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Abstract. Increasing the imaging speed is a central aim in photoacoustic

tomography. In this work we address this issue using techniques of compressed sensing.

We demonstrate that the number of measurements can significantly be reduced by

allowing general linear measurements instead of point wise pressure values. A main

requirement in compressed sensing is the sparsity of the unknowns to be recovered.

For that purpose we develop the concept of sparsifying temporal transforms for three

dimensional photoacoustic tomography. Reconstruction results for simulated and

for experimental data verify that the proposed compressed sensing scheme allows to

significantly reducing the number of spatial measurements without reducing the spatial

resolution.
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1. Introduction

Photoacoustic tomography (PAT), also known as optoacoustic tomography, is a novel

non-invasive imaging technology that beneficial combines the high contrast of pure

optical imaging with the high spatial resolution of pure ultrasound imaging (see [1, 2, 3]).

The basic principle of PAT is as follows. A semitransparent sample (such as a part of a
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Compressed sensing and sparsity in photoacoustic tomography 2

human patient) is illuminated with short pulses of optical radiation. A fraction of the

optical energy is absorbed inside the sample which causes thermal heating, expansion,

and a subsequent acoustic pressure wave depending on the interior absorbing structure

of the sample. The acoustic pressure is measured outside of the sample and used to

reconstruct an image of the interior.

Figure 1. Basic setup of PAT. An object is illuminated with a short optical pulse

that induces an acoustic pressure wave. The pressure wave is measured on a surface

and used to reconstruct an image of the interior absorbing structure.

The standard sensing approach in PAT is to measure the acoustic pressure with

small detector elements distributed on a surface outside of the sample; see Figure 2.

The spatial sampling step size determines the resolution of the pressure data and the

resolution of the final reconstruction. Consequently, high spatial resolution requires a

large number of detector locations. Ideally, for high frame rate, the pressure data are

measured in parallel with a large array made of small detector elements. However,

the signal-to-noise ratio and therefore the sensitivity decreases for smaller detector

elements and producing a large array with high bandwidth is costly and difficult to

fabricate. Therefore, often a single detector element (or a small number of such) is

used to record the acoustic pressure. In order to collect sufficient data the measurement

process has to be repeated with changed locations of the detector elements. Obviously,

such an approach slows down the imaging speed. As an alternative to the usually

employed piezoelectric transducers, optical detection schemes have been used to acquire

the pressure data on the surface of samples [4, 5, 6, 7]. In these methods an optical beam

is raster scanned along a surface and the pressure data are recorded at the location of

the interrogation beam.

In order to keep the sensitivity high, to reduce production costs, and to increase

the imaging speed one has to reduce the number of spatial measurements. For that

purpose, we develop a compressed sensing scheme for three dimensional PAT using a

planar measurement geometry.
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Compressed sensing and sparsity in photoacoustic tomography 3

1.1. Compressed sensing

Compressed sensing (or compressive sampling) is a new sensing paradigm introduced

recently in [8, 9, 10]. It allows to capture high resolution signals using much less

measurements than advised by Shannon’s sampling theory. The basic idea in compressed

sensing is replacing point measurements by general linear measurements, where each

measurements consist of a linear combination

y[j] =
n∑

i=1

A[j, i]x[i] for j = 1, . . . , m . (1)

Here x is the desired high resolution signal (or image), y the measurement vector, and

A the measurement matrix. If m≪ n, then (1) is a severely under-determinated system

of linear equations for the unknown signal. The theory of compressed sensing predicts

that under suitable assumptions the unknown signal can nevertheless be stably recovered

from such data.

The crucial ingredients of compressed sensing are sparsity and randomness.

(i) Sparsity: This refers to the requirement that the unknown signal is sparse, in the

sense that it has only a small number of entries that are significantly different from

zero (possibly after a change of basis).

(ii) Randomness: This refers to selecting the entries of the measurement matrix in

a certain random fashion. This guarantees that the measurement data are able to

sufficiently well separate sparse vectors.

In this work we use randomness and sparsity to develop compressed sensing

techniques for three dimensional PAT. For that purpose we simplify and extend

the concept of sparsifying transforms originally introduced in [11, 12] for PAT with

integrating line detectors.

Figure 2. Standard sampling versus compressed sensing. Left: Standard

sampling records point-wise data at individual detector positions. Right: Compressed

sensing measurements consist of random combinations of point-wise data values.
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1.2. Compressed sensing and sparsity in PAT

In PAT, temporal samples can easily be collected at a high rate compared to spatial

sampling, where each sample requires a separate sensor. It is therefore natural to work

with semi-discrete data p(rS[i], · ), where rS[i] denote locations on the detection surface.

Compressed sensing measurements in PAT consist of linear combinations

y[j, · ] =
n∑

i=1

A[j, i] p(rS[i], · ) for j ∈ {1, . . . , m} . (2)

Here m≪ n is the number of measurements and A the m× n measurement matrix. In

PAT (as in many other imaging applications) arbitrary matrix entries are difficult to be

realized. It is most simple to use binary combinations of pressure values, where A[j, i]

only takes two values (state on and state off). In this work we restrict ourselves to such

a situation. In the PAT literature two types of binary compressed sensing matrices have

been proposed. In [13, 14] scrambled Hadamard matrices have been used. In [11, 12]

measurements matrices are taken as the adjacency matrix of a left d-regular bipartite

graph, where the measurement matrix is sparse and has exactly d ones in each column,

whose locations are randomly selected. In both cases, the random nature of the selected

coefficients yields compressed sensing capability the measurement matrix.

Sparsity of the signal to be recovered is one of the main ingredients of compressed

sensing. As in many other applications, sparsity often does not hold in the original

domain. Instead sparsity holds in a particular orthonormal basis, such as a wavelet or

curvelet basis [15, 16]. In many situations the change of basis destroys the compressed

sensing capability of the measurement matrix. In order to overcome this limitation,

in [11, 12] we developed the concept of a sparsifying temporal transformation. Such a

transform applies in the temporal variable only and results in a filtered pressure signal

that is sparse. Because any operation acting in the temporal domain intertwines with the

measurement matrix, one can apply sparse recovery to estimate the sparsified pressure.

The photoacoustic source can be recovered, in a second step, by applying a standard

reconstruction algorithm to the sparsified pressure.

1.3. Outline of this paper

In this paper we develop a compressed sensing scheme based on a sparsifying transform

for three dimensional PAT (see Section 3). This complements our work [11, 12], where we

introduced the concept of sparsifying transforms for PAT with integrating line detectors.

Wave propagation is significantly different in two and in three spatial dimensions.

As a result, the sparsifying transform proposed in this work significantly differs from

the one presented in [11, 12]. In order to motivate our approach, in Section 2 we

provide an introduction to compressed sensing that is required for our PAT compressed

sensing approach. In Section 4 we present numerical results on simulated as well as on

experimental data from a non-contact photoacoustic imaging setup [17]. These results

indicate that the number of spatial measurements can be reduced by at least a factor of
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4 compared to the classical point sampling approach. The paper concludes with a short

discussion presented in Section 5.

2. Ingredients from compressed sensing

In this section we present the basic ingredients of compressed sensing that are required

for understanding its application to PAT. The aim of compressed sensing is to stably

recover a signal or image modeled by vector x ∈ Rn from measurements

y = Ax+ e . (3)

Here A ∈ Rm×n with m≪ n is the measurement matrix, e is an unknown error (noise)

and y models the given noisy data. The basic components that make compressed sensing

possible are sparsity (or compressibility) of the signal and some form of randomness in

the measurement process.

2.1. Sparsity and compressibility

The first basic ingredient of compressed sensing is sparsity, that is defined as follows.

Definition 1 (Sparse signals).

Let s ∈ N and x ∈ Rn. The vector x is called s-sparse, if ‖x‖0 := ♯({i ∈ {1, . . . , n} |
x[i] 6= 0}) ≤ s. One informally calls x sparse, if it is s-sparse for sufficiently small s.

In Definition 1, ♯(S) stands for the number of elements in a set S. Therefore ‖x‖0
counts the number of non-zero entries in the vector x. In the mathematical sense ‖ · ‖0
is neither a norm or a quasi-norm‡ but it is common to call ‖ · ‖0 the ℓ0-norm. It

satisfies ‖x‖0 = limp↓0 ‖x‖pp, where

‖x‖p := p

√√√√
n∑

i=1

|x[i]|p with p > 0 , (4)

stands for the ℓp-norm. Recall that ‖ · ‖p is indeed a norm for p ≥ 1 and a quasi-norm

for p ∈ (0, 1).

Signals of practical interest are often not sparse in the strict sense, but can be

well approximated by sparse vectors. For that purpose we next define the s-term

approximation error that can be used as a measure for compressibility.

Definition 2 (Best s-term approximation error).

Let s ∈ N and x ∈ Rn. One calls

σs(x) := inf{‖x− xs‖1 | xs ∈ Rn is s-sparse}
the best s-term approximation error of x (with respect to the ℓ1-norm).

‡ A quasi-norm satisfies all axioms of a norm, except that the triangle inequality is replaced by the

weaker inequality ‖x1 + x2‖ ≤ K(‖x1‖+ ‖x2‖) for some constant K ≥ 1.
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The best s-term approximation error σs(x) measures, in terms of the ℓ1-norm, how

much the vector x fails to be s-sparse. One calls x ∈ Rn compressible, if σs(x) decays

sufficiently fast with increasing s. The estimate (see [18])

σs(x) ≤
q(1− q)1/q−1

s1/q−1
‖x‖q for q ∈ (0, 1) (5)

shows that a signal is compressible if its ℓq-norm is sufficiently small for some q < 1.

2.2. The RIP in compressed sensing

Stable and robust recovery of sparse vectors requires the measurement matrix to well

separate sparse vectors. The RIP guarantees such a separation.

Definition 3 (Restricted isometry property (RIP)).

Let s ∈ N and δ ∈ (0, 1). The measurement matrix A ∈ Rm×n is said to satisfy the RIP

of order s with constant δ, if, for all s-sparse x ∈ Rn,

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 . (6)

We write δs for the smallest constant satisfying (6).

In the recent years, many sparse recovery results have been derived under various

forms of the RIP. Below we give a result derived recently in [19].

Theorem 4 (Sparse recovery under the RIP).

Let x ∈ Rn and let y ∈ Rm satisfy ‖y −Ax‖2 ≤ ǫ for some noise level ǫ > 0. Suppose

that A ∈ Rm×n satisfies the RIP of order 2s with constant δ2s < 1/2, and let x⋆ solve

minimizez‖z‖1
such that ‖Az− y‖2 ≤ ǫ . (7)

Then, for constants c1, c2 only depending on δ2s, ‖x− x⋆‖2 ≤ c1σs(x)/
√
s+ c2ǫ.

Proof. See [19].

No deterministic construction is known providing large measurement matrices

satisfying the RIP. However, several types of random matrices are known to satisfy

the RIP with high probability. Therefore, for such measurement matrices, Theorem 4

yields stable and robust recovery using (7). We give two important examples of binary

random matrices satisfying the RIP [18].

Example 5 (Bernoulli matrices).

A binary random matrix Bm,n ∈ {−1, 1}m×n is called Bernoulli matrix if its entries are

independent and take the values −1 and 1 with equal probability. A Bernoulli matrix

satisfies δ2s < δ with probability tending to 1 as m→∞, if

m ≥ Cδs(log(n/s) + 1) (8)

for some constant Cδ > 0. Consequently, Bernoulli-measurements yield stable and

robust recovery by (7) provided that (8) is satisfied.
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Figure 3. Binary random matrices satisfying the RIP. Left: Bernoulli matrix

is dense and unstructured. Center: Subsampled Hadamard matrix is dense and

structured. Right: Sparse adjacency matrix of a left 4-regular bipartite graph.

Bernoulli matrices are dense and unstructured. If n is large then storing and

applying such a matrix is expensive. The next example gives a structured binary matrix

satisfying the RIP.

Example 6 (Subsampled Hadamard matrices).

Let n be a power of two. The Hadamard matrix Hn is a binary orthogonal and self-

adjoint n × n matrix that takes values in {−1, 1}. It can be defined inductively by

H1 = 1 and

H2n :=
1√
2

[
Hn Hn

Hn −Hn

]
. (9)

Equation (9) also serves as the basis for evaluating Hnx with n logn floating point

operations. A randomly subsampled Hadamard matrix has the form Pm,nHn ∈
{−1, 1}m×n, where Pm,n is a subsampling operator that selects m rows uniformly at

random. It satisfies δ2s < δ with probability tending to 1 as n→∞, if

m ≥ Dδs log(n)
4 (10)

for some constant Dδ > 0. Consequently, randomly subsampled Hadamard matrices

again yield stable and robust recovery using (7).

2.3. Compressed sensing using lossless expanders

A particularly useful type of binary measurement matrices for compressed sensing are

sparse matrices having exactly d ones in each column. Such a measurement matrix can

be interpreted as the adjacency matrix of a left d-regular bipartite graph.

Consider the bipartite graph (L,R,E) where L := {1, . . . , n} is the set of left

vertices, R := {1, . . . , m} the set of right vertices and E ⊆ L×R the set of edges. Any

element (i, j) ∈ E can be interpreted as a edge joining vertices i and j. We write

N(I) := {j ∈ R | ∃i ∈ I with (i, j) ∈ E}

for the set of (right) neighbors of I ⊆ L.

Definition 7 (Left d-regular graph).

The bipartite graph (L,R,E) is called d-left regular, if ♯[N({i})] = d for every i ∈ L.
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According to Definition 7, (L,R,E) is left d-regular if any left vertex is connected

to exactly d right vertices. Recall that the adjacency matrix A ∈ {0, 1}m×n of (L,R,E)

is defined by A[j, i] = 1 if (i, j) ∈ E and A[j, i] = 0 if (i, j) 6∈ E. Consequently the

adjacency matrix of a d-regular graph contains exactly d ones in each column. If d is

small, then the adjacency matrix of a left d-regular bipartite graph is sparse.

Definition 8 (Lossless expander).

Let s ∈ N and θ ∈ (0, 1). A d-left regular graph (L,R,E) is called an (s, d, θ)-lossless

expander, if

♯[N(I)] ≥ (1− θ) d ♯[I] for I ⊆ L with ♯[I] ≤ s . (11)

We write θs for the smallest constant satisfying (11).

It is clear that the adjacency matrix of a d-regular graph satisfies ♯[N(I)] ≤ d ♯[I].

Hence an expander graph satisfies the two sided estimate (1−θ) d ♯[I] ≤ ♯[N(I)] ≤ d ♯[I].

Opposed to Bernoulli and subsampled Hadamard matrices, a lossless expander does

not satisfy the ℓ2-based RIP. However, in such a situation, one can use the following

alternative recovery result.

Theorem 9 (Sparse recovery for lossless expander).

Let x ∈ Rn and let y ∈ Rm satisfy ‖y −Ax‖1 ≤ ǫ for some noise level ǫ > 0. Suppose

that A is the adjacency matrix of a (2s, d, θ2s)-lossless expander having θ2s < 1/6 and

let x⋆ solve

minimizez‖z‖1
such that ‖Az− y‖1 ≤ ǫ . (12)

Then, for constants c1, c2 only depending on θ2s, we have ‖x− x⋆‖1 ≤ c1σs(x) + c2ǫ/d.

Proof. See [20, 18].

Choosing a d-regular bipartite graph uniformly at random yields a lossless expander

with high probability. Therefore, Theorem 9 yields stable and robust recovery for such

type of random matrices.

Example 10 (Left d-regular bipartite graphs).

Take A ∈ {0, 1}m×n as the adjacency matrix of a randomly chosen left d-regular

bipartite graph. Then A has exactly d ones in each column, whose locations are

uniformly distributed. Suppose further that for some constant cθ only depending on

θ the parameters d and m have been selected according to

m ≥ cθs(log(n/s) + 1)

d =

⌈
2 log(n/s) + 2

θ

⌉
.

Then, θs ≤ θ with probability tending to 1 as n → ∞. Consequently, for adjacency

matrices of a randomly chosen left d-regular bipartite graphs we have stable and robust

recovery by (12).
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3. Compressed sensing for PAT in planar geometry

In this section we develop a compressed sensing scheme for PAT, where the acoustic

signals are recorded on a planar measurement surface. The planar geometry is

of particular interest since it usually can be realized most efficiently in practical

applications. We thereby extend the concept of sparsifying temporal transforms

introduced for photoacoustic tomography with integrating line detectors in [11, 12].

3.1. PAT in planar geometry

Suppose the photoacoustic source distribution p0(r) is located in the upper half space

{(x, y, z) ∈ R3 | z > 0}. The induced acoustic pressure p(r, t) satisfies the wave equation

1

c2
∂2p(r, t)

∂t2
−∆rp(r, t) = −

∂δ

∂t
(t) p0(r) , (13)

where ∆r denotes the spatial Laplacian, ∂/∂t is the derivative with respect to time, c

the sound velocity, and δ(t) the Dirac delta-function. Here (∂δ/∂t)p0 acts as the sound

source at time t = 0 and it is supposed that p(r, t) = 0 for t < 0. We further denote by

(Wp0)(xS, yS, t) := p(xS, yS, 0, t) ,

the pressure data restricted to the measurement plane. PAT in planar recording

geometry is concerned with reconstructing p0 from measurements of Wp0.

For recovering p0 from continuous data explicit and stable inversion formulas, either

in the Fourier domain or in the time domain, are well known. A particularly useful

inversion method is the universal backprojection (UBP),

p0(r) =
z

π

∫

R2

(t−1∂tt
−1Wp0) (xS, yS, |r− rS|) dS . (14)

Here r = (x, y, z) is a reconstruction point, rS = (xS, yS, 0) a point on the detector

surface, and |r− rS| the distance between r and rS. The UBP has been derived in [21]

for planar, spherical and cylindrical geometry. The two dimensional version of the UBP

p0(r) = −
2z

π

∫

R

∫ ∞

|r−rS|

(∂tt
−1Wp0)(xS, t)√
t2 − |r− rS|2

dtdS ,

where r = (x, z) and rS = (xS, 0) has been first obtained in [22]. In the recent years,

the UBP has been generalized to elliptical observation surface in two and three spatial

dimensions [23, 24], and various geometries in arbitrary dimension (see [25, 26, 27]).

3.2. Standard sampling approach

In practical application, only a discrete number of spatial measurements can be made.

The standard sensing approach in PAT is to distribute detector locations uniformly on

a part of the observation surface. Such data can be modeled by

p[i, · ] := (Wp0)(xS[i], yS[i], · ) for i = 1, . . . , n . (15)
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Temporal samples can easily be collected at a high sampling rate compared to the

spatial sampling, where each sample requires a separate sensor. It is therefore natural

to consider the semi-discrete data model (15), where the spatial variable is discretized

and the temporal variable is kept continuously. The standard UBP algorithm using

semi-discrete data consists in discretizing the spatial integral in (14) using a discrete

sum over all detector locations and evaluating it for a discrete number of reconstruction

points. This yields to the following UBP reconstruction algorithm.

Algorithm 1 (UBP algorithm for PAT).

Goal: Recover the source p0 in (13) from data (15).

(S1) Filtration: For any i, t compute q[i, t]← ∂tt
−1∂tt

−1p[i, t].

(S2) Backprojection: For any k set p0[k]← v[k]/π
∑N

i=1 q[i, |r[k]− rS[i]|]wi.

In Algorithm 1, the first step (S1) can be interpreted as temporal filtering operation.

The second step (S2) discretizes the spatial integral in (14) and is called discrete

backprojection. The numbers wi are weights for the numerical integration and account

for density of the detector elements. Note that an analogous reconstruction algorithm

can be obtained for two spatial dimensions by implementing the two dimensional UBP

formula.

3.3. Compressed sensing approach

Performing a large number of spatial measurements is costly and time consuming. In

order to speed up the measurement process or to reduce system costs we develop a

compressed sensing scheme. Instead of using point-wise samples, compressed sensing

measurement performs linear combinations of pressure values,

y[j, · ] =
n∑

i=1

A[j, i]p[i, · ] for j ∈ {1, . . . , m} . (16)

Here A is the m × n measurement matrix, and p[i, t] are point wise pressure data.

In the case of compressed sensing we have m ≪ n, which means that the number of

measurements is much smaller than the number of point-samples. In order that the

data still captures the essential information one requires the measurement matrix to

satisfy certain conditions outlined in the previous section. In PAT (as in many other

applications) binary random matrices are most simple to realize. As shown in Section

2 Bernoulli matrices (Example 5), subsampled Hadamard matrices (Example 6) as well

as expander graphs (Example 10) can be used for that purpose.

In order to recover the photoacoustic source from compressed sensing data (16),

one can use the following two-stage procedure. In the first step we recover the point-

wise pressure values from the compressed sensing measurements. In the second step,

one applies a standard reconstruction procedure (such as the UBP Algorithm 1) to the
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estimated point-wise pressure to obtain the photoacoustic source. The first step can

be implemented by setting p̂[ · , t] := Ψx̂[ · , t], where x̂[ · , t] minimizes the ℓ1-Tikhonov

functional

‖y[ · , t]−AΨx‖2 + ‖x‖1 . (17)

Here Ψ ∈ Rn×n is a suitable basis (such as orthonormal wavelets) that sparsely

represents the pressure data and λ is a regularization parameter. Note that (17) can be

solved separately for every t ∈ [0, T ] which makes the two stage approach particularly

efficient. The resulting two-stage reconstruction scheme is summarized in Algorithm 2.

Algorithm 2 (Two-stage compressed sensing reconstruction scheme).

Goal: Recover p0 from data (16).

(S1) Recovery of point-measurements:

◆ Choose a sparsifying basis Ψ ∈ Rn×n.

◆ For every t, find an approximation p̂[ · , t] := Ψx̂[ · , t] by minimizing (17).

(S2) Recover p0 by applying a PAT standard reconstruction algorithm to p̂[ · , t].

As an alternative to the proposed two-stage procedure, the photoacoustic source

could be recovered directly from data (16) based on minimizing the ℓ1-Tikhonov

regularization functional [28, 29]

1

2
‖(A ◦W)p̂0‖22 + λ‖Ψp̂0‖1 → min

p̂0
. (18)

Here Ψ is suitable basis that sparsifies the photoacoustic source p0. However, such an

approach is numerically expensive since the wave equation and its adjoint have to be

solved repeatedly. The proposed two-step reconstruction scheme is much faster because

it avoids evaluating the wave equation, and the iterative reconstruction decouples into

lower dimensional problems for every t. A simple estimation of the number of floating

point operations (flops) reveals the dramatic speed improvement. Suppose we have

n = N × N detector locations, O(N) time instance and recover the source on a

N × N × N spatial grid. Evaluation of a straight forward time domain discretization

of W and its adjoint require O(N5) flops. Hence, the iterative one-step reconstruction

requires NiterO(N5) operations, where Niter is the number of iterations. On the other

hand the two-stage reconstruction requires NiterO(N3m) flops for the iterative data

completion and additionally O(N5) flops for the subsequent UBP reconstruction. In

the implementation one takes the number of iterations (at least) in the order of N and

therefore the two-step procedure is faster by at least one order of magnitude.

3.4. Sparsifying temporal transform

In order that the pressure data can be recovered by (17) one requires a suitable basis

Ψ ∈ Rn×n such that the pressure is sparsely represented in this basis and that the
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composition A ◦Ψ is a proper compressed sensing matrix. For expander matrices these

two conditions are not compatible. To overcome this obstacle in [11, 12] we develop

the concept of a sparsifying temporal transform for the two dimensional case in circular

geometry. Below we extend this concept to three spatial dimensions using combinations

of point-wise pressure values.

Suppose we apply a transformation T to the data t 7→ y[ · , t] that only acts in the

temporal variable. Because the measurement matrix A is applied in the spatial variable,

the transformation T and the measurement matrix commute, which yields

Ty = A(Tp) . (19)

We call T a sparsifying temporal transform, if Tp[ · , t] ∈ Rn is sufficiently sparse for

a suitable class of source distributions and all times t. In this work we propose the

following sparsifying spatial transform

T(p) := t3∂tt
−1∂tt

−1p . (20)

The sparsifying effect of this transform is illustrated in Figure 4 applied to the pressure

data arising from a uniform spherical source; see also Theorem 11 in the Appendix for

a rigorous estimate.

Having a sparsifying temporal transform at hand, we can construct the

photoacoustic source by the following modified two-stage approach. In the first step

recover an approximation q̂[ · , t] ≃ Tp[ · , t] by solving

1

2
‖Ty[ · , t]−Aq̂[ · , t]‖2 + ‖q̂[ · , t]‖1 → min

q̂
. (21)

In the second step, we recover the photoacoustic source by implementing the UBP

expressed in terms of the sparsified pressure,

p0(r) = −
z

π

∫

R2

∫ ∞

|r−rS|
(t−3TWp0)(xS, yS, t)dtdS . (22)

Here r = (x, y, z) is a reconstruction point and rS = (xS , yS, 0) a point on the

measurement surface. The modified UBP formula (22) can be implemented analogously

to Algorithm 1. In summary, we obtain the following reconstruction algorithm.

Algorithm 3 (Compressed sensing reconstruction with sparsifying temporal

transform).

Goal: Reconstruct p0 in (13) from data (16).

(S1) Recover sparsified point-measurements:

◆ Compute the filtered data Ty(t)

◆ Recover an approximation q̂[ · , t] to Tp[ · , t] by solving (21).

(S2) UBP algorithm for sparsified data:

◆ For any i, ρ set q[i, ρ]←
∫∞
ρ

t−3q[i, t] dt

◆ For any k set p0[k]← v[k]
π

∑N
i=1 q[i, |r[k]− rS[i]|]wi.
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Figure 4. Effect of the sparsifying transform. Top: Cross section of a

uniform spherical source. Middle: Corresponding pressure data. Bottom: Result after

applying the sparsifying transform T.

Since (21) can be solved separately for every t, the modified two-stage Algorithm

3 is again much faster than a direct approach based on (18). Moreover, from general

recovery results in compressed sensing presented in the previous section Algorithm 3

yields theoretical recovery guarantees for Bernoulli, subsampled Hadamard matrices as

well as adjacency matrices of left d-regular graphs (see Figure 3).

4. Numerical and experimental results

4.1. Simulated data

We consider reconstructing a superposition of two spherical absorbers, having centers in

the vertical plane {(x, y, z) ∈ R3 | y = 0}. The vertical cross section of the photoacoustic

source is shown in Figure 5(a). In order to test our compressed sensing approach we

first create point samples of the pressure Wp0 on an equidistant Cartesian grid on the

square [−3, 3] × [−3, 3] using 64 × 64 grid points. From that we compute compressed
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Figure 5. Three dimensional compressed sensing PAT versus standard

approach. (a) Cross section of superposition of two uniform spherical absorbers. (b)

Reconstruction using 4096 point measurements on a Cartesian grid. (c) Compressed

sensing reconstruction using 1024 measurements with d = 15. (d) Reconstruction using

1024 point measurements on a Cartesian grid.

sensing data

y[j, t] =

4096∑

i=1

A[j, i]p[i, t] for j ∈ {1, . . . , 1024} . (23)

The choice m = 1024 corresponds to an reduction of measurements by a factor 4. The

matrix A was chosen as the adjacency matrix of a randomly left d-regular graph with

d = 15; see Example 11.

Figure 5 shows the reconstruction results using 4096 point samples using

Algorithm 1 (Figure 5(b)) and the reconstruction from 1024 compressed sensing

measurements using Algorithm 3 (Figure 5(c)). The ℓ1-minimization problem (21) has

been solved using the FISTA [30]. We see that the image quality from the compressed

sensing reconstruction is comparable to the reconstruction from full data using only a

fourth of the number of measurements. For comparison purpose, Figure 5(d) also shows

the reconstruction using 1024 point samples. One clearly recognizes the increase of
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Figure 6. Result of sparse recovery. (a) Pressure at z = 0 induced by two

spherical absorbers shown in Figure 5. (b) Result after applying the sparsifying

transform. (c) Reconstruction of the sparsified pressure from compressed sensing

measurements using ℓ1 minimization.

undersampling artifacts and worse image quality compared to the compressed sensing

reconstruction using the same number of measurements. Figure 6 shows the pressure

corresponding to the absorbers shown in Figure 5 together with the sparsified pressure

and its reconstruction from compressed sensing data.

4.2. Results for real measurement data

Experimental data have been obtained from a silicone tube phantom as shown in

Figure 7. The silicone tube was filled with black ink, formed to a knot, and immersed

in a milk/water emulsion. The outer and inner diameters of the tube were 600µm and

300µm, respectively. Milk was diluted into the water to mimic the optical scattering

properties of tissue; an adhesive tape, placed on the top of the water/milk emulsion,

was used to mimic skin. Photoacoustic signals were excited with nanosecond pulses

from an optical parametric oscillator pumped by a frequency doubled Nd:YAG laser.
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Figure 7. Schematic of experimental setup of non-contact photoacoustic

imaging. Photoacoustic waves are excited by short laser pulses. The ultrasonic signals

are measured on the surface of the sample using a non-contact photoacoustic imaging

technique.

The excitation wavelength was 740 nm. The resulting ultrasonic signals were detected

on the adhesive tape by a non-contact photoacoustic imaging setup as described in

[17]. In brief, a continuous wave detection beam with a wavelength of 1550 nm was

focused onto the sample surface. Displacements on the sample surface, generated by the

impinging ultrasonic waves, change the phase of the reflected laser beam. By collecting

and demodulating the reflected light, the phase information and, thus, information on

the ultrasonic displacements at the position of the laser beam can be obtained. To

allow three-dimensional measurements, the detection beam is raster scanned along the

surface.

Using this setup, point-wise pressure data on the measurement surface have been

collected for 4331 = 71×61 detector positions on the measurement plane. From this data

we generated m = 1116 compressed sensing measurements, where each detector location

has been used d = 10 times in total. Figure 8 shows the maximum amplitude projections

along the z, x, and y-direction, respectively, of the three dimensional reconstruction

from compressed sensing data using Algorithm 3. The sparsified pressure has been

reconstructed by minimizing (21) with the FISTA. For comparison purpose, in Figure 9

we show the maximum amplitude projections from the UBP Algorithm 1 applied to

the original data set. We observe that there is only a small difference between the

reconstruction results. However the compressed sensing approach uses only a fourth of

the number of measurements of the original data set. This clearly demonstrates the
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potential of our compressed sensing scheme for decreasing the number of measurements

while keeping the image quality.
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Figure 8. Reconstruction results using compressed sensing measure-

ments. Maximum intensity projections of a silicone loop along the z-direction (a),

the x-direction (b), and the y-direction (c).

5. Conclusion and outlook

To speed up the data collection process in PAT while keeping sensitivity high and

production costs low, one has to reduce the number of spatial measurements. In

this paper we proposed a compressed sensing scheme for that purpose using random

measurements in combination with a sparsifying temporal transform. We presented

a selected review of compressed sensing that demonstrates the role of sparsity and

randomness for high resolution recovery. Using general results from compressed

sensing we were able to derive theoretical recovery guarantees for our approach based

on sparsifying temporal transforms. Further, this comes with a fast algorithmic
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Figure 9. Reconstruction results using full measurements. Maximum

intensity projections of a silicone loop along the z-direction (a), the x-direction (b),

and the y-direction (c).

implementation. Compressed sensing schemes without using random measurements

and with much slower algorithmic realization have been considered in [31, 32].

Acknowledgments

This work has been supported by the Austrian Science Fund (FWF), project

number P25584-N20, the Christian Doppler Research Association (Christian Doppler

Laboratory for Photoacoustic Imaging and Laser Ultrasonics), the European Regional

Development Fund (EFRE) in the framework of the EU-program Regio 13, the federal

state Upper Austria. S. Moon thanks University of Innsbruck for its hospitality during

his visit. The work of S. Moon has been supported by the National Research Foundation

of Korea grant funded by the Korea government (MSIP) (2015R1C1A1A01051674) and

the TJ Park Science Fellowship of POSCO TJ Park Foundation.

Admin
am_pp_logo_01



Compressed sensing and sparsity in photoacoustic tomography 19

Appendix A. Compressibility of the pressure signals

In this appendix we present a rigorous mathematical result that justifies the proposed

sparsifying transform. For the sake of clarity we consider a spherical photoacoustic

absorber that takes the value a0 for |r−m| ≤ R and zero otherwise. Here m = (0, 0, 1)

is the center, R the radius and a0 the amplitude of the source. The induced acoustic

pressure of such a spherical absorber is given

p(rS, t) =
a0
2

{
t−|rS−m|
|rS−m| if |t− |rS −m|| ≤ R

0 otherwise .

For a spatial step size h > 0 we consider discrete samples of the pressure evaluated at

rS[i] = (ih, 0, 0). In order to avoid spatial undersampling we apply the ideal low-pass

filter Hh(t) := (1/h) sinc(tπ/h) to the data before sampling. As sparsifying transform

we use the slightly modified transform Th = h2∂2
t .

Theorem 11 (Compressibility of the pressure).

Suppose that p(rS, t) is the pressure data generated by a uniform spherical source.

Further, for some sampling step size h ∈ (0, 1], denote Hh(t) := (1/h) sinc(tπ/h), and

consider the semi-discrete data

p[i, · ] := Hh ∗t p(ih, 0, 0, · ) for i = −N, . . . , N . (A.1)

Then, for any q ∈ (1/2, 1) the filtered data Thp := h2∂2
t p satisfy

‖Thp[ · , t]‖q ≤ a0Cqh
−1−1/q

(
1 +

(2q − (N − 1)1−2q)

2q − 1

)1/q

, (A.2)

where Cq is a constant depending only on q.

The proof of Theorem 11 will be presented elsewhere. Identity (5) and Theorem 11

imply that Thp[ · , t] is compressible in the sense that the best s-term approximation

error σs(Thp[ · , t]) is small. Together with Theorem 4 and Theorem 9 this yields stable

and robust recovery results for the proposed compressed sensing scheme using Th = h2∂2
t

as a sparsifying temporal transform.
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