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Abstract

In the statistical learning theory the Nyström type subsampling
methods are considered as tools for dealing with big data. In this
paper we consider Nyström subsampling as a special form of the pro-
jected Lavrentiev regularization, and study it using the approaches
developed in the regularization theory. As a result, we prove that
the same capacity independent learning rates that are quaranteed for
standard algorithms running with quadratic computational complex-
ity can be obtained with subquadratic complexity by the Nyström
subsampling approach, provided that the subsampling size is chosen
properly. We propose a priori rule for choosing the subsampling size
and a posteriori strategy for dealing with uncertainty in the choice of
it. The theoretical results are illustrated by numerical experiments.

1 Introduction

Regularization based kernel methods, such as kernel ridge regression (KRR),
provide an effective framework for the supervised learning [12, 13]. However,
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a standard implementation of these methods is infeasible when dealing with
the so-called “Big Data”.

The Big Data concept can be considered from different points of view.
Here, by “Big Data”, we mean data sets exceeding the computational capac-
ity of conventional learning systems. For example, in KRR, one receives a
training data set z of N samples of the form z = {(xi, yi)}Ni=1, where each
input xi ∈ X ⊂ Rd is related to the output yi ∈ R by an unknown target
function f ∗ : X → R, and the goal is to approximate this function by the
minimizer fαz of the regularized empirical risk functional:

Tαz (f) :=
1

|z|
∑

(xi,yi)∈z
(f (xi)− yi)2 + α ‖f‖2HK

. (1)

Here, HK denotes the reproducing kernel Hilbert space (RKHS) generated
by a kernel K : X ×X → R, |z| = N , and α is a regularization parameter.

By the representer theorem for RKHS [6], the minimizer of (1) is equal
to

fαz =
∑

xi : (xi,yi)∈z
ciK (·, xi) ,

where c = (ci)
|z|
i=1 = (K + α |z| I)−1Y, Y = (yi)

|z|
i=1, I is the |z| × |z| diagonal

identity matrix, and K denotes the |z|× |z| kernel matrix with entries Kij =
K (xi, xj).

Now, it is clear that KRR will suffer from at least quadratic computational
complexity O (N2) in the number of observations N , as this is the complexity
of computing the kernel matrix K. In the Big Data setting, where N is large,
this is not acceptable. Therefore, learning schemes have been designed to
avoid the computation of the exact minimizers fαz .

One family of such schemes, which we broadly refer to as the Nyström
type subsampling, consists of methods replacing the kernel matrix K with a
smaller matrix obtained by column subsampling [15, 16]. This can also be
interpreted as a restriction of the minimization of Tαz (f) to the space

Hzν

K := {f |f =
∑

xi : (xi,yi)∈zν
ciK (·, xi) , ci ∈ R},

where zν ⊂ z, and |zν | = Nν � N .
It can be shown [11] that the minimizer fαz,zν of Tαz (f) over the space Hzν

K

has the form
fαz,zν = (PzνS

∗
zSzPzν + αI)−1 PzνS

∗
zY, (2)
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where Pzν is the orthogonal projection operator with range Hzν

K , Sz : HK →
R|z| is the sampling operator, Szf = (f (x1) , f (x2) , . . . , f (xN)), xi : (xi, yi) ∈
z, and S∗z : R|z| → HK is the adjoint of Sz. If the norm ‖·‖R|z| is defined as
|z|−1 times the Euclidean norm, then

S∗zu (·) = |z|−1
|z|∑

i=1

uiK (·, xi) , u = (u1, u2, . . . , uN) .

Observe that the computational complexity of the minimization of Tαz (f)
over the space Hzν

K is of order O
(
|z| · |zν |2

)
= O (N ·N2

ν ). Of course, Nν is
expected to increase with N , such that a linear complexity in N seems im-
possible. Therefore, the main question about the Nyström type subsampling
is the following: how big should Nν be to incur no loss of the performance
compared to the full kernel matrix K; or, that is the same, is it possible to
realize the Nyström approach with a complexity that is subquadratic in the
number of observations N without losing the performance?

A positive answer to this question has been recently given in [1, 11].
However, in [1], the error analysis is derived in a fixed design regression
setting, such that xi, i = 1, 2, . . . , |z|, are assumed to be uniformly sampled,
for example. The study [11] extends the results of [1] to a general statistical
learning setting. At the same time, the analysis of [11] is fairly technical and
lengthy. In particular, it is based on the assumptions describing the capacity
of the hypothesis spaceHK with respect to the unknown distribution ρX from
which {xi}|z|i=1 is assumed to be sampled.

In the present study, we are going to analyze the so-called plain Nyström
approach as a particular case of the regularized projection scheme. There-
fore, we will use some arguments developed in the regularization theory for
analyzing regularized projection approximations [9, 10]. Instead of the as-
sumption on the capacity of the solution space, these arguments rely on the
assumption on the approximation power of the projection method induced
by the projector such as Pzν in (2). For the purpose of our study, the argu-
ments developed in [9, 10] should be accompanied by the ones that take into
account that in the context of learning, the regularized projection schemes,
such as (2), operate only with noisy versions of the operators describing the
learning tasks.

An analysis incorporating the above mentioned arguments is presented
in the next section. Unlike [11], it gives capacity independent learning rates
for the Nyström type subsampling. Moreover, it indicates a rather general
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a priori choice of the subsampling size |zν | that allows a subquadratic com-
plexity without loss of the performance. Such a priori choice of |zν | requires
a knowledge of the regularity of the unknown target function with respect to
K and ρX . In Section 3, we consider a situation when such a priori knowledge
is not accurate, and may lead to uncertain parameter |zν |. In Section 4, we
discuss some simulations illustrating our theoretical results.

2 Approximation power, regularity and learn-

ing rate

A training data set z = {(xi, yi)}|z|i=1 is assumed to be sampled from the so-
called sample space Z = X×Y endowed with a fixed but unknown probability
distribution ρ, which can be factorized as ρ(x, y) = ρ(y|x)ρX(x), where ρ(·|x)
is the conditional distribution on Y ⊂ R given x ∈ X, and ρX is the so-called
marginal distribution, from which the set of inputs {xi}|z|i=1 is supposed to be
sampled.

A common assumption to simplify analysis is that Y = [−D,D] for some
D > 0. A weaker condition can be found in [3].

Given a training set z ⊂ Z, the goal is to find an estimate f = fz with a
small expected risk

E(f) =

∫

X×Y
(f(x)− y)2 dρ(x, y).

Once we choose HK as the so-called hypothesis space, the best possible risk
value is clearly

inf
f∈HK

E(f).

As in [11], we assume that there exists f † ∈ HK such that

E(f †) = min
f∈HK

E(f).

To formulate our further assumptions we need some operators, which are tra-
ditionally used in the context of regression learning. At first we consider the
space L2(X, ρX) of square integrable functions with respect to ρX equipped
with the usual norm ‖ · ‖ρ = ‖ · ‖L2(X,ρX). It is well-known [5] that for
f, f † ∈ HK we have

E(f)− E(f †) = ‖f − f †‖2ρ. (3)
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It is also known that if the kernel K is bounded then HK is continuously
embedded in L2(X, ρX), such that the canonical embedding operator JK :
HK → L2(x, ρX) is continuous. Then we consider the adjoint operator J∗K :
L2(X, ρX)→ HK,

J∗Kf(·) =

∫

X

K(·, x)f(x)dρX(x),

and the covariance operator C = J∗KJK : HK → HK,

Cf(·) =

∫

X

K(·, x)〈f,Kx〉KdρX(x),

where Kx(·) = K(·, x), and 〈·, ·〉K is the inner product in HK.
The operator C can be proved to be a positive trace class operator. There-

fore, the operator C1/2 =
√
C is well-defined and relates the norms of f ∈ HK

in HK and L2(X, ρX) as follows

‖f‖ρ = ‖C1/2f‖K (4)

where ‖ · ‖K = ‖ · ‖HK
.

We will measure the approximation power of the projection method in-
duced by the projector Pzν in terms of the quantity ‖C1/2(I − Pzν )‖HK→HK

that has been also studied in [11] (see Lemma 6 [11]). At the same time, such
kind of measure is usual in studying regularized projection methods [9, 10],
and in spirit of that studies we assume that there is β > 0 such that the
following holds with probability 1− δ

∆m := ‖C1/2(I− Pzν )‖HK→HK
≤ dδ,βm

−β,m = |zν |, (5)

where dδ,β = O
(
logβ1 1

δ

)
and β1 is a positive number depending only on β.

Note, that a probabilistic character of the assumption (5) is natural,
because in the plain Nyström approach the points forming zν are sampled
uniformly at random without replacement from the training set z.

As we have already mentioned, in [11], the Nyström subsampling ap-
proach was studied under assumpltions on the capacity of HK. These as-
sumptions are formulated in [11] with the use of the quantity N∞(λ) =
sup{Nx(λ), x ∈ X}, where Nx(λ) = 〈Kx, (C + λI)−1Kx〉K. If in spirit of
Assumption 3 [11] we assume that N∞(λ) = O(λ−γ), 0 < γ ≤ 1, then
from Lemma 6 [11] it follows that our assumption (5) is satisfied with any
β ∈ (0, 1/2γ).
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Our last assumption describes the regularity of f † in terms of source
condition concept that is fairly standard in the regularization theory [8]. In
the context of the learning theory this concept has been introduced in [2].
Within this concept, we assume that f † admits the representation

f † = ϕ(C)v†, v† ∈ HK, ‖v†‖K ≤ R, (6)

where the function ϕ is operator monotone on [0, d], d > ‖C‖HK→HK
, and

such that ϕ(0) = 0 and ϕ2 is a concave function.
As it has been shown in [9] an important implication of operator mono-

tonicity is that there is a number dϕ depending only on ϕ such that for any
self-adjoint operators C,C1 with spectra in [0, d] it holds

‖ϕ(C)− ϕ(C1)‖HK→HK
≤ dϕϕ(‖C − C1‖HK→HK

). (7)

Moreover, as a consequence of the concavity of ϕ2 we have (see Proposi-
tion 2 [9])

‖(I− Pzν )ϕ(C)‖HK→HK
≤ ϕ

(
‖C1/2(I− Pzν )‖2HK→HK

)
. (8)

Note that our assumption (6) generalizes Assumption 4 of [11], where
only the case of operator monotone functions ϕ(t) = ts, 0 < s ≤ 1

2
, has been

studied.
In the sequel we extensively use the following bounds (see, e.g., [2]) that

hold under the above assumptions with probability at least 1−δ and quantify
the perturbation effect of random sampling:

‖C− S∗zSz‖HK→HK
≤ d1,δ |z|−

1
2 , (9)

‖S∗zSzf − S∗zY‖K ≤ d2,δ |z|−
1
2 , (10)

where d1,δ and d2,δ are of order O(log 1
δ
) and depend only on K and ρ.

The following capacity independent learning rates have been proven in [2]
for KRR (1)

Theorem 1 ([2]). Consider a sampling space Z = X × [−D,D], where the
input space X ⊂ Rd is closed. Consider also a bounded and continuous kernel
K defined on X. If minimizer f † of the expected risk E(f) over HK meets the
assumption (6), then for α = αz = Θ−1(|z|−1/2), Θ(t) = ϕ(t)t, we have with
pbobability at least 1− δ that

‖f † − fαz
z ‖ρ = O

(
ϕ(Θ−1(|z|−1/2))

√
Θ−1(|z|−1/2) log

1

δ

)
. (11)
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Note that for ϕ(t) = ts the above theorem gives us the learning rate

O
(
|z|−

s+1
2

2(s+1)

)
that matches the result obtained in seminal paper by Smale

and Zhou [14]. Moreover, for ϕ(t) = ts the rate (11) can be thought of as the

limit case of the capacity dependent learning rate O
(
|z|−

(s+1
2 )µ

2sµ+µ+1

)
obtained

in [3] under the assumptions that the eigenvalues λi of the covariance operator
C have polynomial decay λi � i−µ with µ > 1.

Now we are going to prove that the same learning rate (11) can be
achieved in Nyström type subsampling (2) if the approximation power of
Pzν is high enough.

Theorem 2. Assume the conditions of Theorem 1, and let (5) be satisfied.
If the size m = |zν | of a subsampling zν is chosen such that

∆m ≤
√

Θ−11/2(|z|−1/2),Θ1/2(t) = ϕ(t)
√
t,

then with probability at least 1− δ we have

‖f † − fαz
z,zν‖ρ = O

(
ϕ
(
Θ−1(|z|−1/2)

)√
Θ−1(|z|−1/2) logβ2

1

δ

)
, (12)

where β2 = max{1, β1}, and β1 is the same as in (5).

Before proving this statement, we first comment on the computational
complexity of Nyström approximation (2) with a subsampling size |zν | chosen
according to Theorem 2.

In view of the assumption (5) it is clear that the condition of the theorem
can be satisfied with

|zν | � [Θ−11/2(|z|−1/2)]
− 1

2β .

Let the assumption (6) be satisfied with

ϕ(t) = o(t
1−β
2β ) as t→ 0, (13)

i.e. Θ1/2(t) = o(t1/2β). Then

|z|−β = o(Θ−11/2(|z|−1/2)) = o(|zν |−2β),

which means that |zν |2 = o(|z|) as |z| → ∞.
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On the other hand, the computational complexity of (2) is of order
O (|z||zν |2) (see, e.g. [11]), and under the condition (13) it is subquadratic,
because |z||zν |2 = o(|z|2).

Thus, under the conditions of Theorem 2 Nyström subsampling has the
same learning rate as the one guaranteed by Theorem 1 for KRR based
on the whole sample z. Moreover, Theorem 2 allows an estimation of a
regularity range, such as (13), for which the above mentioned learning rate
can be achieved with subquadratic complexity. Note, that the condition (13)
is automatically satisfied with β ≥ 1, for example.

Proof of Theorem 2. It is known (see, e.g. [9]) that the following inequality
holds true for functions ϕ mentioned in the assumption (6)

sup
t
|(1− (α + t)−1t)ϕ(t)tq| ≤ hϕ,qϕ(α)αq, q ∈ [0, 1/2], (14)

where hϕ,q depends only on ϕ and q.
Note also that, by very definition, Θ1/2(|z|−1/2) > Θ(|z|−1/2), and there-

fore
∆2
m = Θ−11/2(|z|−1/2) < Θ−1(|z|−1/2) = αz. (15)

Moreover, without loss of generality we can assume that |z| is so large that

ϕ(max{d1,δ, d2,δ}|z|−1/2) < [max{d1,δ, d2,δ}], (16)

where d1,δ, d2,δ are the numbers appearing in (9), (10). This is not a real
restriction, because the left-hand side of (16) tends to zero as |z| → ∞. A
direct implication of (16) is that with probability at least 1− δ

αz = Θ−1(|z|−1/2) > max{‖C−Cz‖HK→HK
, ‖Czf

† − S∗zY‖K}. (17)

Consider the decomposition

f † − fαz
z,zν = σ1 + σ2 + σ3, (18)

where

σ1 = f † − Pzνf
†,

σ2 = Pzνf
† − (αzI + PzνCzPzν )

−1PzνCzPzνf
†,

σ3 = (αzI + PzνCzPzν )
−1(PzνCzPzνf

† − PzνS
∗
zY),
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and we use notation Cz = S∗zSz.
Now we are going to bound each term of (18). From (4)–(6) and (8) we

have

‖σ1‖ρ = ‖C1/2(I− Pzν )ϕ(C)v†‖K
≤ R‖C1/2(I− Pzν )‖HK→HK

‖(I− Pzν )ϕ(C)‖HK→HK

≤ R∆mϕ(∆2
m) = RΘ1/2(∆

2
m)

≤ RΘ1/2(Θ
−1
1/2(|z|−1/2)) = R|z|−1/2 (19)

To prove (12) we also need to bound σ2, σ3 in the norms ‖ · ‖K and ‖ · ‖ρ. We
start with the decomposition

σ2 = σ2,1 + σ2,2, (20)

where

σ2,1 = (I− (αzI + PzνCzPzν )
−1PzνCzPzν )ϕ(PzνCzPzν )v

†,

σ2,2 = (I− (αzI + PzνCzPzν )
−1PzνCzPzν )σ2,2,1,

σ2,2,1 = (Pzνϕ(C)− Pzνϕ(C)Pzν + Pzνϕ(C)Pzν

− ϕ(PzνCPzν ) + ϕ(PzνCPzν )− ϕ(PzνCzPzν ))v
†.

From (14) it follows that

‖σ2,1‖K ≤ R sup
t
|(1− (αz + t)−1t)ϕ(t)| ≤ Rhϕ,0ϕ(αz)

Moreover,

‖σ2,1‖ρ = ‖C1/2σ2,1‖K
≤ ‖C1/2

z Pzνσ2,1‖K + ‖(C1/2 −C1/2
z )Pzνσ2,1‖K,

and

‖C1/2
z Pzνσ2,1‖K ≤ ‖(PzνCzPzν )

1/2σ2,1‖K
≤ R sup

t
|(1− (αz + t)−1t)t1/2ϕ(t)| ≤ Rhϕ, 1

2
α1/2
z ϕ(αz).

Keeping in mind that ψ(t) =
√
t is an operator monotone function, from (7),

(15) and (17), we have

‖(C1/2−C1/2
z )Pzνσ2,1‖K ≤ d1/2‖C−Cz‖

1/2
HK→HK

‖σ2,1‖K ≤ d1/2Rhϕ,0α
1/2
z ϕ(αz).
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All together this gives us the bound

‖σ2,1‖ρ = O(ϕ(αz)α
1/2
z ) = O

(
ϕ(Θ−1(|z|−1/2))

√
Θ−1(|z|−1/2)

)
.

To estimate ‖σ2,2‖ρ we need to bound ‖σ2,2,1‖K. For this end, we use the
following known estimate (see Proposition 3 [9])

‖Pzνϕ(C)Pzν − ϕ(PzνCPzν )‖HK→HK
≤ d̄ϕϕ(‖C1/2(I− Pzν )‖2HK→HK

).

Moreover, (7), (8) and (15), (17) give us

‖ϕ(PzνCPzν )− ϕ(PzνCzPzν )‖HK→HK
≤ dϕϕ(‖C−Cz‖HK→HK

) ≤ dϕϕ(αz),

and

‖Pzνϕ(C)− Pzνϕ(C)Pzν‖HK→HK
≤ ‖ϕ(C)(I− Pzν )‖HK→HK

= ‖(I− Pzν )ϕ(C)‖HK→HK
≤ ϕ(‖C1/2(I− Pzν )‖2HK→HK

) ≤ ϕ(αz).

Therefore, ‖σ2,2,1‖K ≤ R(d̄ϕ + dϕ + 1)ϕ(αz), and

‖σ2,2‖K ≤ ‖σ2,2,1‖K sup
t
|1− t

αz + t
| ≤ ‖σ2,2,1‖K = O(ϕ(αz)).

Then, using the same argument as for ‖σ2,2,1‖ρ we obtain

‖σ2,2‖ρ = O
(
ϕ(Θ−1(|z|−1/2))

√
Θ−1(|z|−1/2)

)
, and

‖σ2‖ρ = O
(
ϕ(Θ−1(|z|−1/2))

√
Θ−1(|z|−1/2)

)
.

Finally, we need to estimate ‖σ3‖ρ. Observe that

‖σ3‖ρ ≤ sup
t
|(αz + t)−1|‖PzνCzPzνf

† − PzνS
∗
zY‖K

≤ 1

αz

(
‖Pzν (Czf

† − S∗zY)‖K + ‖PzνCzf
† − PzνCzPzνf

†‖K
)

Then using (8)–(10) we obtain

‖Pzν (Czf
† − S∗zY)‖K ≤ d2,δ|z|−1/2,
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‖PzνCzf
† − PzνCzPzνf

†‖K ≤ ‖Pzν (Cz −C)f †‖K + ‖PzνCf
† − PzνCPzνf

†‖K
+ ‖Pzν (C−Cz)Pzνf

†‖K ≤ 2d1,δ‖f †‖K|z|−1/2 + ‖C(I− Pzν )(I− Pzν )ϕ(C)v†‖K
≤ d3,δ(|z|−1/2 + ∆mϕ(∆2

m)) ≤ d3,δ(|z|−1/2 + Θ1/2(Θ
−1
1/2(|z|−1/2))) = 2d3,δ|z|−1/2,

that allows us to write

‖σ3‖K = O(α−1z |z|−1/2) = O(α−1z Θ(Θ−1(|z|−1/2)))
= O

(
[Θ−1(|z|−1/2)]−1ϕ(Θ−1(|z|−1/2))Θ−1(|z|−1/2)

)
= O(ϕ(Θ−1(|z|−1/2))).

Using again the same argument as for ‖σ2,1‖ρ we obtain

‖σ3‖ρ = O
(
ϕ(Θ−1(|z|−1/2))

√
Θ−1(|z|−1/2)

)
.

Summing up the above bounds for ‖σi‖, i = 1, 2, 3, we prove the statement
of the theorem.

3 Dealing with uncertainty in the sampling

size |zν|
Theorem 2 contains a recipe for choosing the subsampling size |zν | depend-
ing on the regularity of the target function and on the approximation power
of the corresponding projection method. Both of them, especially the first,
may not be exactly given in the form described above. Then several subsam-
pling sizes |zν1| , |zν2| , . . . , |zνl | may be tried in Nyström method, provided

that |zνi | = o(|z|1/2), i = 1, 2, . . . , l. Of course, the number l of possible size
candidates should not be too large to allow a calculation of all corresponding
approximants fαz,zν1 , fαz,zν2 , . . . , f

α
z,zνl with a subquadratic complexity. Nev-

ertheless, the question appears of how to select a good approximant among
the calculated ones, or how to use all of them. This question is similar to
the one in the regularization theory, where some strategy for aggregating all
calculated regularized approximants has been discussed recently [4]. In [7]
the strategy [4] has been adjusted in the context of learning and presented
in several versions.

According to the simplest version, the intention is to approximate the
vector c∗ = (c∗1, c

∗
2, . . . , c

∗
l ) ∈ Rl solving the following minimization problem
∥∥∥∥∥f
† −

l∑

i=1

cif
α
z,zνi

∥∥∥∥∥
ρ

→ min . (21)
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Recall that ‖·‖ρ is the norm of the Hilbert space L2(X, ρX). Therefore, (21)
is equivalent to the matrix problem

Gc = g†, (22)

where G and g† are respectively a Gram matrix and a vector of inner products
〈·, ·〉ρ in L2(X, ρX), i.e.

G =

(〈
fαz,zνi , f

α
z,zνj

〉
ρ

)l

i,j=1

, g† =

(〈
f †, fαz,zνj

〉
ρ

)l

i=1

(23)

Note that neither Gram matrix G nor the vector g† is accessible, since
the target function f † is unknown and the marginal probability distribution
ρX , which is involved in the definition of 〈·, ·〉ρ, is not assumed to be given.

On the other hand, f †, fαz,zνi , i = 1, 2, . . . , l, belong to the spaceHK. That
is assumed to be continuously embedded into L2(X, ρX). Then, for example,
〈
f †, fαz,zνi

〉
ρ

=
〈
JKf

†, JKf
α
z,zνi

〉
ρ

=
〈
Cf †, fαz,zνi

〉
K

=
〈
(C−Cz)f

†, fαz,zνi
〉
K

+
〈
Czf

† − S∗zY, f
α
z,zνi

〉
K

+
〈
S∗zY, f

α
z,zνi

〉
K

(24)

In view of (9) the first term of the last equality (24) can be estimated as
follows: ∣∣∣

〈
(C−Cz)f

†, fαz,zνi
〉
K

∣∣∣ ≤ ‖C−Cz‖HK→HK
·
∥∥f †
∥∥
K
·
∥∥fαz,zνi

∥∥
K

≤ d1,δ |z|−1/2
∥∥f †
∥∥
K
·
∥∥fαz,zνi

∥∥
K

(25)

Moreover, the norm
∥∥f †
∥∥
K

does not depend on |z|, |zνi |, and the norm∥∥fαz,zνi
∥∥
K

can be controlled. So, with a high probability it holds
∣∣∣
〈
(C−Cz)f

†, fαz,zνi
〉
K

∣∣∣ = O
(
|z|−1/2

)
. (26)

In the same way, with the use of (10) we have
∣∣∣
〈
Cf † − S∗zY, f

α
z,zνi

〉
K

∣∣∣ = O
(
|z|−1/2

)
. (27)

As to the third term of the last equality (24), it can be directly calculated
from the training data since

〈
S∗zY, f

α
z,zνi

〉
K

=
〈
Y, Szf

α
z,zνi

〉
R|z| = |z|−1

|z|∑

k=1

ykf
α
z,zνi (xk) (28)
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Therefore, from (24)–(28) we have with high probability

〈
f †, fαz,zνi

〉
ρ

= |z|−1
|z|∑

k=1

ykf
α
z,zνi (xk) +O(|z|−1/2), i = 1, 2, . . . , l. (29)

Similar reasoning gives us the relations

〈
fαz,zνi , f

α
z,zνj

〉
ρ

= |z|−1
|z|∑

k=1

fαz,zνi (xk)f
α
z,zνj (xk) +O(|z|−1/2), i, j = 1, 2, . . . , l.

(30)
In view of (29), (30) the matrix

G̃ =


|z|−1

|z|∑

k=1

fαz,zνi (xk)f
α
z,zνj (xk)



l

i,j=1

and the vector

g̃ =


|z|−1

|z|∑

k=1

ykf
α
z,zνi (xk)



l

i=1

can be considered as approximations of G and g† respectively. Moreover,
with probability at least 1− δ

∥∥∥G− G̃
∥∥∥
Rl

= O
(
|z|−1/2 log

1

δ

)
,
∥∥g† − g̃

∥∥
Rl = O

(
|z|−1/2 log

1

δ

)
.

With the matrix G̃ in hand one can easily test whether or not G̃−1 exists.
For sufficiently large |z| in case of positive test result a standard perturba-
tion argument (see, e.g. [7] for details) implies the invertibility of G−1, the
existence of the vectors c∗ = G−1g†, c̃ = G̃−1g̃ and the bound

‖c∗ − c̃‖Rl = O
(
|z|−1/2 log

1

δ

)

that holds with probability at least 1− δ.
Consider now the function

f ∗z =
l∑

i=1

c∗i f
α
z,zνi ,
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that solves (21), and its approximation

f̃ ∗z =
l∑

i=1

c̃∗i f
α
z,zνi ,

where c̃i, i = 1, 2, . . . , l, are the components of the vector c̃ = G̃−1g̃. Since
fαz,zνi , i = 1, 2, . . . , l, are up to our choice, their norms can be controlled such
that

∥∥∥f ∗z − f̃z
∥∥∥
ρ
≤ lmax

i

∥∥fαz,zνi
∥∥
ρ
‖c∗ − c̃‖Rl = O

(
|z|−1/2 log

1

δ

)
.

This gives us the following statement

Theorem 3. Assume that G̃ is invertable and consider f̃z =
∑l

i=1 c̃if
α
z,zνi ,

c̃ = (c̃i)
l
i=1 = G̃−1g̃. Then under the conditions of Theorem 2 for sufficiently

large |z| we have with probability at least 1− δ
∥∥∥f † − f̃z

∥∥∥
ρ

= min
ci

∥∥∥∥∥f
† −

l∑

i=1

cif
α
z,zνi

∥∥∥∥∥
ρ

+O
(
|z|−1/2 log

1

δ

)
,

where a coefficient implicit in O-symbol may depend on the cardinality l of
the family {fαz,zνi} and on the distribution ρ, but does not depend on |z| and δ.

Note that in Theorem 3 the term O
(
|z|−1/2 log 1

δ

)
is negligible because,

as we know from [3], |z|−1/2 is of higher order than the best guaranteed
accuracy of a reconstruction of the target function f † ∈ HK in L2(X, ρX)
from a training set z.

Thus, Theorem 3 tells us that the effectively constructed linear combina-
tion of the candidates fαz,zνi , i = 1, 2, . . . , l, is almost as accurate as the best
linear aggregator of them.

In the next section we present some numerical experiments illustrating
the performance of the aggregator f̃z.

4 Numerical experiments

For our first experiment we simulate data in the same way as in [17], where an-
other strategy for learning with big data called divide and conquer algorithm
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or distributed learning has been studied. Following that paper, we simulate
training data sets z = {(xi, yi)}|z|i=1, |z| ∈ {28, 29, . . . , 213} from the regression
model yi = f †(xi)+ξi, i = 1, 2, . . . , |z|, where f †(x) = min{x, 1−x}, the ran-
dom samples xi are uniformly distributed over [0, 1], and the noise random
variables ξi are normally distributed with zero mean and variance σ2 = 1/5.
This simulated problem can be seen as a supervised learning sigh X = [0, 1]
and ρX = Uni[0, 1].

As in [17], all kernel ridge regression estimators appearing in this experi-

ment are constructed in HK with K(x, x′) = 1 + min{x, x′} and α = |z|−2/3.
We perform plain Nyström subsampling and construct estimators fαz,zν1 ,

fαz,zν2 with |zν1| = b|z|4/10c and |zν2| = b|z|3/10c, such that the computa-

tional complexity of their construction is of order o(|z|2), i.e. subquadratic.
Then, as has been discussed in Theorem 3, we construct the aggregator
f̃z = c̃1f

α
z,zν1 + c̃2f

α
z,zν2 .

The accuracy of f̃z is compared with the one of divide and conquer algo-
ithm [17]. That algorithm is based on splitting a large training set z into p
much smaller equal-sized subsets z1, z2, . . . , zp, |zi| = b|z| /pc, i = 1, 2, . . . , p;
then, each data set zi is used as a training set for constructing the mini-
mizer fαzi of (1), where z is substituted for zi; finally, the approximations fαzi ,
i = 1, 2, . . . , p, are aggregated linearly with equal coefficients (averaged) into

fαz,p = p−1
p∑

i=1

fαzi .

In our experiment we compare the errors
∥∥∥f † − f̃z

∥∥∥,
∥∥f † − fαz,zνi

∥∥, i = 1, 2,

and
∥∥f † − fαz,p

∥∥. As in [17] we consider p = 1, 4, 16, 64, and execute each
simulation 20 times to obtain average values of the errors. In Figure 1 we
plot these values versus the total number of samples |z|, where the values

corresponding to
∥∥∥f † − f̃z

∥∥∥,
∥∥f † − fαz,zνi

∥∥, and
∥∥f † − fαz,p

∥∥ are respectively

depicted by dotted, dashed and solid lines.
Figure 1 shows that in the considered case the aggregated approxima-

tion f̃z outperforms all others, including the baseline KRR-solution fαz,1 con-
structpumadyn32nhed for the full sample z. It is also interesting to note, that
the Nyström approximation fαz,zν2 , |zν2 | = b|z|3/10c, performs poorly, but the

aggregated approximation f̃z automatically uses the best of available options.
In our second experiment we follow the paper [11], where the dataset

pumadyn32nh and cpuSmall have been used for an empirical study of the
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Figure 1: The mean square error between f † and the averaged estimate fαz,p
for p = 1, 4, 16, 64 (solid), Nyström solutions fαz,zν1 (|zν1| = b|z|4/10c) and

fαz,zν2 , |zν2| = b|z|3/10c (dashed) and aggregated solution f̃z (dotted)

Nyström subsampling method. These datasets have been splitted in training
and test sets and Gaussian kernels K(x, x′) = exp(−‖x− x′‖2 /2σ2) have
been used in construction of fαz,zν . Moreover, 20% of the training points have
been hold out for tuning such parameters as σ and α, and the performance
of the selected models has been reported on the test sets.

In [11] the performance has been measured in particular by comparing
the root-mean-square-errors (RMSE) of the approximations fαz,zν1 , fαz,zν2 with
large |zν1| and small |zν2|.

It turns out that in the case of cpuSmall the effectiveness of the Nyström
subsampling is not so high, since comparable values of RMSE of fαz,zν1 , fαz,zν2
have been observed when both |zν1|, |zν2|, as well as |z|, are of order of 103.

At the same time, in the case of pumadyn32nh the same RMSE of 0.033
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has been observed for fαz,zνi , i = 1, 2, with |zν1| = 1000 and |zν2| = 62.
Such different performances may hardly be explained by different capaci-

ties of the used hypothesis spaces HK, because in both considered cases they
are generated by Gaussian kernels, and, moreover, the dimension of the input
space X for cpuSmall is smaller that in case of pumadyn32nh.

In our Theorem 2 one may find a plausible explanation of the above
mentioned behaviour of Nyström approximations. Namely, that is because
of the regularities of the target functions corresponding to pumadyn32nh and
cpuSmall are described by source condition (6) with functions ϕ tending to
zero with essentially different rates. This is an example of how Theorem 2
can be used for interpreting empirical results and explaining limitations of
the Nyström approach.

Now we use pumadyn32nh dataset for illustrating the performance of the
arrgegators f̃z. As in [11] we construct the approximants fαz,zνi , i = 1, 2, 3,
in HK generated by the Gaussian kernel of width σ = 2.66, and we use
α = 10−7, |z| = 4096, |zν1 | = 200, |zν2| = 60, |zν3| = 20. Table 1 reports the
performance of fαz,zνi , i = 1, 2, 3, and z̃.

Approximant RMSE
fz,zν1 0.03381
fz,zν2 0.03325
fz,zν3 0.03442

Aggregator f̃z 0.03325

Table 1: Performance of Nyström approximants and their aggregator on a
testing set of 4096 data points from cpuSmall

As can be seen from Table 1, the aggregation approach described in Sec-
tion 3 again automatically uses the best of the available options and can
be recommended as a reliable strategy to be implemented together with the
Nyström subsampling when dealing with uncertainty in the subsampling size.
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[9] Mathé P and Pereverzev S V 2003 Discretization strategy for linear
ill-posed problems in variable Hilbert scales Inverse Problems 19 1263–
1277

[10] Plato R and Vainikko G 1990 On the regularization of projection meth-
ods for solving ill-posed problems Numerische Mathematik 57 63–79

[11] Rudi A, Camoriano R and Rosasco L 2015 Less is more: Nyström
computational regularization Advances in Neural Information Process-
ing Systems 28 ed Cortes C, Lawrence N, Lee D, Sugiyama M, Gar-
nett R and Garnett R (Curran Associates, Inc.) pp 1648–1656 also
arXiv:1507.04717 [stat.ML]

18

Admin
am_pp_logo_01



[12] Schölkopf B and Smola A J 2001 Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond (MIT Press) ISBN
0262194759

[13] Shawe-Taylor J and Cristianini N 2004 Kernel Methods for Pattern
Analysis (Cambridge University Press)

[14] Smale S and Zhou D X 2007 Learning theory estimates via integral oper-
ators and their approximations Constructive Approximation 26 153–172
ISSN 0176-4276

[15] Smola A J and Schölkopf B 2000 Sparse greedy matrix approximation for
machine learning Proceedings of the Seventeenth International Confer-
ence on Machine Learning (ICML 2000), Stanford University, Stanford,
CA, USA, June 29 - July 2, 2000 pp 911–918

[16] Williams C and Seeger M 2001 Using the Nyström method to speed up
kernel machines Proceedings of the 14th Annual Conference on Neural
Information Processing Systems pp 682–688

[17] Zhang Y, Duchi J C and Wainwright M J 2013 Divide and conquer
kernel ridge regression: A distributed algorithm with minimax optimal
rates arXiv:1305.5029 [math.ST] Also JMLR W&CP 30: 592–617

19

Admin
am_pp_logo_01


