal analysis point of view. This helps us to have more insight into the
convergence speed of the iterative methods as well as choosing proper weights for the mapping
spaces. Finally, we present numerical results using various iterative reconstruction methods for
trapping as well as non-trapping sound speed. Our results demonstrate that Nesterov’s fast
gradient and the CG methods converge faster than Landweber’s and iterative time reversal
methods in the visible as well as the invisible case.

Keywords: Photoacoustic tomography, variable sound speed, iterative regularization, adjoint
operator, Landweber ’s method, Nesterov’s method, CG method, visibility condition, invisibility
condition, image reconstruction
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1 Introduction

Photoacoustic tomography (PAT) is an emerging hybrid method of imaging. It combines the high
contrast of optical imaging with the good resolution of ultrasound tomography. The biological ob-
ject of interested is scanned with a laser light pulse. The photoelastic effect produces an ultrasound
pressure propagating in the space. One measures the ultrasonic pressure on an observation surface.
The aim of PAT is to recover the initial pressure inside the tissue from the measured data. This
quantity contains helpful internal information of the object and is the image to be reconstructed.

The mathematical model for PAT is the acoustic wave equation{
c−2(x) ptt(x, t)−∆p(x, t) = 0, (x, t) ∈ Rd × R+,

p(x, 0) = f(x), pt(x, 0) = 0, x ∈ Rd,
(1.1)
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where c : Rd → R is the sound speed and f : Rd → R the initial pressure. Let us denote by S the
observation surface. We will assume that S is a closed subset of ∂Ω with nonempty interior Int(S).
Here, Ω is an open subset of Rd that contains the support of f . The mathematical problem of PAT
is to invert the map L : f → g := p|S×(0,T ). We will refer to this problem as the inverse problem of
PAT.

For later conveniences, let us fix several geometric conventions. We will always assume that the
sound speed c is smooth and bounded from below by a positive constant. The space Rd is considered
as a Riemannian manifold with the metric c−2(x) dx2 and Ω is assumed to be strictly convex with
respect to this metric. Then, all the geodesic rays originating inside Ω intersect the boundary ∂Ω
at most once. We say that the speed c is nontrapping if all such geodesic rays intersect with ∂Ω;
otherwise, the speed c is called trapping. We will denote by T∗Ω the cotangent bundle of Ω. It can
be identified with Ω×Rd. Also, T∗Ω \ 0 is the cotangent bundle of Ω minus the zero section, which
can be identified with Ω × (Rd \ {0}). A set V ⊂ T∗Ω \ 0 is said to be conic if (x, ξ) ∈ V implies
(x, αξ) ∈ V for all α > 0.

Let us assume that supp(f) ⊂ Ω0, where Ω0 b Ω. Then, L is a well-defined linear bounded
operator from Hs1(Ω0) to Hs2(S × [0, T ]) for all s1 ≥ s2 (see [54]). In this article, we will identify
the correct mapping spaces for L in order to stabilize the inverse problem of PAT and design
proper algorithms. For the sake of simplicity, we will assume that L is injective. The necessary
and sufficient condition for this assumption to hold can be found in [54].

An essential feature of an inverse problem is its well-posedness or ill-posedness (see [13] and
Section 2). The inversion of a linear operator T is called well-posed if the ratio ‖Tx‖/‖x‖ is
bounded from below by a positive constant and ill-posed otherwise. The inverse problem of PAT
can be either well-posed or ill-posed, as can be seen in the following two scenarios:

(i) There is a closed subset S0 ⊂ ∂Ω such that S0 ⊂ Int(S) and the following condition holds:
for any element (x, ξ) ∈ T∗Ω0 \0, at least one of the unit speed geodesic rays originating from
x at time t = 0 along the direction of ±ξ intersects with S0 at a time t < T . This is the
so-called visibility condition [38, 61, 29, 47, 54].

(ii) There is an open conic set V ⊂ T∗Ω0 \ 0 such that for all (x, ξ) ∈ V none of the unit speed
geodesic rays originating from x at time t = 0 along the direction of ±ξ intersects with S at
a time t ≤ T . This is called the invisibility condition.

The visibility and invisibility conditions are almost, but not exactly, complementary. Under
the visibility condition, the inversion of L : Hs(Ω0) → Hs(S × [0, T ]) is well-posed for any s ≥ 0
(see [54]). On the other hand, when the invisibility condition holds, the inversion of L : Hs1(Ω0)→
Hs2(S × [0, T ]) is ill-posed for all s1, s2 (see [47]). In this article, we solve the inverse problem of
PAT for both well-posed and ill-posed settings by iterative (regularization) methods. They include
Landweber’s, Nesterov’s and the conjugate gradient (CG) methods. These iterative methods are
theoretically convergent to the exact solution in the absence of noise. However, the convergence
speed as well as error estimates with respect to the noise level are different for the ill-posed and
the well-posed settings.

There exist several methods to solve the problem of PAT such as explicit inversion formulas
[16, 35, 15, 35, 46, 20, 21, 43, 50], series solutions [36, 2], time reversal [16, 29, 28, 54], and quasi-
reversibility [9]. Reviews on these methods can be found in [29, 33, 34, 53].∗ To the best of our
knowledge, the series solution, time reversal method, and quasi-reversibility method only apply to

∗Other setups of PAT that use integrating detectors have been studied in, e.g., [22, 51, 7, 62]. However, we do not
consider these setups in the present article.
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the case that S is a closed surface. The inversion formula works for certain closed or flat observation
surfaces. The algebraic/iterative methods have been commonly used in the engineering community
[12, 30, 41, 60]. It seems that these works do not employ the explicit form of the adjoint operator,
which has been described only recently [6, 3]. The goal of this article is to have a systematic study
on the iterative methods to see their advantages as well as limitations.

Our approach is most closely related to [6], where Landweber’s method was proposed to solve
the inverse problem for PAT. However, we make several changes in order to preserve the well-
posedness (when it holds) of the problem and speed up the convergence speed. For example, instead
of considering L as a mapping from H1

0 (Ω0) to L2(S × [0, T ]), we consider L : Hi(Ω0) → Hi(χ),
i = 0, 1 (see Section 3). This change not only preserves the well-posedness of the inverse problem
under the visibility condition but also makes it simpler to compute the adjoint operator and further
speed up the convergence. Additionally, by introducing the weighted norm on Hi(χ), we supply the
flexibility to the iterative method. This change is related to [3], where acoustic measurements on
an open set are considered (see also Section 3.2, where we derive theoretical results for this setup).

Let us note that our established Landweber and GC algorithms converge linearly for the partial
data problem under the visibility condition. This convergence rate, to the best of our knowledge, has
not been obtained by any previous method. Comparable results for a different setup of PAT, where
the acoustic wave is contained in a bounded domain, have recently been obtained in [1, 49, 56].

The article is organized as follows. In Section 2, we introduce several iterative methods that
will be used for solving the inverse problem of PAT. We will see in that section that the knowledge
of the adjoint operator is crucial for the iterative methods. In Section 3 we derive and analyze the
adjoint operator L∗ of L. We will revisit the PAT with open observation domain in Subsection 3.2.
In Section 4, we describe our numerical implementations and present results in various scenarios
including full and partial data as well as non-trapping and trapping sound speed.

2 Iterative methods for solving linear equations in Hilbert spaces

In this section, we review several main iterative methods for solving linear equations in Hilbert
spaces. Let T : X → Y be a linear operator mapping between two Hilbert spaces X and Y . We
denote by R(T) its range. Assuming that T is injective, we are interested in inverting T. That is,
we want to solve the following problem:

Problem 2.1. Given y ∈ R(T), find the solution x ∈ X of the equation Tx = y.

Problem 2.1 is said to be well-posed if the inverse T−1 : R(T) → X is bounded and ill-posed
otherwise. It can be seen that Problem 2.1 is well-posed if and only if T is bounded from below,
i.e.,

b := inf
x 6=0

‖Tx‖Y
‖x‖X

=

√
inf
x 6=0

〈T∗Tx, x〉X
‖x‖2X

> 0.

Let us now consider the inverse problem with noise:

Problem 2.2. Given yδ ∈ Y such that ‖yδ −Tx‖Y ≤ δ, find an approximation xδ of x.

We notice that Problem 2.1 is a special case of Problem 2.2 where δ = 0. To solve Problem 2.2,
it is helpful to understand the Moore-Penrose generalized inverse T† of T. It is defined for all
y = y′+y′′ ∈ R(T)⊕R(T)⊥ =: D(T†) by the formula T†y = T−1y′, which is the unique minimizer
of the residual functional 1

2‖Tx − y‖
2
Y . A reasonable solution for Problem 2.2 is xδ = T†yδ when
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yδ ∈ D(T†). Of course, some care is needed when yδ 6∈ D(T†). We will discuss this issue in detail
below.

There are several methods to solve Problems 2.1 and 2.2. In the rest of this section, we discuss
three methods: Landweber’s, Nesterov’s, and the conjugate gradient (CG) methods.

2.1 Landweber’s method

We first consider the exact data situation (see Problem 2.1). In this case, Landweber’s method is
simply the gradient descent method for minimizing the residual functional 1

2‖Tx− y‖
2. It reads as

follows:
xk+1 = xk − γT∗(Txk − y), k ≥ 0. (2.1)

In order for the algorithm to converge, the step size (or relaxation parameter) γ needs to be properly
chosen. From (2.1), we obtain

xk+1 − x = (I− γT∗T)(xk − x). (2.2)

Our goal is to choose γ such that ‖xk − x‖ decreases with respect to k. To that end, we observe
that the spectrum of I − γT∗T is contained in [1 − γ ‖T‖2 , 1 − γb2] and therefore ‖I − γT∗T‖ =
max{|1− γb2|, |1− γ ‖T‖2 |}. Choosing a fixed step size 0 < γ < 2/ ‖T‖2, we obtain

‖I− γT∗T‖ ≤ 1.

The equality, in fact, may still hold if b = 0 (i.e., in the case of the ill-posed problem). From
equation (2.2) we obtain

‖xk+1 − x‖X ≤ ‖xk − x‖X .

Keeping in mind that T is injective, one can prove that the strict inequality holds. Moreover,
‖xk − x‖ → 0 as k → ∞ (see, e.g., [13, 31]). The convergence speed, however, can be arbitrarily
slow for the ill-posed problem. On the other hand, for the well-posed problem ‖I − γT∗T‖ < 1.
Therefore, xk → x linearly since ‖xk+1 − x‖X ≤ ‖I− γT∗T‖‖xk − x‖X . This implies

‖xk − x‖X ≤ ‖I− γT∗T‖k ‖x0 − x‖X . (2.3)

In particular for the choice γ = 2
b2+‖T‖2 , we obtain the optimal convergence estimate

‖xk − x‖X ≤
(‖T‖2 − b2
‖T‖+ b2

)k
‖x0 − x‖X .

This convergence however is slow when the condition number κ = ‖T‖/b is large.
Now consider the noisy problem (c.f., Problem 2.2). We then repeat the iteration (2.1) where

xk and y are replaced by xδk and yδ, respectively. If yδ ∈ D(T†) and xδ = T†yδ, then xδk → xδ.
However, if yδ 6∈ D(T†), then xk → ∞ (see, e.g., [13]). One needs to propose a stopping criteria,
for which we follow Morozov [42]. Let τ > 1 be a fixed constant and kδ is the smallest integer such
that

‖Txδk − yδ‖Y < τδ.

We then define xδ∗ := xδkδ . The stopping index kδ exists and satisfies kδ = O(δ−2). Moreover,

xδ∗ → x as δ → 0 (see [13, Proposition 6.4]). In the well posed case, Morozov’s discrepancy
principle obviously yields the optimal error estimate ‖xδ∗ − x‖X = O(δ) for all x ∈ X. In the ill-
posed case, however, this does not hold and error estimates can only be derived under appropriate
smoothness assumptions on the unknown x.
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2.2 Nesterov’s fast gradient method

Let us now discuss the Nesterov’s fast gradient method (see [44]), which is an acceleration of
the gradient descent method. We state the algorithm here for minimizing the residual functional
1
2‖Tx− y‖

2 in the exact data case (see Problem 2.1):

1. initialization: x0 = z0 and t0 = 1.

2. while (not stop) do

xk+1 = zk − γT∗(Tzk − y)

tk+1 =
1+
√

1+4t2k
2

zk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk)

end do

Nesterov’s method is known to satisfy ‖Txk − y‖2 = O(k−2). The algorithm for Problem 2.2 is
similar. We also apply the Morozov’s stopping criteria for this algorithm. Then, the stopping
index satisfies kδ = O(δ−1). It is not clear to see whether the Nesterov’s method converges (at
least) linearly for the well-posed case of Problem 2.1. However, as demonstrated in later in our
numerical simulations, Nesterov’s method converges much faster than Landweber’s method for both
Problem 2.1 and Problem 2.2.

2.3 The conjugate gradient (CG) method

The CG algorithm was originally proposed in [26] for solving linear equations Ax = y, where
A : Rn → Rn is positive definite self adjoint operator. The basic idea of CG method is to find a
decomposition of the solution x into the form

x = x0 +
∑
k

αkdk,

where (dk)k is a family of directions that are pairwise orthogonal with respect to the energy product
〈d, d′〉A := 〈d,Ad′〉. The CG algorithm has been generalized to the Hilbert space setting in [24, 11,
32, 23, 17, 45, 14, 4, 19, 39]. In this article, we will consider an operator T which is not self-adjoint
(indeed, it maps between different spaces X and Y , which will be specified in Section 3). In such
a situation we can use the CG method to solve the normal equation

T∗Tx = T∗x .

This resulting method is called conjugate gradient method for the normal equation (CGNE). It
reads as follows (see, e.g., [23, Algorithm 2.3]):

1. initialization: k = 0, r0 = y −Tx0, d0 = T∗r0.

2. while (not stop) do

i) αk = ‖T∗rk‖2X/‖Tdk‖2Y
ii) xk+1 = xk + αk dk

iii) rk+1 = rk − αk Tdk
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iv) βk = ‖T∗rk+1‖2X/‖T∗rk‖2X
v) dk+1 = T∗rk+1 + βk dk

vi) k = k + 1

end while

In the following we refer to the CGNE algorithm simply as the CG method. The iterates xk
converges to the solution x of Problem 2.1. When the problem is well-posed, the CG method
converges linearly in the energy norm (see, e.g., [11]):

‖T(xk − x)‖Y ≤ 2
(‖T‖ − b
‖T‖+ b

)k
‖T(x0 − x)‖Y ,

and hence

‖xk − x‖X ≤ 2
‖T‖
b

(‖T‖ − b
‖T‖+ b

)k
‖x0 − x‖X .

This convergence rate for the CG method is better than for Landweber’s method stated in (2.3).
We also notice that for CG, we do not have to determine a step size parameter. Moreover, assume
that T∗T = αI+K where K is a compact operator. Then, the CG method converges superlinearly
(see, e.g., [25]).

For the case of noisy data (see Problem 2.2), we use the same iteration in combination with
Morozov’s stopping criteria. Then, the stopping index exists and, in practice, it is much smaller
than that of Landweber’s method.

2.4 Iterative methods for PAT

In this article, we will study the above three iterative methods for the inverse problem of PAT. To
that end, we need to establish the proper form of the adjoint operator (or equivalently, the mapping
spaces for L), which is done in Section 3. Our goal for the adjoint operator is two-fold: it should
be relatively simple to implement and to speed up the convergence. In particular, with our choice
of mapping spaces for L, the inverse problem of PAT is well-posed under the visibility condition.
Therefore, the linear convergence for the Landweber’s and CG method is guaranteed for the exact
problem. This convergence rate, for partial data problem of PAT, has not been obtained before for
any other methods.

In Section 4, we will implement the iterative methods for PAT. We will also compare them with
the iterative time reversal method proposed in [54] (see also [52] for the numerical discussion of the
method).

3 The adjoint operator for PAT

Let us recall that L : f → g := p|S×(0,T ), where p is defined by the acoustic wave equation (1.1)
and S is a closed subset of ∂Ω. Our goal is to invert L using the iterative methods introduced in
the previous section. It is crucial to analyze the adjoint operator L∗ of L. To that end, we first
need to identify the correct mapping spaces for L. We, indeed, will consider two realizations, L0

and L1, of L corresponding to two different choices of the mapping spaces.
We first recall our assumption sup(f) ⊂ Ω0, where Ω0 b Ω. For the spaces of f , let us denote

H0(Ω0) := {f ∈ L2(Rd) : supp(f) ⊂ Ω0},
H1(Ω0) := {f ∈ H1(Rd) : supp(f) ⊂ Ω0}.
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Then, H0(Ω0) and H1(Ω0) are Hilbert spaces with the respective norms

‖f‖H0(Ω0) = ‖c−1f‖L2(Ω0) ,

‖f‖H1(Ω0) = ‖∇f‖L2(Ω0) .

We note that H0(Ω0) ∼= L2(Ω0) and H1(Ω0) ∼= H1
0 (Ω0). The above chosen norms are convenient

for our later purposes.
For the spaces of g, we fix a nonnegative function χ ∈ L∞(∂Ω × [0, T ]) such that supp(χ) =

Γ := S × [0, T ]. Let us denote:

H0(χ) =
{
g : ‖g‖H0(χ) := ‖√χ g‖L2(Γ) <∞

}
,

H1(χ) =
{
g : g( · , 0) ≡ 0, ‖g‖H1(χ) := ‖gt‖H0(χ) <∞

}
.

We define

Li = L|Hi(Ω0) : (Hi(Ω0), ‖ · ‖Hi(Ω0))→ (Hi(χ), ‖ · ‖Hi(χ)) for i = 0, 1.

Let H i(Γ) be the standard Sobolev space of order i on Γ. Noticing that L is a bounded map from
Hi(Ω0)→ H i(Γ) (see [54]) and H i(Γ) ⊂ Hi(χ), we obtain:

Theorem 3.1. For i = 0, 1, Li is a bounded map from Hi(Ω0) to Hi(χ).

We now consider χ g as a function on ∂Ω × [0, T ] which vanishes on (∂Ω \ S) × [0, T ]. The
following theorem gives us an explicit formulation of L∗i :

Theorem 3.2. Let g ∈ C∞(Γ).

(a) Consider the wave equation
c−2(x) qtt(x, t)− ∆q(x, t) = 0, (x, t) ∈ (Rd \ ∂Ω)× (0, T ),

q(x, T ) = 0, qt(x, T ) = 0, x ∈ Rd,[
q
]
(y, t) = 0,

[
∂q
∂ν

]
(y, t) = χ(y, t) g(y, t), (y, t) ∈ ∂Ω× [0, T ].

(3.1)

Then
L∗0g = qt( · , 0)|Ω0 .

(b) Assume further that χ is independent of t (i.e., χ(y, t) = χ(y)). We define

ḡ(x, t) = g(x, t)− g(x, T ),

and consider the wave equation
c−2(x) q̄tt(x, t)− ∆q̄(x, t) = 0, (x, t) ∈ (Rd \ ∂Ω)× (0, T ),

q̄(x, T ) = 0, q̄t(x, T ) = 0, x ∈ Rd,[
q̄
]
(y, t) = 0,

[
∂q̄
∂ν

]
(y, t) = χ(y, t) ḡ(y, t), (y, t) ∈ ∂Ω× [0, T ].

(3.2)

Then,
L∗1g = Π[q̄t( · , 0)].

Here, Π is the projection on the space H1(Ω0) ∼= H1
0 (Ω0), given by

Π(f) = f − φ,

where φ is the harmonic extension of f |∂Ω0 to Ω0.
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We note that the solution q(x, t) in (3.1) is defined by the variational formulation (see [6])∫ T

0

∫
Rd
c−2(x) qtt(x, t) v(x, t) dx dt+

∫ T

0

∫
Rd
∇q(x, t)∇v(x, t) dx dt =

−
∫ T

0

∫
∂Ω
χ(y, t) g(y, t) v(y, t) dy dt, (3.3)

for any test function v ∈ C∞(Rd × [0, T ]). Its existence and uniqueness can be found in [6]. The
above variational form implies that (3.1) can be formally rewritten as the nonhomogeneous wave
problem{

c−2(x) qtt(x, t)− ∆q(x, t) = −δ∂Ω(x)χ(x, t) g(x, t), (x, t) ∈ Rd × (0, T ),

q(x, T ) = 0, qt(x, T ) = 0, x ∈ Rd.

This formulation will be helpful later when we solve the problem numerically in Section 4.
Let us now proceed to prove Theorem 3.2.

Proof. Let f ∈ C∞0 (Ω0) and p be the solution of (1.1). Choosing v = p in (3.3) and taking
integration by parts for the left hand side, we obtain

−
∫

Ω0

c−2(x) qt(x, 0) p(x, 0) dx+

∫ T

0

∫
Rd
q(x, t)

[
c−2(x) ptt(x, t)−∆p(x, t)

]
dx

= −
∫ T

0

∫
∂Ω
χ(y, t) g(y, t) L(f)(y, t) dy dt.

That is, ∫
Ω0

c−2(x) qt(x, 0) f(x) dx =

∫ T

0

∫
∂Ω
χ(y, t) g(y, t) L(f)(y, t) dy dt, (3.4)

or
〈qt( · , 0), f〉H0(Ω0) = 〈g,L(f)〉H0(χ) .

Since this is true for all f ∈ C∞0 (Ω0), we obtain

L∗0g = qt( · , 0)|Ω0 .

This finishes the proof of (a). Let us now proceed to prove (b). Let q̄ be the solution of (3.2).
That is, q̄ satisfies (3.3) with g being replaced by ḡ. In that identity, we pick v = ptt. Then, taking
integration by parts for the left hand side, we obtain∫

Ω0

c−2(x) q̄t(x, 0) ptt(x, 0)dx =

∫ T

0

∫
∂Ω
χ(y, t) ḡ(y, t) ∂2

t L(f)(y, t) dy dt.

Noting that c−2(x) ptt(x, 0) = ∆f(x), we arrive to∫
Ω0

q̄t(x, 0) ∆f(x) dx =

∫ T

0

∫
∂Ω
χ(y, t) ḡ(y, t) ∂2

t L(f)(y, t) dy dt.

Let us now consider χ(y, t) = χ(y). Taking integration by parts for the left hand side with respect
to x and right hand side with respect to t, we get∫

Ω0

∇
[
q̄t(x, 0)

]
∇f(x)dx =

∫ T

0

∫
∂Ω
χ(y) ḡt(y, t) ∂tL(f)(y, t) dy dt.
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Here, we have used ḡ( · , T ) = ∂tL(f)( · , 0) ≡ 0. Let φ be the harmonic extension to Ω0 of
qt( · , 0)|∂Ω0 . Since ∫

Ω0

∇φ(x)∇f(x) dx = −
∫

Ω
∆φ(x) f(x) dx = 0,

and ḡt = gt, we obtain∫
Ω0

∇
[
q̄t(x, 0)− φ(x)

]
∇f(x)dx =

∫ T

0

∫
∂Ω
χ(y) gt(y, t) ∂tL(f)(y, t) dy dt . (3.5)

We conclude
〈Π[q̄t( · , 0)], f〉H1(Ω0) = 〈g,Lf〉H1(χ) .

This proves L∗1g = Π[q̄t( · , 0)].

Remark 3.3. Let us make the following observations:

(a) Since C∞(Γ) is dense in both H0(χ) and H1(χ), the adjoint operators L∗0 and L∗1 are
uniquely determined from the formulas in Theorem 3.2.

(b) Compared to L∗0, L∗1 involves an extra projection operator. In our numerical experiments,
we will only use L∗0 since it is simpler to implement. However, the knowledge of L∗1 is
helpful in designing iterative algorithms that converge in the H1(Ω0) norm.

(c) If, instead of L = L0 : H0(Ω0) → H0(χ), we consider L : L2(Ω0) → H0(χ), then
L∗g = 1

c2
qt( · , 0). Our formulations of L∗ are different from that in [6], which is L∗g =

−∆−1( 1
c2
qt( · , 0)). Our formulations make the inverse problem of PAT well-posed under

the visibility condition (see Theorem 3.4 below).

Let us recall the visibility condition described in the introduction:

Visibility condition. There is a closed subset S0 ⊂ ∂Ω such that S0 ⊂ Int(S) and the following
condition holds: for any element (x, ξ) ∈ T∗Ω0 \ 0, at least one of the unit speed geodesic rays
originating from x at time t = 0 along the directions ±ξ intersects with S0 at a time t < T .

Let us prove that with our choices of mapping spaces, the inverse problem of PAT is well-posed.

Theorem 3.4. Assume that the visible condition holds and χ ≡ 1 on S1 × [0, T ], where S1 is a
closed subset of ∂Ω such that S0 ⊂ Int(S1) and S1 ⊂ Int(S). For i = 0, 1, there is a constant C > 0
such that for any g = Lf , we have

‖f‖Hi(Ω0) ≤ C‖g‖Hi(χ).

Proof. Following the lines of [54], we obtain for i = 0, 1 †

‖f‖Hi(Ω0) ≤ C‖g‖Hi(S1×[0,T ]). (3.6)

Here and elsewhere, H i(S1 × [0, T ]) is the standard Sobolev space of order i on S1 × [0, T ] and C
is a generic constant which may be different in one place from another.

†The result for i = 1 is obtained in that reference. The result for i = 0 is obtained similarly, one only needs to
invoke [37, Theorem 2.3] instead of [37, Theorem 2.1].
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Let us consider i = 0. Noticing that ‖g‖H0(S1×[0,T ]) ≤ ‖g‖H0(χ), we obtain

‖f‖H0(Ω0) ≤ C‖g‖H0(χ).

Let us now consider i = 1 and compare ‖g‖H1(χ) with ‖g‖H1(S1×[0,T ]). To this end, we recall
the hyperbolic zone in T∗(∂Ω× (0, T ))

H = {(x, t, η, τ) ∈ T∗(∂Ω× (0, T )) : c(x) |η| < τ}.

It is well-known (see, e.g., [54, 47]) that WF(g) ⊂ H. Since ∂t is an elliptic operator in H,

‖g‖H1(S1×[0,T ]) ≤ C(‖∂tg‖L2(S1×[0,T ]) + ‖g‖L2(S1×[0,T ])).

Keeping in mind that g( · , 0) ≡ 0, we obtain

‖g‖H1(S1×[0,T ]) ≤ C ‖∂tg‖L2(S1×[0,T ]).

Hence,
‖g‖H1(S1×[0,T ]) ≤ C ‖g‖H1(χ).

This, together with (3.6), gives
‖f‖H1(Ω0) ≤ C ‖g‖H1(χ),

which finishes our proof.

Remark 3.5. Let us recall that (see Section 2) when the linear inverse problem is well-posed,
Landweber’s and the CG methods have a linear rate of convergence. Theorem 3.4 shows that
with our choices of mapping spaces, the inverse problem of PAT is well-posed under the visibility
condition. Therefore, Landweber’s and the CG methods converge linearly in either L2-norm or H1-
norm , depending on our choice of the adjoint operator in Theorem 3.2, if the visibility condition
holds. This convergence rate has not been obtained before by any method.

3.1 Microlocal analysis for the normal operator L∗L

To better understand the nature of L∗L, we will analyze it from the microlocal analysis point of
view. Let us recall that r±(x, ξ) is the (unit speed) geodesic rays originating from x along direction
of ±ξ. We assume that r±(x, ξ) intersects the boundary ∂Ω at a unique point x± = x±(x, ξ). We
denote by θ± the angle between r±(x, ξ) and the normal vector of ∂Ω at x±. Our main result is
the following theorem.

Theorem 3.6. Assume that χ ∈ C∞(∂Ω × [0, T ]). Then, the normal operator N = L∗ L is a
pseudo-differential operator of order zero, whose principal symbol is

σ0(x, ξ) =
1

4

(
c(x+)χ(x+, t+)

cos(θ+)
+
c(x−)χ(x−, t−)

cos(θ−)

)
. (3.7)

Here, t± is the geodesics distance between x and x±.

Let us note that in the case of trapping speed, it may happen that one (or both) of the geodesic
rays r±(x, ξ) does not intersect ∂Ω. In that case, Theorem 3.6 still holds if we replace χ(x±, t±) by
0. The above formula is true for both realizations L0 and L1 of L since L∗0 and L∗1 only differ by a
smooth term. In the below proof, we will consider L = L0.
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Proof. We first intuitively describe the effect of L∗L on the wave front set of a function f supported
inside Ω0. For simplicity, we assume that f is microlocally supported near an element (x, ξ) ∈
T∗Ω \ 0. Let us analyze the effect of L to f by considering the wave equation (1.1). At time t = 0,
the singularity of f at (x, ξ) breaks into two equal parts (see [54]). They induce the singularities of
p on the bicharacteristic rays C±(x, ξ) originating at (x, 0, ξ, τ = c(x)|ξ|) and (x, 0,−ξ, τ = c(x)|ξ|)
(see [27]). The projection of each bicharacteristic ray C±(x, ξ) on the spatial domain Rd is the
geodesic ray r±(x, ξ) on Rd (recalling that Rd is equipped with the metric c−2(x) dx2). Each of
the geodesic ray hits the boundary ∂Ω at a unique point x± and time t±. The corresponding
singularity of p at (x±, t±) is denoted by (x±, t±, ξ±, τ±). Its projection on T∗(x±,t±)(∂Ω × [0, T ])

induces a singularity of g at (x±, t±, η±, τ±). Now, consider the adjoint equation (3.1) which defines
L∗. The singularity of g at (x±, t±, η±, τ±) then induces two singularities of q at (x±, t±, ξ

′, τ±).
Here, ξ′ = η± ±

√
c−2(x±)τ2 − |η±|2 ν where ν is the normal vector of ∂Ω at x± (note that one of

the such ξ′ equals ξ±). These two singularities propagate along two opposite directions when going
backward in time, one into the domain Ω (along the ray C±(x, ξ) but in the negative direction) and
one away from Ω. At t = 0 the first one lands back to (x, ξ) and the other one lands outside of
Ω. This shows the pseudo-locality of L∗L : f → qt( · , 0)|Ω0 and heuristically explains that L∗L is a
pseudo-differential operator. Our rigorous argument follows below.

Let us recall that up to a smooth term (e.g., [59]):

p(x, t) =
1

(2π)d

∑
σ=±

∫
eiφσ(x,t,ξ)aσ(x, t, ξ)f̂(ξ)dξ = p+(x, t) + p−(x, t).

The phase function φσ satisfy the eikonal equation

∂tφσ(x, t, ξ) + σ|∇xφσ(x, t, ξ)| = 0, φσ(x, 0, ξ) = x · ξ.

The amplitude function aσ satisfies

a(x, t, ξ) ∼
∞∑
m=0

a−m(x, t, ξ),

where a−m is homogeneous of order −m in ξ. The leading term a0 = a(x, t, ξ) satisfies the transport
equation‡ (

∂tφσ ∂t − c2(x)∇xφσ · ∇x) a0(x, t, ξ) = 0,

with the initial condition a0(x, ξ, 0) = 1/2.
Then, up to a smooth term, we obtain g = (p+ +p−)|∂Ω = g+ +g−. Solving the adjoint problem

(3.1), we obtain, up to a smooth term, L∗Lf = ∂tq+( · , 0) + ∂tq−( · , 0). Here, qσ (for σ = ±) is
defined by 

c−2(x) qσ,tt(x, t)− ∆qσ(x, t) = 0, (x, t) ∈ (Rd \ ∂Ω)× (0, T ),

qσ(x, T ) = 0, qσ,t(x, T ) = 0, x ∈ Rd,[
qσ
]
(y, t) = 0,

[
∂qσ
∂ν

]
(y, t) = χ(y, t) gσ(y, t), (y, t) ∈ ∂Ω× (0, T ).

(3.8)

Let us show that f → f+ := ∂tq+( · , 0) is a pseudo-differential operator with the principal symbol

σ+(x, ξ) =
1

4

χ(x+, t+)

cos(θ+)
.

‡In several references, the equation contains a zero order term. However, that term turns out to be zero.
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We recall that x+ is the intersection of the positive geodesic ray r+(x, ξ) and ∂Ω, and t+ is the time
to travel along the geodesic from x to x+. Let (x+, t+, ξ+, τ+) be the corresponding element on the
bicharacteristic and (x+, t+, η+, τ+) its projection on T∗(x+,t+)(∂Ω × [0, T ]). Then, (x+, t+, η+, τ+)

is in the hyperbolic zone, that is τ+ > c(x+) |η+|. Let us show that the mapping q+|∂Ω×[0,T ] →
[∂νq+]|∂Ω×[0,T ] is an elliptic pseudo-differential operator near (x+, t+, η+, τ+).

Indeed, for simplicity, we assume that locally near x+, ∂Ω is flat, and h = q+|∂Ω×[0,T ] is
supported near (x+, t+). We then can write y = (y′, 0) for all y ∈ ∂Ω and assume that Ω ⊂ {x ∈
Rd : xn < 0}. The parametrix qin (respectively qout) for q+ in Ω (respectively Ωc) near (x+, t+) is
of the form

qin/out(x, t) =
1

(2π)d

∑
s=F,B

∫
R

∫
Rd−1

ei ψs(x,t,η,τ)ds(x, t, η, τ)ĥ(η, τ) dη dτ. (3.9)

Here,

dF (y, t, η, τ) + dB(y, t, η, τ) = 1, ψs(y, t, η, τ) = y′ · η − tτ, y ∈ ∂Ω,

and

ĥ(η, τ) =

∫
R

∫
Rd−1

h(y′, 0, t)ei(−η·y+tτ) dy′ dt.

Similarly to φ+, the phase function ψ = ψF,B satisfies the eikonal equation

|∂tψ(x, t, η, τ)| = c(x) |∇xψ(x, t, η, τ)|.

In particular, we obtain

∂xnψF (y, t, η, τ) =
√
c−2(y) τ2 − η2, ∂xnψB(y, t, η, τ) = −

√
c−2(y) τ2 − η2, y ∈ ∂Ω.

Roughly speaking, the phase function ψF transmits (forward) wave from left to right (along the xn
direction) and ψB transmits (backward) wave to the opposite direction. Since q(x, T ) = qt(x, T ) = 0
for all x ∈ Rd, we obtain that there is no backward wave inside Ω and no forward wave outside Ω.
That is,

qin(x, t) =
1

(2π)d

∫
R

∫
Rd−1

eiψF (x,t,ξ)din(x, t, η, τ)ĥ(η, τ)dη dτ,

and

qout(x, t) =
1

(2π)d

∫
R

∫
Rd−1

eiψB(x,t,ξ)dout(x, t, η, τ)ĥ(η, τ)dη dτ.

Moreover,
din(y, t, η, τ) = dout(y, t, η, τ) = 1, y ∈ ∂Ω.

Up to lower order terms, we obtain micirolocally near the hyperbolic element (x+, t+, η+, τ+)

[∂xnq+](y, t) =
1

(2π)d

∫
R

∫
Rd−1

ei(y
′·η−tτ)(−2i)

√
c−2(y) τ2 − η2 ĥ(η, τ)dη dτ.

That is, the mapping q+|∂Ω → [∂νq+] is an elliptic pseudo-differential operator at the element

(x+, t+, η+, τ+) with principal symbol (−2i)
√
c−2(x+) τ2

+ − η2
+. Therefore, the mapping [∂νq+]∂Ω×[0,T ] →

q+|∂Ω×[0,T ] is also a pseudo-differential operator near (x+, t+, η+, τ+) with the principal symbol
1

(−2i)
√
c−2(x+) τ2+−|η+|2

.
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Noting that f → χg+ and q+|∂Ω×[0,T ] → q+( · , t)|Ω are FIOs, we obtain f → q+( · , t)|Ω is also
an FIO. We, hence, can write the parametrix for q+ in Ω in the form

q+(x, t) =
1

(2π)d

∫
Rd
eiφ+(x,t,ξ)b(x, t, ξ)f̂(ξ)dξ.

In particular,

q+(y, t) =
1

(2π)d

∫
Rd
eiφ+(y,t,ξ)b(y, t, ξ)f̂(ξ)dξ, y ∈ ∂Ω. (3.10)

On the other hand,

χ(y, t) g+(y, t) =
1

(2π)d

∫
Rd
eiφ+(y,t,ξ)χ(y, t) a(y, t, ξ)f̂(ξ)dξ, y ∈ ∂Ω.

Since χ g+ = [∂ν q+] → q+ is a pseudo-differential with principal symbol 1

(−2i)
√
c−2(x+) τ2+−|η+|2

at

(x+, t+, η+, τ+), the principal part bp of b satisfies

bp(x+, t+, ξ+) = − χ(x+, t+)

2 i
√
c−2(x+)τ2

+ − |η+|2
a0(x+, ξ+, t+).

Since bin and a0 satisfy the same transport equation on the geodesic ray r+(x, ξ), the above equation
implies

bp(x, 0, ξ) = − χ(x+, t+)

2 i
√
c−2τ2

+ − |η+|2
a0(x, 0, ξ) = − χ(x+, t+)

4 i
√
c−2τ2

+ − |ξ+|2
.

Noting that
∂tφ+(x, 0, ξ) = −c(x)|∇xφ+(x, 0, ξ)| = −c(x) |ξ|,

we obtain, from (3.10), up to lower order terms,

f+(x) =
1

(2π)d

∫
Rd
eix·ξ

c(x)|ξ|χ(x+, t+)

4
√
c−2(x+)τ2

+ − |ξ′+|2
f̂(ξ) dξ.

Noting that c(x)|ξ| = c(x+)|ξ+|,§ we obtain the mapping f → f+ is a pseudo-differential operator
with principal symbol

c(x)|ξ|χ(x+, t+)

4
√
c−2(x+)τ2

+ − |η+|
=
c(x+) |ξ+|χ(x+, t+)

4
√
|ξ+|2 − |η+|

=
c(x+)χ(x+, t+)

4 cos(θ+)
.

Repeating the above argument for f → f−, we finish the proof.

Remark 3.7. Let us make the following observations:

(a) The calculus of symbols can be explained more intuitively by considering the current set
up as the limit of the open set measurement. This will be discussed in Section 3.2.

§This comes from the fact that c(x)|ξ| = τ and τ is constant on the bicharacteristic rays (see, e.g., [47]).
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(b) We notice that the function χ plays the role of preconditioning for the inverse problem of
PAT. Formula (3.7) may give us some hint on how to make a good choice of χ. Indeed,
let us consider the case c = 1, S is the sphere of radius R, and χ(y, t) = t. Since the
geodesics are straight lines, we observe that θ+ = θ− = θ and hence

σ0(x, ξ) =
t+ + t−
4 cos θ

.

We notice that t+ + t− is the length of the line segment connecting x+ and x−. A simple
geometric observation then gives:

σ0(x, ξ) =
R

2
.

We obtain

L∗L =
R

2
I + K, (3.11)

where K is a compact operator. Therefore, in such a situation, the CG method for the
inverse problem of PAT converges superlinearly (see the discussion of the CG method in
Subsection 2.3). We note that (3.11) can be derived from the results in [16, 15]. Indeed,
for odd d, [16] even gives L∗L = R

2 I.

The above discussion also suggests the choice of χ(y, t) = t when the speed is almost
constant. The in-depth discussion on the preconditioning, however, is beyond the scope of
this article.

Let us recall the time-reversal technique for PAT (see, e.g., [16, 29, 54]). Consider the time
reversal wave equation

c−2(x) qtt(x, t)−∆q(x, t) = 0, (x, t) ∈ Ω× [0, T ],

q(x, T ) = φ(x), qt(x, T ) = 0, x ∈ Ω,

q(x, t) = χ(x, t) g(x, t), (x, t) ∈ ∂Ω× [0, T ].

Here, φ is the harmonic extension of χ(x, T ) g(x, T )|x∈∂Ω to Ω. The time-reversal operator is defined
by Λg = q( · , 0). It is proved in [54] that, if χ ≡ 1,

‖I− ΛL‖ < 1.

This suggest that ΛL can be used as the first step for iterative method (see [54]), which we now
call iterative time reversal or Neumann series solution (see also [52] for the thorough numerical
discussion and [55] for nonsmooth sound speed). It is shown in [54] that ΛL is a pseudodifferential
operator of order zero with the principal symbol

σ0(x, ξ) =
1

2

(
χ(x+, t+) + χ(x+, t−)

)
.

This is different from the symbol of L∗L shown in Theorem 3.6. We, in particular, conclude that
the adjoint operator L∗ is fundamentally different from the time reversal operator Λ. We also note
that no proof for the convergence of iterative time reversal method is available for limited data
problem, even under the visibility condition. However, numerically it works reasonably well in this
situation (as demonstrated in [52] and also Section 4).
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3.2 Open domain observations revisited

Let us consider the setup used in [3]. Namely, let us consider the operator Lω defined by

(Lωf)(x, t) = ω(x, t) p(x, t).

Here, p is the solution of (1.1) with initial pressure f , and 0 ≤ ω ∈ C∞(Rd × [0, T ]) is the
window function, whose support determines the accessible region for the data. We assume that
supp(ω) = D× [0, T ], where D ⊂ Rd is an open band. That is, Rd \D = Ω ∪Ω′, where Ω ∩Ω′ = ∅,
Ω is bounded and Ω′ is unbounded. We again, assume that f is supported in Ω0 where Ω0 b Ω,
and are interested in the problem of finding f given Lωf . It can be solved by the iterative methods
described in Section 2, which we do not elaborate further in this article. We, instead, focus on
analyzing the adjoint operator in this setup.

We propose the following method to compute the adjoint of Lω. Consider the time-reversed
problem {

c−2(x) qtt(x, t)−∆q(x, t) = −ω(x, t)h(x, t), (x, t) ∈ Rd × (0, T ),

q(x, T ) = 0, qt(x, T ) = 0, x ∈ Rd.
(3.12)

We define
L∗ω(h) = ∂tq( · , 0).

Let h̄( · , t) = h( · , t)−h( · , T ) and q̄ be the solution of (3.12) with h being replaced by h̄. We define
(recalling that Π denotes the projection from H1(Ω0) onto H1

0 (Ω0))

L
∗
ω(h) = Π[q̄t( · , 0)],

Let us recall the space Hi(Ω0) defined at the beginning of Section 3. Similarly to the spaces
Hi(χ), we define

H0(ω) :=
{
h : ‖h‖H0(ω) := ‖

√
ω h‖L2(D×[0,T ]) <∞

}
,

H1(ω) :=
{
h : h( · , 0) ≡ 0 in D, ‖h‖H1(ω) := ‖ht‖H0(ω) <∞

}
.

The following lemma shows that L∗ω and L
∗
ω are the adjoints of Lω, given the correct mapping

spaces.

Theorem 3.8. We have

(a) For all f ∈ H0(Ω) and h ∈ H0(ω),

〈Lωf, h〉H0(ω) = 〈f,L∗ωh〉H0(Ω0) .

That is, L∗ω is the adjoint of Lω : H0(Ω0)→ H0(ω).

(b) Assume that ω is independent of t, then for all f ∈ H1(Ω) and h ∈ H1(ω),

〈Lf, h〉H1(ω) =
〈
f,L

∗
ωh
〉
H1(Ω0)

.

That is, L
∗
ω is the adjoint of Lω : H1(Ω0)→ H1(ω).
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The proof of Theorem 3.8 is similar to that of Theorem 3.2. We skip it for the sake of brevity.
Let us notice that our definition of L∗ω is slightly different from [3]. It is motivated by case of the
observation on a surface discussed the previous section. Our definition matches with that in [3] if
ω( · , T )h( · , T ) ≡ 0.

The following theorem gives us a microlocal characterization of the normal operator L∗ωLω.

Theorem 3.9. The operator L∗ωLω is a pseudo-differential operator of order zero whose principal
symbol is

σ0(x, ξ) =
1

4

(∫ T

0
c2(x+(t))ω(x+(t), t)dt+

∫ T

0
c2(x−(t))ω(x−(t), t)dt

)
.

Here, x±(t) = r±(x, ξ)(t) is unit speed geodesic ray originated from x at time t = 0 along the
direction of ±ξ.

Proof. Let us consider the solution q of the time reversed problem (3.12) with h = p|D×[0,T ].
Applying the Duhamel’s principle, we can write

q( · , t) =

∫ T

t
q( · , t; s)ds,

where q(x, t; s) satisfies{
c−2(x) qtt(x, t; s)−∆q(x, t; s) = 0, (x, t) ∈ Rd × (0, s),

q(x, s; s) = 0, qt(x, s; s) = c2(x)ω(x, s) p(x, s), x ∈ Rd.

Therefore, denoting q′( · , t; s) = qt( · , t; s),

L∗ω(p) = qt( · , 0) =

∫ T

0
q′( · , 0; s)ds− q( · , 0; 0) =

∫ T

0
q′( · , 0; s)ds =

∫ T

0
L(s)(p) ds.

Let us show that f → L(s)(p) := q′( · , 0; s) is a pseudo-differential operator with the principal
symbol

σ0(x, ξ; s) =
1

4

(
c2(x+(s))ω(x+(s), s) + c2(x+(s))ω(x−(s), s)

)
.

Indeed, we note that q′(x, t; s) satisfies{
c−2(x) q′tt(x, t; s)−∆q′(x, t; s) = 0, (x, t) ∈ Rd × (0, s),

q′(x, s; s) = c2(x)ω(x, s) p(x, s), q′t(x, s; s) = 0, x ∈ Rd.
(3.13)

Assume that (x, ξ) ∈ (T∗Ω \ 0) ∩WF(f) and consider the propagation of p, governed by the wave
equation (1.1). The singularity of f at (x, ξ) is broken into two equal parts propagating along
the geodesic rays r±(x, ξ). Let us consider the propagation along r+(x, ξ). The projection of the
propagated singularity at t = s to T∗Rd produces a corresponding singularity of p(., s). Let us
consider the propagation of that singularity due to the equation (3.13). Firstly, due to the end
time condition at t = s, it is multiplied by c2(x)ω(x(s), s). Then, it is broken into two equal parts
propagating along two opposite directions (in reversed time). One of them hits back to (x, ξ) at t = 0
(this travel along r+(x, ξ) but in negative direction) and the other one lands outside of Ω. Therefore,
the recovered singularity at (x, ξ), as just described, is of 1

2c
2(x+(s))ω(x+(s), s) of the part of

original singularity at (x, ξ) propagating along the ray r+(x, ξ). Similar argument for the negative
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ray r−(x, ξ) gives us the second recovered singularity with the magnitude 1
2c

2(x+(s))ω(x+(s), s) of
the part of original singularity at (x, ξ) propagating along the negative ray r−(x, ξ). Since each part
(propagating on each direction) is half of the original singularity, we obtain the recovered singularity
is 1

4

(
c2(x+(s))ω(x+(s), s)+c2(x−(s))ω(x−(s), s)

)
of the original singularity. This intuitively, shows

that L(s) Lω is a pseudo-differential operator of order zero with the principal symbol

1

4

(
c2(x+(s))ω(x+(s), s) + c2(x−(s))ω(x−(s), s)

)
.

A more rigorous proof can be done by writing the corresponding form of the parametrix for the
wave equations (1.1) and (3.13). However, we skip it for the sake of simplicity.

Now, since L∗ω Lω =
∫ T

0 L(s) Lω ds, we obtain that L∗ω Lω is a pseudo-differential operator of
order zero with the symbol

1

4

∫ T

0

(
c2(x+(s))ω(x+(s), s) + c2(x−(s))ω(x−(s), s)

)
ds.

This finishes the proof of the theorem.

Remark 3.10. Let us consider ω = ωε to be a family of smooth function that approximate the
χ(x, t) δ∂Ω(x). Then, the setup for the observation on the surface ∂Ω is just the limit as ε→ 0. We
note that

lim
ε→0

∫ T

0
c2(x±(s))ω(x±(s), s)ds =

c(x±)χ(x±, t±)

cos θ±
.

Therefore,

lim
ε→0

σ0(x, ξ) =
1

4

(
c(x+)χ(x+, t+)

cos(θ+)
+
c(x−)χ(x−, t−)

cos(θ−)

)
,

which is the symbol L∗L in Theorem 3.6.

4 Numerical experiments

In this section we implement the iterative methods presented in Section 2 for PAT for the observa-
tion on a surface ∂Ω. We will employ the explicit formulation of L∗ = L∗0 presented in Section 3. We
will chose the weight function χ to be independent of the time variable t.¶ We note that under the
visibility condition, Landweber’s and the CG methods have linear convergence in H0(Ω0) = L2(Ω0),
since by Theorem 3.4 the inversion of Lf = g is well-posed in this situation. If using L∗ = L∗1, we
would obtain the linear rate of convergence in H1(Ω0) ' H1(Ω0). However, we will refrain from
that choice.

We only consider the two dimensional space and Ω to be a disc centered at the origin: Ω =
BR(0) =

{
x ∈ R2 : |x| = R

}
. All presented results assume non-constant sound speed. We consider

the following test cases

(T1) Non-trapping sound speed, complete data;

(T2) Non-trapping sound speed, partial data, visible phantom (i.e., the visibility condition holds);

¶Other choices of χ may result in better conditioning of the problem. However, studying optimal preconditioning
is beyond the scope of this article.
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(T3) Non-trapping sound speed, partial data, invisible phantom (i.e., the invisibility condition
holds);

(T4) Trapping sound speed, complete data.

The reader is referred to the introduction (also, see, [29]) for the description of the trapping and
non-trapping sound speed. We will compare the results for the Landweber’s method, Nesterov’s
method, the CG method (as proposed in the present paper) as well as the iterative time reversal
algorithm proposed in [52]. Thereby we investigate the numerical speed of convergence as well as
stability and accuracy of all these algorithms. For Landweber’s and Nesterov’s method we have
taken the step size equal to γ = 1, which worked well in all our numerical simulations.

As described in Subsection 4.2 the proposed iterative schemes are implemented by numerical
realizations of all involved operators. Thereby the most crucial steps are accurate discrete solvers
for the forward and backward wave equation. For that purpose we implemented the k-space method
(described in Subsection 4.1) that is an efficient FFT based numerical solution method that does
not suffer from numerical dispersion that arises when solving the wave equation with standard finite
difference or finite element methods.

4.1 The k-space method for numerically solving the wave equation

In this subsection we briefly describe the k-space method as we use it to numerically compute the
solution of wave equation, which is required for evaluating the forward operator L and its adjoint
L∗.

Consider the solution p : R2 × (0, T )→ R of the two-dimensional wave equation

c−2(x) ptt(x, t)−∆p(x, t) = s(x, t) for (x, t) ∈ R2 × (0, T ) , (4.1)

p(x, 0) = f(x) for x ∈ R2 , (4.2)

pt(x, 0) = 0 for x ∈ R2 , (4.3)

where s : R2 × (0, T )→ R is a given source term and f : R2 → R the given initial pressure. Several
well investigated methods for numerically solving (4.1) (and analogously for the wave equation in
higher dimensions) are available and have been used for photoacoustic tomography. This includes
finite difference methods [8, 49, 56], finite element methods [6] as well as Fourier spectral and k-
space methods [10, 30, 58]. In this paper we use a k-space method for numerically solving (4.1)
because this method does not suffer from numerical dispersion. The k-space method is implemented
in the freely available k-wave toolbox (see [58]); in order to be flexible in our implementations we
have developed our own code as described below.

The k-space method makes the ansatz (see [10, 40, 57])

p(x, t) = w(x, t)− v(x, t) for (x, t) ∈ R2 × (0, T ) , (4.4)

where the pressure p is written as linear combination of the auxiliary quantities w := c2
0/c

2 p and
v := (1− c2

0/c
2) p. Here c0 > 0 a suitable constant; we take c0 := max

{
c(x) : x ∈ R2

}
. One easily

verifies that the wave (4.1) is equivalent to the following system of equations,
wtt(x, t)− c2

0(x) ∆w(x, t) = c2
0 s(x, t)− c2

0 ∆v(x, t) for (x, t) ∈ R2 × (0, T ) ,

v(x, t) =
c2

0 − c(x)2

c2
0

w(x, t) for (x, t) ∈ R2 × (0, T ) .
(4.5)
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Interpreting ∆v as an additional source term, the first equation in (4.5) is a standard wave equation
with constant sound speed. This suggests the time stepping formula

w(x, t+ ht) = 2w(x, t) + w(x, t− ht)
− 4F−1

ξ

[
sin(c0|ξ|ht/2)2Fx[w(x, t)− v(x, t)]− (c0ht/2)2 sinc(c0|ξ|ht/2)2Fx[s(x, t)]

]
, (4.6)

where Fx and F−1
ξ denote the Fourier and inverse Fourier transform in the spatial variable x and

the spatial frequency variable ξ, respectively, and ht > 0 is a time stepping size. For constant
sound speed we have v = 0, in which case the solution of (4.1) exactly satisfies (4.6) and vice versa.
In the case of variable sound speed there is no such equivalence because v is itself dependent on
w. Nevertheless, in any case (4.6) serves as the basis of an efficient and accurate iterative time
stepping scheme for numerically computing the solution of the wave equation.

The resulting k-space method for solving (4.1) is summarized in Algorithm 1.

Algorithm 1 (The k-space method). For given initial pressure f(x) and source term s(x, t) ap-
proximate the solution p(x, t) of (4.1) as follows:

(1) Define initial conditions w(x,−ht) = w(x, 0) = c2
0/c

2f(x);

(2) Set t = 0;

(3) Compute w(x, t+ ht) by evaluating (4.6);

(4) Compute v(x, t+ ht) :=
(
1− c(x)2/c2

0

)
w(x, t+ ht);

(5) Compute p(x, t+ ht) := w(x, t+ ht)− v(x, t+ ht);

(6) Set t← t+ ht and go back to (3).

Algorithm 1 can directly be used to evaluate the forward operator Lf by taking s(x, t) = 0 and
restricting the solution to the measurement surface SR, that is Lf = p|Sr×(0,T ). Recall that the
adjoint operator is given by L∗g = qt( · , 0), where q : R2 × (0, T ) → R satisfies the adjoint wave
equation

c−2(x) qtt(x, t)−∆q(x, t) = −δSR(x) g(x, t) for (x, t) ∈ R2 × (0, T ) (4.7)

qt(x, T ) = q(x, T ) = 0 for x ∈ R2 . (4.8)

By substituting t← T − t and taking s(x, t) = g(x, T − t) δS(x) as source term in (4.1), Algorithm 1
can also be used to evaluate the L∗. In the partial data case where measurements are made on
a subset S ( SR only, the adjoint can be can be implemented by taking the source s(x, t) =
χ(x, t) g(x, T − t) δSR(x) with an appropriate window function χ(x, t). In order to use use all
available data, in our implementations we take the window function to be equal to one on the
observation part S and zero outside. This choice of the window function is known to create streak
artifacts into the picture [18, 48, 5]. However, as we will see below, the artifacts fade away quickly
after several iterations when the problem is well-posed.
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Figure 4.1: Left: The discrete domain ΩN is defined as the set of all indices i ∈ {0, . . . , N}2 with
xi ∈ Ω. Right: The index b is contained in the discrete boundary ∂ΩN , because one of its neighbors
is contained in ΩN . Right: The domain [−R,R] is embedded in a larger domain [−2R, 2R] to avoid
effects due to periodization.

4.2 Numerical realization

The iterative approaches for solving the equation Lf = g are implemented with discrete coun-
terparts of all operators introduced above. Thereby the function f : R2 → R is represented by a
discrete vector

f = (f(xi))
N
i1,i2=0 ∈ R(N+1)×(N+1) ,

where xi = (−R,−R) + 2iR/N for i = (i1, i2) ∈ {0, . . . , N}2 are equidistant grid points in the
square [−R,R]2. We define the discrete domain ΩN ⊂ {0, . . . , N}2 as the set of all indices i with
xi ∈ Ω. Further, the discrete measurements are made on parts of the discrete boundary ∂ΩN , that
is defined as the set of all elements b = (b1, b2) ∈ {0, . . . , N}2 \ ΩN for which at least one of the
discrete neighbors (b1 + 1, b2), (b1 − 1, b2), (b1, b2 + 1), (b1, b2 − 1) is contained in ΩN , see the right
image in Figure 4.1. All phantoms in our numerical simulations are chosen to have support in a
compact subset of Ω. We will choose the discrete version of Ω0 to be the set {xi : i ∈ ΩN}.

The discrete forward operator can be written in the form

LN,M : R(N+1)×(N+1) → R|∂ΩN |×(M+1) : f 7→ (RN,M ◦ WN,M )f . (4.9)

Here M+1 is the number of equidistant temporal sampling points in [0, T ], WN,M is a discretization
of the solution operator for the wave equation and RN,M the linear operator that restricts the discrete
pressure to spatial grid points restricted to ∂ΩN ⊂ {0, . . . , N}2. The adjoint operator is then given
by LN,M = D0 ◦ W∗N,M ◦ R∗N,M , where R∗N,M is the embedding operator from R|∂ΩN | to R(N+1)×(N+1),
W∗N,M is the solution operator the adjoint wave equation (4.7), and D0 a discretization of the time
derivative evaluated at t = 0 and restricted to Ω0.

For computing the solution operator WN,M we use the k-space method described in Subsec-
tion 4.1. In the actual implementation of Algorithm 1, the Fourier transform of the function f is
replaced by the FFT algorithm applied to f (and likewise for the inverse Fourier transform). When
applied directly to the given function values, the FFT algorithm causes the numerical solution to
be 2R periodic. For the numerical solution of the wave equation we therefore embed the data
vector f ∈ R(N+1)×(N+1) in a larger vector in R(2N+1)×(2N+1), whose entries correspond to sampled
values on an equidistant grid in [−2R, 2R]2 (see the right image in Figure 4.1). As the sound speed
is assumed to be equal to one outside of Ω, the numerical solution for times t ≤ 2R (which will
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always be the case in our simulations) is free from periodization artifacts in the domain Ω and on
the measurement surface.

Remark 4.1 (Numerical complexity of our iterative algorithms). Using the FFT algorithm any
time step in Algorithm 1 can be implemented using O(N2 logN) floating point operations (FLOPS).
Performing M ∼ N times steps therefore this yields to O(N3 logN) algorithms for implementing
the forward operator LN,M and its adjoint L∗N,M . Consequently, performing one iterative step (for
example using the CG or the Landweber iteration) is almost as fast as applying the filtered backpro-
jection type algorithm (which requires O(N3) FLOPS) for evaluating the adjoint or the inverse of
L. In three spatial dimensions the complexity of the k-space method scales to O(N4 logN). In this
case one iterative step is already faster than filtered backprojection type algorithms (which in this
case requires O(N5) FLOPS). As we will see in the numerical results presented below, around 10
iterations with the CG method already gives very accurate reconstruction results. This shows that
our iterative algorithms are a good option for PAT image reconstruction even in situations, where
an explicit filtered backprojection type formula is available.

4.3 Test case (T1): Non-trapping speed, complete data

We first consider the non-tapping sound speed (taken from [52])

c(x) = 1 + w(x) (0.1 cos(2πx1) + 0.05 sin(2πx2)) , (4.10)

where w : R2 → [0, 1] is a smooth function that vanishes outside B1(0) and is equal to one on
B1/2(0). The non-trapping sound speed c, the phantom f and the corresponding full data Lf are
illustrated in the top row in Figure 4.2. For the results presented in this section we use R = 1
and N = 200, which yields a spatial step size of hx = 2R/N = 1/100. We further use a final time
T = 1.5 and take M = 800 for the temporal discretization.

We performed iterative reconstructions using the following methods:

(a) Iterative time reversal method

(b) Landweber’s method

(c) Nesterov’s method

(d) CG method.

Figure 4.2 shows reconstruction results using these methods after 1, 10 and 200 iterations. One
notices that all iterations converge quite rapidly to the original phantom. To investigate the con-
vergence behavior more carefully, in Figure 4.3 we plot the logarithm of the squared discrete
L2-reconstruction error and squared residual

‖fn − f‖22 :=
∑
i

|fn[i]− f[i]|2 h2
x ' ‖f − fn‖

2
L2 ,

‖LN,Mfn − g‖2 :=
∑
b,j

|LN,Mfn[b, j]− g[b, j]|2 hxht ' ‖Lfn − g‖2L2 ,

respectively. One concludes from Figure 4.3, that all iterative schemes converge quite rapidly. In
particular the CG method is the fastest.

21

Admin
am_pp_logo_01



-1 0 1

-1

0

1
0

0.5

1

-1 0 1

-1

0

1

0.9

0.95

1

1.05

1.1

2 4 6

0

0.5

1

1.5
-0.5

0

0.5

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Figure 4.2: Test case (T1), Reconstructions from exact data. Row 1: Initial pressure
data f (left), non-trapping sound speed c (middle), and computed pressure data Lf (right). Row
2: Iterative time reversal (after 1, 10 and 200 iterations). Row 3: Landweber’s method (after 1, 10
and 200 iterations). Row 4: Nesterov’s method (after 1, 10 and 200 iterations). Row 5: the CG
method (after 1, 10 and 200 iterations). The white dots indicate the measurement curve.
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Figure 4.3: Test case (T1), convergence behavior for exact data Left: Logarithm of
squared reconstruction error ‖fn − f‖22 in dependence of the iteration number. Left: Logarithm of
residual ‖LN,Mfn − g‖22 in dependence of the iteration number.

In order to further investigate the behavior of the algorithms we repeated the computations
with inexact data. To that end, we generated the data on a different grid, where we use N = 350
and M = 1300 (recall that the iterative algorithm uses N = 200 and M = 800). Further, we added
Gaussian white noise to the data with a standard deviation equal to 5% of the L2-norm of LN,Mf.
The total L2-error in the data is 0.049 compared to the L2-norm ‖g‖2 = 0.44 of the exact data.

Figure 4.4 shows the reconstruction results from inexact data using iterative time reversal,
Landweber’s, Nesterov’s, and the CG methods. The errors and the residuals again decrease quite
rapidly in the first iterative steps. However after about 10 iterations the error as well as the residuals
do not further decrease. Consequently, the iterations can be stopped at a certain iteration index
n?. This is due to the noise in the data which causes the data to be outside the range of LN,M .
However, these results also reveal that we are in a stable situation, because the error does not
significantly increase after reaching the stopping index n?.

Note that we do not show results using the Landweber’s method proposed in [6]. Due to the
smoothing operator −∆−1 (which is the adjoint of the embedding H1

0 (Ω) ↪→ L2(Ω)), that method
is much slower than the Landweber’s method presented in the present article. On the other hand,
the application of −∆−1 may have the advantage of stabilizing the iteration.

4.4 Test case (T2): Non-trapping speed, partial data, visible phantom

As next test case we investigate the case of partial data where all singularities of the phantom
are visible. As before we compare iterative time reversal, Landweber’s, Nesterov’s, and the CG
methods using the sound speed given in (4.10). We again take N = 200, R = 1, T = 1.5 and
M = 800. The detection curve together with the phantom, the non-trapping sound speed, and the
simulated data are shown in the top row in Figure 4.5. One notices that the partial data have been
collected on an arc with opening angle 4π/3.

Rows 2 to 5 in Figure 4.5 show reconstruction results with iterative time reversal, Landweber,
Nesterov’s, and the CG methods after 1, 10 and 200 iterations. Because the visibility condition
holds, the linear convergence rate for the Landweber’s and CG methods is applicable. And indeed
one observes fast convergence of all methods. As demonstrated by Figure 4.9 (which shows the
reconstruction error and the residuals depending on the iteration index n) the CG iteration is again
the most rapidly converging method.
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Figure 4.4: Test case (T1), inexact data. Top left: Iterative time reversal, Top center:
Landweber’s method, top right: Nesterov’s method. Bottom left: the CG method (all after 10
iterations). Bottom center: squared error. Bottom right: squared residuals.

To avoid inverse crimes and to investigate the behavior of the algorithms under real life scenario,
we repeated the simulations with inexact data where we simulated the data on a different grid (using
N = 350 and M = 1300) and further added Gaussian noise to the data (again with a standard
deviation equal to 5% of the L2-norm of the exact data). The reconstruction results from inexact
data are shown in Figure 4.10. They clearly demonstrate that all schemes provide good results. The
CG method is again the fastest. The error

∥∥LN,Mf− gδ
∥∥

2
in the data is 0.0258. The residuals after

10 iterations are 0.2208 for the iterative time reversal, 0.0196 for the CG, 0.0199 for Nesterov’s, and
0.0222 for the Landweber’s methods. This in particular also shows that the discrepancy principle
yields a well defined stopping index with an reconstruction error in the order of the data error.

4.5 Test case (T3): Non-trapping speed, partial data, invisible phantom

In this case we investigate the ill-posed problem, since the invisibility condition holds. We use again
the sound speed given in (4.10) and take N = 200, R = 1, T = 1.5 and M = 800. The detection
curve together with the phantom, the non-trapping sound speed, and the simulated data are shown
in the top row in Figure 4.8. One notices that the partial data has been collected on an arc with
opening angle 2π/3 (the measurement curve). The invisibility condition holds in this setup.

Rows 2 to 5 in Figure 4.8 show reconstruction results with iterative time reversal, Landweber’s,
Nesterov’s, and the CG methods after 1, 10 and 200 iterations. Because the inverse problem is
ill-posed no convergence rate results for the Landweber, Nesterov’s, and CG methods are available.
And indeed one observes that the reconstruction results are worse compared to the the case of a
completely visible phantom. Again we investigated the convergence behavior more carefully. For
that purpose Figure 4.9 shows the reconstruction error and the residuals depending on the iteration
index n. While the residuals tend to zero quite fast, reconstruction error now decreases much slower
than in the previous examples. Nevertheless also in this situation the CG iteration clearly yields
the smallest reconstruction error for a given number of iterations.
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Figure 4.5: Test case (T2): partial data, visible phantom. Row 1: Initial pressure data
f (left), non-trapping sound speed c (middle), and computed pressure data Lf (right). Row 2:
Iterative time reversal (after 1, 10 and 200 iterations). Row 3: Landweber’s method (after 1, 10
and 200 iterations). Row 4: Nesterov’s method (after 1, 10 and 200 iterations). Row 5: the CG
method (after 1, 10 and 200 iterations). The white dots indicate the measurement curve.
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Figure 4.6: Test case (T2), convergence behavior for exact data. Left: Logarithm of
squared reconstruction error ‖fn − f‖22 in dependence of the iteration number. Left: Logarithm of
residual ‖LN,Mfn − g‖22 in dependence of the iteration number.
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Figure 4.7: Test case (T2), inexact data. Top left: Iterative time reversal, Top center:
Landweber’s method, top right: Nesterov’s method. Bottom left: the CG method (all after 10
iterations). Bottom center: squared error. Bottom right: squared residuals.

Again we repeated the simulations with inexact data where we simulated the data on a different
grid and further added Gaussian noise to the data. Due the ill-posedness of the problem we cannot
expect complete convergence for noisy data. In fact, as can be seen in Figure 4.13 all iterations show
the typical semi-convergence behavior: The error decreases until a certain optimal index n?, after
which the error starts to increase. Stopping the iteration (for example with Morozovs discrepancy
principle) yields approximate but stable solutions. Incorporating additional regularization could
further improve the results. Such investigations, however, are beyond the scope of this paper.

26

Admin
am_pp_logo_01



 

 

−1 0 1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

 

 

−1 0 1

−1

−0.5

0

0.5

1

0.9

0.95

1

1.05

1.1

1.15

 

 

2.5 3 3.5 4

0

0.5

1

1.5
−0.4

−0.2

0

0.2

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Figure 4.8: Test case (T3): partial data, invisible phantom Row 1: Non-trapping sound
speed c (left), initial pressure data f (middle), and computed pressure data Lf (right). The
white dots indicate the measurement surface. Row 2: Iterative time reversal (after 1, 10 and 200
iterations). Row 3: Landweber’s method (after 1, 10 and 200 iterations). Row 4: Nesterov’s
method (after 1, 10 and 200 iterations). Row 5: the CG method (after 1, 10 and 200 iterations).
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Figure 4.9: Test case (T3), convergence behavior for exact data Left: Logarithm of
squared reconstruction error ‖fn − f‖22 in dependence of the iteration number. Left: Logarithm of
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Figure 4.10: Test case (T3), inexact data. Top left: Iterative time reversal, Top center:
Landweber’s method, top right: Nesterov’s method. Bottom left: the CG method (all after 30
iterations). Bottom center: squared error. Bottom right: squared residuals.

4.6 Test case (T4): Trapping speed, complete data

Finally we consider the trapping sound speed (again taken from [52])

c(x) = 1 + 0.8w(x) sin(2πx1) cos(2πx2) ,

where w : R2 → [0, 1] is a smooth function that vanishes outside B1(0) and is equal to one on
B1/2(0). The phantom f , the trapping sound speed c, and the corresponding data are illustrated
in the top row in Figure 4.11. Reconstructions with the iterative time reversal, the Landweber’s,
Nesterov’s, and the CG methods are shown in rows 2 to 5 in Figure 4.11. The squared iteration
error and the squared residuals are shown in Figure 4.12. Again one notices that all methods
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Figure 4.11: Test case (T4): trapping speed, complete data. Row 1: Trapping sound speed
c (left), initial pressure data f (middle), and computed pressure data Lf (right). The white dots
indicate the measurement surface. Row 2: Iterative time reversal (after 1, 10 and 200 iterations).
Row 3: Landweber’s method (after 1, 10 and 200 iterations). Row 4: Nesterov’s method (after 1,
10 and 200 iterations). Row 5: the CG (after 1, 10 and 200 iterations).
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Figure 4.12: Test case (T4), convergence behavior for exact data Left: Logarithm of
squared reconstruction error ‖fn − f‖22 in dependence of the iteration number. Left: Logarithm of
residual ‖LN,Mfn − g‖22 in dependence of the iteration number.
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Figure 4.13: Test case (T4), inexact data. Top left: Iterative time reversal, Top center: Land-
weber method, top right: Nesterov’s method. Bottom left: CG iteration (all after 10 iterations).
Bottom center: squared error. Bottom right: squared residuals.

converge to the original phantom quite fast. Again the CG method is the most rapidly converging
method.

As in the previous cases we repeated the computations with inexact data gδ. Therefore we
simulated the data on a different grid (using N = 350 and M = 1300) and additionally Gaussian
white noise with a standard deviation equal to 5% the L2-norm of the exact data. The total error
in the data is δ = 0.0490 compared to the L2-norm ‖g‖2 = 0.4457 of the exact data. The results
for noisy data are shown in Figure 4.13. For any of the iterative methods, we observe a semi-
convergence behavior. The minimal error reached by all iterative methods is approximately the
same. The fastest method is again the CG method. Finally, we note that the residuals after 10
iterations are 0.0386 for iterative time reversal, 0.0433 for the Landweber’s, 0.0386 for Nesterov’s,
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and 0.0384 for the CG method. For any method they are already below the noise level 0.0490,
which shows that Morozov’s discrepancy principle yields a well defined stopping index n? ≤ 10 for
any considered iterative method.

5 Conclusion and outlook

In this paper we derived, analyzed, and implemented iterative algorithms for PAT with variable
sound speed. We considered the full and partial data situation as well as non-trapping and trapping
sound speed. In most of the cases under consideration, Landweber’s method performs as well as
the iterative time reversal method while Nesterov’s and CG method converge faster. Landweber’s
and Nesterov’s methods are convenient for regularization, which we will investigate in an upcoming
work.
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