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Sampling Conditions
for the Circular Radon Transform

Markus Haltmeier

Abstract—Recovering a function from circular or spherical
mean values is the basis of many modern imaging technologies,
such as photo- and thermoacoustic computed tomography and ul-
trasound reflection tomography. Recently much progress has been
made concerning the problem of recovering a function from its
circular mean values. In particular, theoretically exact inversion
formulas of the back-projection type have been discovered using
continuously sampled data. In practical applications, however,
only a discrete number of circular mean values can be collected.
In this paper we address this issue in the context of Shannon
sampling theory. We derive sharp sampling conditions for the
number of angular and radial samples, respectively such that
any essentially b0-bandlimited function can be recovered from a
finite number of such circular mean values.

Index Terms—Spherical means, circular means, circular Radon
transform, sampling theory, photoacoustic tomography, essen-
tially bandlimited.

I. INTRODUCTION

MANY contemporary tomographic imaging applications
require constructing a planar function f : R2 → R from

its circular Radon transform

MRf(ϕ, r) :=
1

2π

∫

S1
f(z(ϕ) + rθ)dθ . (1)

Here S1 :=
{
θ ∈ R2 : ‖θ‖ = 1

}
is the unit circle consisting

of all elements in the plane with Euclidian norm ‖ · ‖ equal to
one, r ∈ R is the radius and

z(ϕ) :=

[
R cos(ϕ)
R sin(ϕ)

]
for ϕ ∈ R , (2)

the center of the circle of integration. According to our
definition, MRf is 2π-periodic in the first argument (the
angular variable ϕ) and even in the second argument (the
radial variable r). In tomographic applications, the function
f represents a density function of some investigated object,
and the circular Radon transform MRf(ϕ, r) is the available
indirect information; compare Figure 1. The index R > 0
is a prescribed parameter and indicates that the detectors are
located on a circle of radius R surrounding the investigated
object. In (1) and elsewhere the symbol := stands for equal
by definition.

In this paper we study the problem of recovering f from the
circular Radon transform MRf . In particular, we are interested
in the practically relevant case, where only discrete samples
of MRf are available. We also study the closely related
problem of reconstructing the initial data of the wave equation
from discretely sampled boundary data. Among others, both
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Fig. 1. INVERSION OF THE CIRCULAR RADON TRANSFORM. Left: Given
are discrete number of averages MRf(ϕk , rℓ) over circles centered at
(R cosϕk, R sinϕk) and having radius rℓ. The aim is recovering the function
f from the averages MRf(ϕk, rℓ) shown on the right hand side.

reconstruction problems are relevant for photoacoustic and
thermoacoustic tomography [1]–[4] or ultrasound reflection
tomography [5], [6], [7, Chapter 8]. Photoacoustic tomography
is based on three-dimensional wave propagation and therefore
the two-dimensional model (1) may be seen a-physical. How-
ever, the two-dimensional problem actually arises in a variant
that uses integrating line detectors for recording the pressure
waves [2], [8]. In this so-called tomography with integrating
line detectors an array of linearly shaped detectors is arranged
around the investigated sample and records integrals of the
pressure over a set of parallel lines. The integration along
the direction of the line detectors reduces the dimensionality
of the original three dimensional problem by one. Image
reconstruction is performed via a two-stage approach, where in
the first step projection images are obtained by inverting MRf .
These projection images are already of valuable diagnostic use.
Fully 3D image reconstruction is achieved by combining, in a
second step, projection images from different views using the
inverse classical Radon transform; see [2], [9], [10].

A. Inversion of the circular Radon transform

Especially, due to the relevance for thermo- and photoa-
coustic tomography, the circular Radon transform (as well as
its analogon in three dimensional space, the spherical Radon
transform) has been studied extensively in the recent years. In
particular, several inversion methods have been derived using
complete knowledge of the circular Radon transform. Suppose
that f is supported in the disc D(R) := {x ∈ R2 : ‖x‖ < R}
of radius R centered at the origin. It is well known, that given
the data MRf(ϕ, r) for all ϕ ∈ [0, 2π) and all r > 0, the
unknown function f can be stably determined by means of
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explicit formulas of the filtered backprojection type (see, for
example, [11]–[17]).

However, in practical applications only a discrete number
of samples of MRf can be collected, and numerical im-
plementations of explicit inversion formulas (as any other
reconstruction algorithm) deal with discrete data. Therefore,
the question arises how many samples of the circular Radon
transform should be collected for reliably representing the
original function. For the classical Radon transform correct
sampling is a well investigated issue (see, for example, [18]–
[26]). For the circular Radon transform, however, sampling has
hardly been addressed in the literature so far. We note that the
classical and the circular Radon are indeed both special cases
of the generalized Radon transform [27], which integrates a
function over general families of curves (or surfaces) and can
be used in many wave-equation based imaging applications.
It is an interesting open issue to generalize sampling results
from circular rays to more general curves, and to investigate
the robustness of our sampling results to small deviations from
exactly circular rays.

B. Discrete sampling

The standard sampling scheme for the circular Radon trans-
form MRf consists of uniformly sampled values

g(ϕk, rℓ) := (MRf)(ϕk, rℓ) , (3)

where

ϕk := k
2π

Nϕ
for k = 0, . . . , Nϕ − 1 , (4)

rℓ := R+ ℓ
2R

Nr
for ℓ = −Nr/2, . . . , Nr/2 , (5)

are equidistant detector locations and radii, respectively. Here
Nϕ ∈ N is the number of angular samples and Nr ∈ 2N the
number of radial samples within the interval [0, 2R]. Further,
2π/Nϕ is the angular sampling step size and 2R/Nr the radial
sampling step size.

Clearly, discrete data (3)-(5) are not sufficient for recovering
an arbitrary function f . Instead, depending on the sampling
step sizes, the function to be recovered must be restricted
to a certain practically relevant function class. In this paper
we address the sampling issue in the context of Shannon’s
sampling theory [28]–[31] using essentially bandlimited func-
tions. Here the function f is called essentially b0-bandlimited
if its Fourier transform is sufficiently small outside the closed
disc

{
ξ ∈ R2 : ‖ξ‖ ≤ b0

}
. Note that for sampling the circular

Radon transform we have to deal with functions that are
compactly supported. Therefore, the Fourier transform of f
cannot vanish exactly outside a bounded set; this is the reason
we work with essentially bandlimited functions instead of
strictly bandlimited ones.

C. Main results

Our main results concerning sampling the circular Radon
transform can be summarized as follows:

1) Let f : R2 → R be supported in D(R) and be essentially
b0-bandlimited, in the sense that its Fourier transform

is sufficiently small outside a disc of radius b0. Then,
provided that the sampling conditions

Nϕ ≥ 2Rb0 (6)
Nr ≥ 2Rb0/π (7)

are satisfied, the discrete data (3)-(5) uniquely determine
MRf up to a small error, that depends on the frequency
content of f outside

{
ξ ∈ R2 : ‖ξ‖ ≤ b0

}
. As we show,

such an approximation may be constructed by the two-
dimensional Shannon sampling series. The obtained
sampling conditions are sharp in the sense that no such
estimate holds if Nϕ and Nr do not satisfy (6), (7).

2) If, additionally, f is supported in a smaller disc D(R0),
with R0 ≤ R, then the number of angular samples
can be reduced to 2R0b0. (Note that still, the data are
collected on the circle with radius R.) Because in such
a situation only (R0/R)Nr radial samples in (3) are
different from zero, this shows, that a total number of
M0 circular mean values satisfying

M0 ≥ 4R2
0b

2
0/π

is sufficient to reliably represent any function f that is
supported in D(R0) and has essential bandwidth b0.

Both statements follow from results about the support of
the two dimensional Fourier transform of MRf that we derive
in this paper (see Theorem IV.2), and the multi-dimensional
sampling theorem for periodic functions reviewed in Sec-
tion II. More precisely, Theorem IV.2 shows that the Fourier
spectrum of MRf is negligible outside a region that depends
on R0 and the Fourier spectrum of f . Using such information,
the multi-dimensional sampling theorem of [29] provides
sufficient conditions such that a discrete set of sampling points
in [0, 2π)×R stably determines MRf . Together with explicit
inversion formulas of [9], [11]–[13] for recovering f from
MRf this implies that also f is stably determined by the
discrete samples of MRf .

In many practical applications, such as photoacoustic to-
mography, radial (or temporal) samples can easily be collected
at a high sampling rate compared to the spatial sampling,
where each sample requires a separate sensor. Therefore a
main practical implication of our results is giving a minimal
number Nϕ = 2R0b0 of discrete detector locations required
for sampling the circular Radon transform of an essentially
b0-bandlimited function supported in D(R0).

D. Notation

We denote by C∞
c (D(R)) the space of all C∞-functions

(that is, infinitely smooth functions) f : R2 → R that have
compact support in D(R). Further, we denote by C∞

2π(R2) the
space of all C∞-functions g : R2 → R that are 2π-periodic in
the first argument. For f ∈ C∞

c (D(R)) and (z, r) ∈ R2 × R
we define the circular mean values

Mf(z, r) :=
1

2π

∫

S1
f(z + rθ)dθ

and write MRf(ϕ, r) := Mf(z(ϕ), r), where z(ϕ) is as in
(2). Because the circular Radon transform MR maps smooth
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functions with support in D(R) to functions in C∞
2π(R2)

we have MR : C∞
c (D(R)) → C∞

2π(R2). For the sake of
simplicity, we assume throughout that the original function
f is of class C∞. As can been seen from the corresponding
proofs, the main results in this paper (Theorem IV.2 and
Theorem III.4) also hold for less smooth functions, whose
Fourier transform shows sufficient decay at infinity.

We call a function η : (0, 1) × (0,∞) → R exponentially
decreasing (in the second argument), if for every c ∈ (0, 1)
there are constants λ(c), d(c), Q(c) > 0, such that 0 ≤
η(c, b) ≤ d(c)e−λ(c)b for all b ∈ R with b ≥ Q(c). For
f ∈ C∞

c (D(R)), d ∈ R and b0 > 0 we define

ǫd(f, b0) :=

∫

‖ξ‖>b0

(Ff)(ξ)‖ξ‖ddξ , (8)

where (Ff)(ξ) = (2π)−1
∫
R2 e

−i〈ξ,x〉f(x)dx is the Fourier
transform of f . If ǫ1(f, b0) is sufficiently small, we call f
essentially b0-bandlimited and name {ξ ∈ R2 : ‖ξ‖ ≤ b0}
the essential support of Ff . By requiring ǫ1(f, b0) to be
bounded by a prescribed tolerance ǫ > 0 we could precise
the notations of essential bandwidth and essential support. To
avoid unnecessarily complicating our presentation we prefer to
work with the qualitative notions of essential bandwidth and
support.

For g ∈ C∞
2π(R2) we write

(Ftg)(ϕ, ω) :=

√
1

2π

∫

R
g(ϕ, r)e−iωrdr with (ϕ, ω) ∈ R2

for the Fourier transform in the second component and

(Fg)(k, ω) :=
1

2π

∫ 2π

0

∫

R
g(ϕ, r)e−i(kϕ+ωr)drdϕ

with (k, ω) ∈ Z × R for the two-dimensional Fourier trans-
form. The inverse two-dimensional Fourier transform is given
by (F−1Φ)(ϕ, r) = 1/(2π)

∫
Z×RΦ(k, ω)e

i(kϕ+ωr)d(k, ω),
where d(k, ω) is the product of the counting measure on Z
and the Lebesgue measure on R. We call a compact subset
K ⊆ Z×R essential support of Φ: Z×R → C if the integral
ǫ(Φ,K) :=

∫
(Z×R)\K |Φ(k, ω)|d(k, ω) is sufficiently small.

Again this notion could be expressed in more quantitative
terms by requiring ǫ(Φ,K) to be smaller that a prescribed
tolerance.

E. Outline

In Section II we review the multidimensional sampling
theorem on C∞

2π(R2). In Section III we consider sampling
of solutions of the wave equation. Besides investigating the
standard sampling scheme, for the wave data we derive a more
efficient sampling scheme in the form of the interlaced lattice.
The obtained results for the wave equation will be used to
derive sampling conditions for the circular Radon transform
in Section IV. The paper concludes with a short discussion
presented in Section V.

II. SAMPLING ON [0, 2π)× R
The multi-dimensional sampling theorem of [29] considers

Shannon sampling theory on non-orthogonal grids. In this
section we present a variant of the multi-dimensional sampling
theorem (taken from [21], [25]) for sampling periodic func-
tions. This theorem is non-standard because it allows both,
non-Cartesian sampling and periodic functions.

Definition II.1 (Admissible sampling lattice). Let W ∈ R2×2

be any invertible matrix. Then LW := WZ2 ∩ ([0, 2π)× R)
is called admissible sampling lattice for [0, 2π)×R generated
by W , if (2π, 0) ∈ WZ2 and (0, r) ∈ LW for some r > 0.

In Definition II.1, WZ2 =
{
Wm : m ∈ Z2

}
denotes the

set of all integer linear combinations of columns of W . Note
that an admissible sampling lattice LW may be generated by
different matrices. However, one can show that |detW | and
2πW−TZ2 (the so called dual lattice) are uniquely determined
by LW . Here and in the following we use the notation W−T :=
(WT)−1

Theorem II.2 (Sampling theorem on [0, 2π)×R). Let LW be
an admissible sampling lattice for [0, 2π) × R, and let K ⊆
Z× R be a compact set such that the sampling condition

∀m ∈ Z2 : K◦ ∩
(
K◦ + 2πW−Tm

)
= ∅ (9)

holds, where K◦ denotes the interior of K . Suppose g ∈
C∞

2π(R2), denote by χK the characteristic function of K , and
define the sampling series

(SW,Kg)(ϕ, r)

:=
|det(W )|

2π

∑

v∈LW

(
F−1χK

)
((ϕ, r) − v)g(v) .

Then, ‖SW,Kg − g‖∞ ≤ π−1
∫
Rn\K |Fg(k, ω)|d(k, ω).

Proof: See [21], [25].
Theorem II.2 states that the discrete samples (g(v))v∈LW

uniquely determine an approximation to g (namely the sam-
pling series SW,Kg), provided that (9) is satisfied and that the
Fourier transform Fg is small outside K .

Important admissible sampling lattices are the standard
lattice {(2πk/Nϕ, hsℓ) : k ∈ {0, . . . , Nϕ−1} , ℓ ∈ Z} and the
interlaced lattice {(2πk/Nϕ, 2hs(ℓ+k/2)) : k ∈ {0, . . . , Nϕ−
1} , ℓ ∈ Z}. For the standard lattice, W is a diagonal matrix
with diagonal entries 2π/Nϕ and hs. For the interlaced lattice,
W is a lower triangular matrix, whose first column equals
[2π/Nϕ, hs]

T and whose second column equals [0, 2hs]
T.

Among others, these lattices are relevant for sampling the
standard Radon transform, where the interlaced lattice yields
the same resolution as the standard lattice using only half the
number of sampling points [21], [25], [26]. In this paper we
derive a similar result for sampling the wave equation. For the
circular Radon transform, the theory developed in this paper
only supports the standard lattice.

III. SAMPLING THE WAVE EQUATION

Inverting the circular Radon transform is closely related
to the problem of reconstructing the initial data of the wave
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equation from its solution observed at certain detector loca-
tions. Actually, in applications like photoacoustic tomography,
the measurement data are given by the solution of the wave
equation. In this section we derive sampling conditions for
the solution of the wave equation on a circle using either
the standard or the interlaced lattice. We will show that the
interlaced lattice yields the same resolution as the standard
lattice using only half the number of sampling points.

A. The wave equation

For f ∈ C∞
c (D(R)) consider the wave equation

(∂2
t −∆x)u(x, t) =0 for (x, t) ∈ R2 × (0,∞) (10)

u(x, 0) =f(x) for x ∈ R2 (11)

(∂tu)(x, 0) =0 for x ∈ R2 . (12)

We denote by Uf : R2 × R → R the solution of (10)-(12)
extended to an even function in t. The fact that (10)-(12) has
a unique solution [32, Chap. 2.4] implies that Uf is a well-
defined function. The restriction of Uf to the boundary of
D(R) is denoted by URf(ϕ, t) := Uf(z(ϕ), t) for (ϕ, t) ∈
R2. Our aim is to recoverf from discrete samples of URf .

The solution of the wave equation (10)-(12) can be ex-
pressed in terms of the circular Radon transform by

(Uf)(z, t) = ∂tAtM(z, t) =
∂

∂t

∫ t

0

rMf(z, r)√
t2 − r2

dr , (13)

where (Atg)(z, t) :=
∫ t

0
(t2 − r2)−1/2g(z, r)rdr is the Abel

transform with respect to the second variable [11, Eq. (11)].
The known inversion formula of the Abel transform implies
that we can also express the circular Radon transform in terms
of the wave equation MRf = (2/π)Att

−1URf ; see [9].

B. Auxiliary results

In the following we frequently make use of the Bessel
function Jν : R → R order ν ∈ R, defined by

Jν(x) :=
(x
2

)ν ∞∑

k=0

(−x2/4)k

k! Γ(k + ν + 1)
for x ∈ R ,

with Γ(z) :=
∫∞
0

tz−1e−tdt denoting the Gamma function.
We first derive some useful expressions for FURf .

Lemma III.1. For f ∈ C∞
c (D(R)) and (k, ω) ∈ Z× R,

(FURf)(k, ω)

=
ik

2
|ω|Jk(ωR)

∫

S1
(Ff)(ωθ)e−ikαdα (14)

=
|ω|
2
Jk(ωR)

∫

R2

f(x)e−ikβ‖x‖Jk(ω‖x‖)dx , (15)

with θ = (cos(α), sin(α)) and x = ‖x‖(cos(β), sin(β)).
Proof: See Appendix A.

For the following results recall the notion of an exponen-
tially decreasing function η(c, b), and the approximation error
ǫd(f, b) introduced in Section I-D.

Lemma III.2.

1) The following functions ηi : (0, 1) × [0,∞) → R are
exponentially decreasing:

• η1(c, b) := Jb(cb);
• η2(c, b) := supr∈[0,R0]

∫ cb/R0

−cb/R0
|Jb(rω)|dω;

• η3(c, b) :=
∑

m≥b η2(c,m).
2)

∑
k∈N,k≥b/c ǫd(f, ck) ≤ (1/c) ǫd+1(f, b).

Proof: See [25, p. 66].
The following estimates are main ingredients for finding the

essential support of FURf .

Lemma III.3. For f ∈ C∞
c (D(R)) and (k, b0) ∈ Z× R,

1)
∫
|ω|>b0

|(FURf)(k, ω)|dω ≤ ǫ0(f, b0);
2)

∫
|ω|< c

R0
|k||(FURf)(k, ω)|dω ≤ 1

2η2(c, |k|) ‖f‖L1 .

Proof: 1) By (14) we have

|(FURf)(k, ω)| ≤
|ω|
2

|Jk(ωR)|
∣∣∣∣
∫

S1
(Ff)(ωθ)e−ikϕdθ

∣∣∣∣

≤ |ω|
2

∫

S1
|Ff(ωθ)|dθ ,

where the last equality follows from |Jk(ωR)| ≤ 1. Conse-
quently, by introducing polar coordinates ξ = ωθ

∫

|ω|>b0

|(FURf)(k, ω)|dω

≤ 1

2

∫

|ω|>b0

∫

S1
|ω||Ff(ωθ)|dθdω

=

∫

‖ξ‖>b0

|Ff(ξ)|dξ = ǫ0(f) .

2) By (15) we have
∫

|ω|< c
R0

|k|
|(FURf)(k, ω)|dω

≤
∫

|ω|< c
R0

|k|

|ω||Jk(ωR)|
2

∫

D(R0)

|f(x)| |Jk(ω‖x‖)|dxdω

≤ 1

2

∫

D(R0)

|f(x)|
∫

|ω|< c
R0

|k|
|ω| |Jk(ω‖x‖)|dωdx

≤ 1

2
‖f‖L1 sup

r∈[0,R0]

∫

|ω|< c
R0

|k|
|ω| |Jk(ωr)|dω .

Inserting the definition of η2 concludes the proof.

C. Essential support of FURf

For b0 > 0, R0 ∈ (0, R] and c ∈ (0, 1) define

S(c, b0, R0) :=
{
(k, ω) ∈ Z× R : |ω| < b0

and |k| ≤ R0

c
max {|ω|, (1− c)b0}

}
, (16)

see Figure 2. The following theorem states that S(c, b0, R0)
contains the essential support of FURf provided that f ∈
C∞

c (D(R0)) is essentially b0-bandlimited.

Theorem III.4 (Essential support of FURf ). There exists an
exponentially decreasing η : (0, 1) × (0,∞) → R, such that
for b0 > 0, R0 ∈ (0, R], c ∈ (0, 1) and f ∈ C∞

c (D(R0)),
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∫

(Z×R)\S(c,b0,R0)

|(FURf)(k, ω)|d(k, ω)

≤ 4

c
ǫ1(f, b0) + η (c, b0) ‖f‖L1 . (17)

Proof: We write (Z×R)\S(c, b0, R0) = M1∪M2∪M3,
where

• M1 := {(k, ω) : |ω| < c|k|/R0 and |k| > R0b0(1/c− 1)};
• M2 := {(k, ω) : |ω| ≥ b0 and |k| < R0b0/c};
• M3 := {(k, ω) : |ω| > c|k|/R0 and |k| ≥ R0b0/c}.

We proceed by estimating the integral of |(FURf)(k, ω)| over
any of the domains Mi. For that purpose we frequently use
Lemmas III.2 and III.3:

• First, the integral over M1 satisfies

I1 :=

∫

M1

|(FURf)(k, ω)| d(k, ω)

=
∑

k>R0b0(1/c−1)

∫

|ω|<c
|k|
R0

|FURf(k, ω)|dω

≤ ‖f‖L1

∑

k>R0b0(1/c−1)

η2 (c, |k|)

= ‖f‖L1 2η3(c, R0b0(1/c− 1)) .

In the above, the first inequality follows from statement 2)
in Lemma III.3 and last equality uses the definition
of the exponentially decreasing function η3 given in
statement 1) in Lemma III.2.

• Next, the integral over M2 is estimated as

I2 :=

∫

M2

|(FURf)(k, ω)| d(k, ω)

=
∑

k<Rb0/c

∫

|ω|≥b0

|FURf(k, ω)| dω

≤ (2R0b0/c) ǫ0(f, b0)

≤ (2R0/c) ǫ1(f, b0) .

In the above, the first inequality follows from statement 1)
in Lemma III.3.

• Finally, the integral over M3 is estimated as

I3 :=

∫

M3

|(FURf)(k, ω)| d(k, ω)

=
∑

k≥R0b0/c

∫

|ω|>c|k|/R0

|FURf(k, ω)| dω

≤ 2
∑

k≥Rb0/c

ǫ0 (f, c|k|/R0)

≤ (2R0/c)ǫ1(f, b0) .

Combing these estimates yields
∫

(Z×R)\(c,b0,R0)

|FURf(k, ω)|d(k, ω) = I1 + I2 + I3

≤ 4R0

c
ǫ1(f, b0) + 2η3(c, R0b0(1/c− 1)) ‖f‖L1 .

Setting η(c, b0) = 2η3(c, R0b0(1/c− 1)) shows the claim and
concludes the proof.

D. Sampling schemes for URf

Let b0 > 0, R0 ∈ (0, R] and suppose that f ∈ C∞
c (D(R0))

is essentially b0-bandlimited in the sense that ǫ1(f, b0) is
sufficiently small. For example, we may assume ǫ1(f, b0)
being smaller than the measurement accuracy of the ultrasound
detection system. Further let LW = WZ2 ∩ [0, 2π)×R be an
admissible sampling lattice generated by W ∈ R2×2.

According to Theorems II.2 and III.4 the discrete values
(URf(v))v∈LW stably represent URf if, for all m ∈ Z2,

S(c, b0, R0)
◦ ∩

(
S(c, b0, R0)

◦ + 2πW−Tm
)
= ∅ , (18)

where c ∈ (0, 1) and S(c, b0, R0) is defined by (16).
Hence, one has to choose 2πW−T such that the translates
S(c, b0, R0)

◦+2πW−Tm are disjoint to each other. In the fol-
lowing we will construct two appropriate sampling schemes:
The standard (rectangular) sampling scheme and the interlaced
sampling scheme.

S

v2

v1

w1

w2

Fig. 2. STANDARD SAMPLING SCHEME FOR URf . Left: The set S =
S(c, b0, R0) is translated along a rectangular grid such that S ∩ (S +
2πW−Tm) = ∅ (v1 and v2 denote the columns of 2πW−T). Right:
Resulting standard lattice (w1 and w2 denote the columns of W ).

1) Standard Sampling scheme: For the standard sampling
scheme one takes W as a diagonal matrix. From Figure 2 we
see that the choice

2πW−T =

[
2R0b0/c 0

0 2b0

]

satisfies (18). Consequently,

W =

[
cπ/(R0b0) 0

0 π/b0

]
=:

[
2π/Nϕ 0

0 2R/Nt

]

defines an admissible lattice. (We implicitly assume that Nϕ

and Nt/2 are integer numbers; otherwise we replace them by
⌈Nϕ⌉ and ⌈Nt/2⌉.)

This yields the standard sampling scheme

gk,ℓ := (URf)(ϕk, tℓ) (19)
ϕk := k2π/Nϕ , for 0 ≤ k ≤ Nϕ − 1 (20)
tℓ := R+ ℓ2R0/Nt , for |ℓ| ≤ Nt/2 . (21)

Here, Nϕ is the number of angular samples and Nt the number
of temporal samples in the interval [R−R0, R+R0]. Taking
c → 1, we obtain the sampling conditions

Nϕ ≥ 2R0b0

Nt ≥ 2R0b0/π .

They are the same as for the circular Radon transform (com-
pare (6), (7) for the special case R0 = R). Recall that
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η1(c, b) = Jb(cb) is exponentially decreasing for any c < 1.
Taking c → 1 means we consider the largest parameter, where
we have necessary decay of η1.

Note that the condition Nϕ ≥ 2R0b0 has been derived in a
different manner in [33, Section III-B].

S

v1

v2

w1

w2

Fig. 3. INTERLACED SAMPLING SCHEME FOR URf . Left: The set S =
S(c, b0, R0) is translated along non-orthogonal vectors such that the sets
2πW−Tm+ S are disjoint. Right: Resulting interlaced sampling scheme.

2) Interlaced sampling scheme: The standard lattice uses
orthogonal translates of S(c, b0, R0) which yield a non-optimal
covering of the frequency domain. As illustrated in Figure 3,
a denser covering is obtained by the choice

2πW−T =

[
2R0b0(2/c− 1) −R0b0(2/c− 1)

0 b0

]
,

which gives

W =

[
(cπ)/(R0b0(2− c)) 0

π/b0 2π/b0

]
=:

[
2π/Nϕ 0
R0/Nt 2R0/Nt

]
.

Again, 2π/Nϕ is angular sampling step size and 2R0/Nt the
temporal sampling step size.

Taking the limit c → 1 we obtain the interlaced sampling
scheme

gk,ℓ := (URf)(ϕk, tk,ℓ) (22)
ϕk := k2π/Nϕ , 0 ≤ k ≤ Nϕ − 1 (23)
tk,ℓ := R+ ℓ 2R0/Nt + kR0/Nt , |ℓ| ≤ Nt/2 (24)

and the sampling conditions

Nϕ ≥ 2R0b0

Nt ≥ R0b0/π .

The interlaced sampling scheme (22)-(24) requires only half
of the sampling points of the standard lattice (19)-(21).

IV. SAMPLING THE CIRCULAR RADON TRANSFORM

In this section we investigate sampling the circular Radon
transform. For that purpose we will exploit relations between
the circular Radon transform and the wave equation.

A. Auxiliary result

We first derive a relation between FMRf and FURf .

Lemma IV.1. For f ∈ C∞
c (D(R)) and (k, ρ) ∈ Z× R,

(FMRf) (k, ρ) =
2

π

∫ ∞

ρ

(FURf) (k, ω)√
ω2 − ρ2

dω .

Proof: By (13) and using integration by parts,

(FtURf) (ϕ, ω)

=

√
2

π

∫ ∞

0

cos(ωt)
∂

∂t

∫ t

0

rMRf(ϕ, r)√
t2 − r2

dr dt

=

√
2

π
ω

∫ ∞

0

sin(ωt)

∫ t

0

rMRf(ϕ, r)√
t2 − r2

dr dt

=

√
2

π
ω

∫ ∞

0

rMRf(ϕ, r)

(∫ ∞

r

sin(ωt)√
t2 − r2

dt

)
dr .

The inner integral in the last equation is given by π
2 J0(rω)

(see, for example, [34, page 69, formula (8)]. Consequently,

(FtURf) (ϕ, ω) =

√
π

2
ωHtMRf(ϕ, ω) , (25)

where (Htg) (z, ω) :=
∫∞
0

g(z, r)J0(ωr)rdr denotes the zero-
order Hankel transform in the second component.

Next recall J0(y) = 1
π

∫ 1

−1
eizy(1 − z2)−1/2dz. Together

with (25) and the Hankel inversion formula this yields

MRf(ϕ, r)

=
2

π

∫ ∞

0

J0(ωr)(FtMRf)(ϕ, ω)dω

=

(
2

π

)3/2 ∫ ∞

0

∫ ω

0

cos (ρr)
dρ√

ω2 − ρ2
(FtURf)(ϕ, ω)dω

=

(
2

π

)3/2 ∫ ∞

0

cos (ρr)

∫ ∞

ρ

(FtURf)(ϕ, ω)√
ω2 − ρ2

dωdρ .

Application of the two dimensional Fourier transform yields
the desired result.

B. Essential support of FMRf

Now we are ready to formulate our main result which
answers how to sample the circular Radon transform.

For b0, R0 > 0, c ∈ (0, 1) define

Q(b0R0/c, b0) :=

[
−R0b0

c
,
R0b0
c

]
× [−b0, b0]

:=

{
(k, ω) ∈ Z× R : |k| ≤ R0b0

c
and |ω| < b0

}
. (26)

The following theorem states that Q(b0R0/c, b0) contains the
essential support of FMRf provided that f is essentially
b0-bandlimited and supported in D(R0). As can be seen
in Figure 4, the sets Q(b0R0/c, b0) have rectangular shape
depending on two parameters. On the other hand, the sets
S(c, b0, R0) look similar to a sandglass and depend on an
additional third parameter (see Figure 2).

Theorem IV.2 (Essential support of FMRf ). There exists an
exponentially decreasing function η : (0, 1)×(0,∞) → R such
that for every b0 > 0, R0 ∈ (0, R] and c ∈ (0, 1) and every
f ∈ C∞

c (D(R0)), we have
∫

(Z×R)\Q(b0R0/c,b0)

|(FMRf)(k, ρ)| d(k, ρ)

≤ 4

c
ǫ1(f, b0) + η (c, b0) ‖f‖L1 . (27)
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Proof: By Lemma IV.1 for every a > 0, we have
∫ ∞

a

|(FMRf) (k, ρ)| dρ

≤ 2

π

∫ ∞

a

|(FURf) (k, ω)|
∫ ρ

a

dρ√
ω2 − ρ2

dω

≤ 2

π

∫ ∞

a

|(FURf) (k, ω)|
∫ ρ

0

dρ√
ω2 − ρ2

dω

≤
∫ ∞

a

|(FURf) (k, ω)| dω .

This implies
∫

(Z×R)\Q(b0R0/c,b0)

|(FMRf)(k, ρ)| d(k, ρ)

= 2
∑

|k|≤Rb0/c

∫ ∞

b0

|(FMRf) (k, ρ)| dρ

+ 2
∑

|k|>b0R0/c

∫ ∞

0

|(FMRf) (k, ρ)| dρ

≤ 2
∑

|k|≤b0R0/c

∫ ∞

b0

|(FURf) (k, ρ)| dρ

+ 2
∑

|k|>b0R0/c

∫ ∞

0

|(FURf) (k, ρ)| dρ

=

∫

(Z×R)\Q(b0R0/c,b0)

|(FURf)(k, ω)| d(k, ω) .

Now we have (Z×R)\Q(b0R0/c, b0) ⊆ (Z×R)\S(c, b0, R0),
where S(c, b0, R0) is defined by (17). Consequently, (27)
follows from Theorem III.4.

Q v1

v2

w1

w2

Fig. 4. STANDARD SAMPLING SCHEME FOR MRf . Left: The set Q =
Q(b0R0/c, b0) and disjoint translates Q(b0R0/c, b0) + 2πW−Tm. Right:
Resulting standard sampling scheme.

C. Standard sampling scheme for MRf

Suppose that f ∈ C∞
c (D(R0)) with R0 ≤ R is essentially

b0-bandlimited, and let LW be an admissible sampling lattice
corresponding to W ∈ R2×2. According to Theorems II.2
and III.4 the discrete values (MRf(v))v∈LW stably represent
MRf if for m ∈ Z2,

Q(b0R0/c, b0)
◦ ∩

(
Q(b0R0/c, b0)

◦ + 2πW−Tm
)
= ∅ ,

where c ∈ (0, 1) and Q(b0R0/c, b0) is defined by (16).
Because Q(b0R0/c, b0) has rectangular shape (see Fig-

ure 4), an optimal covering of the R2 with disjoint translates
Q(b0R0/c, b0) + 2πW−Tm is obtained by

W =

[
cπ/(R0b0) 0

0 π/b0

]
=:

[
2π/Nϕ 0

0 2R0/Nr

]
.

Here 2π/Nϕ is the angular step size and 2a/Nr the radial step
size. Nϕ is the number of angular samples and Nr the number
of radial samples in the interval [R −R0, R+R0].

Taking c → 1, yields the standard sampling scheme

gk,ℓ := (MRf)(ϕk, rℓ)

ϕk := k2π/Nϕ , for 0 ≤ k ≤ Nϕ − 1

rℓ := R/2 + ℓ 2R0/Nr , for |ℓ| ≤ Nr/2

with the sampling conditions

Nϕ ≥ 2R0b0

Nr ≥ 2R0b0/π ,

for sampling the circular Radon transform MRf of an es-
sentially b0-bandlimited function supported in D(R0). For the
special case that R0 = R, this reduces to the sampling scheme
(3)-(5) with the sampling conditions (6), (7) presented in the
introduction.

D. Numerical results

For all simulations presented in this subsection we consider
the circular Radon transform MRf for R = 1. Numerical
approximations of MRf are computed by applying the com-
position trapezoidal rule in the angular variable. Numerical
reconstructions of f from samples MRf(ϕk, rℓ) are computed
using the numerical implementation of the inversion formula
[11, Eq. (1.5)] as described in [11, Section 4].

We first illustrate the support of FMRf . For that purpose
we consider a function f : R2 → R with essential bandwidth
b0 = 170 and support in D(R0) with R0 = 0.7. The phantom
f and a logarithmic plot of FMRf are shown in Figure 5.
We observe that FMRf is exponentially decreasing outside
a rectangle Q(b0R0/c, b0) where c is close to one. In fact, it
seems that FMRf is actually exponentially decreasing outside
S(c, b0, R0) ⊆ Q(b0R0/c, b0). However, our current analysis
does not support such a stronger result.
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Fig. 5. BANDLIMITED FUNCTION. Top Left: Essentially b0-bandlimited
function f ∈ C∞

c (D(R0)). Top Right: Logarithm log|Ff | of magnitude of
Fourier spectrum Ff . Bottom Left: Circular Radon transform MRf . Bottom
Right: Logarithm log|FMRf | of magnitude of Fourier spectrum FMRf .

Next we compare numerical reconstructions using either
sufficient or insufficient sampling. We only present results for
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angular undersampling, since usually in practical applications
the number of angular samples is the limiting factor. For that
purpose we first use the same essentially b0-bandlimited phan-
tom shown in Figure 5. The reconstruction results are shown in
Figure 6. The top row shows the results using correct sampling,
whereas the bottom row shows reconstruction results using
an angular undersampling factor of 0.8 and 0.6, respectively.
In the latter reconstructions one clearly notices ring-shaped
artifacts that arise from angular undersampling.
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Fig. 6. RECONSTRUCTION ERROR f−fc FOR RECOVERING THE PHANTOM
OF FIGURE 5 USING DIFFERENT NUMBERS OF ANGULAR SAMPLES. Top
Left: Oversampling by factor c = 1.2. Top Right: Full sampling (Nϕ =
2b0R0; oversampling factor c = 1). Bottom Left: undersampling by factor
c = 0.8 Bottom Right: undersampling by factor c = 0.6.

Finally, we present reconstruction results for a non-
bandlimited phantom. The top row in Figure 7 shows recon-
structions using different angular sampling rates for data with
and without noise. The phantom is discretized using Nr = 301
spatial samples, which is equal to the number of radial samples
used for discretizing MRf . One notices that for exact data
using full angular sampling one obtains almost perfect recon-
struction (Figure 1, top left). Also after adding noise (Figure 1,
top center) and using angular undersampling (Figure 1, top
right) one obtains results quite close to the original phantom.
However, in the reconstruction from under-sampled data one
clearly notes circularly shaped undersampling artifacts. The
bottom row in Figure 1 shows the Fourier spectrum of the
phantom, the data and the reconstruction from under-sampled
data.

V. DISCUSSION

In this paper we analyzed sampling of the circular Radon
transform MRf in circular geometry. Under the assumptions
that f is supported in D(R) and that it is essentially b0-
bandlimited we derived the sampling conditions Nϕ ≥ 2Rb0
for the number of angular samples in [0, 2π) and Nr ≥
2Rb0/π for the number of radial samples in [0, 2R]. These
are the same conditions as for sampling the classical two
dimensional Radon transform of an essentially b0-bandlimited
supported in D(R).

The classical Radon transform satisfies the symmetry prop-
erty R(−θ,−s) = R(θ, s). Therefore only half of the samples
of Rf have actually to be measured in practice [25]. Conse-
quently, an essentially b0-bandlimited function f ∈ Cc(D(R))
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Fig. 7. RECONSTRUCTIONS USING A NON-BANDLIMITED PHANTOM. Top
Left: Reconstruction from simulated data using Nr = 300 and Nφ = 848
(full angular sampling). Top Center: Reconstruction from fill angular sampling
where 5% noise has been added to the circular radon transform. Top Right:
Reconstruction from simulated data using Nr = 300 and Nφ = 85 (angular
undersampling). Bottom Left: Fourier spectrum log|Ff | of the original
phantom. Bottom Left: Fourier spectrum log|FMRf | of the data. Bottom
Left: Fourier spectrum log|Ffrec| of the reconstructed phantom form angular
under-sampled data.

can be stably recovered from 2R2b20/π Radon samples on the
standard grid. Due to the absence of an analogous symmetry
property of the circular Radon transform, we require 4R2b20/π
samples of the circular Radon transform for recovering the
same function, which is twice the number of Radon sam-
ples. It would be interesting to find out if and how the
number of samples for circular Radon transform can also
be reduced by exploiting certain range conditions [35]–[37].
Range conditions may also be used to reduce the coverage
of the measurement aperture with respect to θ, leading to a
so called limited angle problem [37]. To reduce the number
of required angular sampling points and angular coverage one
may additionally exploit multiple reflections (see [38]–[41]).

The number of Radon samples can further be reduced
to R2b20/π when using the interlaced lattice instead of the
standard lattice. In order to obtain such a result for the circular
Radon transform we would require showing that FMRf is
essentially supported in S(c, b0, R0). Whereas our current
analysis does not yields such a result, numerical simulations
(see Figure 5) indicate that this might by the case.

Finally, we note that in practical applications, such as in
photoacoustic tomography, the original function f itself will
usually not be essentially bandlimited for some reasonable
bandwidth b0 > 0. However, due to attenuation, the finite
bandwidth of the detection system and other practical issues
(see [1], [4], [42], [43]), the measured data g ≃ MRf(ϕ, · ) in
photoacoustic tomography are actually essentially bandlimited
with some maximal frequency ω0. Our sampling conditions
show that in such a situation maximal Nϕ = 2Rω0 angular
samples have to be collected.

APPENDIX A
PROOF OF LEMMA III.1

A. Auxiliary result

Let Rf(θ, s) :=
∫
R f(sθ + tθ⊥)dt, for (θ, s) ∈ S1 × R,

denote the classical Radon transform of f ∈ C∞
c (D(R)).
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Further, for a smooth function h0 : R → R denote by
Ush0 : R×R → R the solution of the one-dimensional wave
equation (∂2

t − ∂2
s )h(x, t) = 0 for (s, t) ∈ R2 with the initial

conditions h(s, 0) = h0(s) and (∂th)(s, 0) = 0. Finally,
for g ∈ C∞

c (S1 × R) we define the Riesz potential Itg by
Ft(Itg)(θ, ω) := |ω|(Ftg)(θ, ω) for (θ, ω) ∈ S1 × R.

Lemma A.1. For all f ∈ C∞
c (D(R)) and (z, ω) ∈ R2 × R,

(FtUf)(z, ω) =
|ω|

2
√
2π

∫

S1
(Ff)(ωθ)eiω〈θ,z〉dθ . (28)

Proof: We start by deriving an auxiliary representation of
Uf in terms of Rf . The commutation relation R∆ = ∂2

sR
implies that RUf = UsRf . We further have:

1) Uf = R−1RUf = R−1UsRf ;
2) R−1g(z) = 1

4π

∫
S1(Itg)(θ, 〈θ, z〉)dθ;

3) Us(Rf)(s, t) = 1
2 ((Rf)(s+ t) + (Rf)(s− t)).

Combining 1)-3) yields

(Uf)(z, t) =
1

8π

∫

S1

(
(ItRf)(θ, 〈θ, z〉+ t)

+ (ItRf)(θ, 〈θ, z〉 − t)
)
dθ

=
1

8π

∫

S1

(
(ItRf)(θ, 〈θ, z〉+ t)

+ (ItRf)(−θ,−〈θ, z〉 − t)
)
dθ

=
1

4π

∫

S1
(ItRf)(θ, 〈θ, z〉+ t)dθ . (29)

Here the second identity follows by substituting θ with −θ
when integrating the second summand, and the last identity
follows from Rf(−θ,−s) = Rf(θ, s).

Application of Ft to (29) yields

(FtUf)(z, ω) =
1

4π

∫

S1
F[t 7→ (ItRf)(θ, 〈θ, z〉+ t)](ω)dθ

=
1

4π

∫

S1
(FtItRf)(θ, ω)eiω〈θ,z〉dθ

=
1

4π

∫

S1
|ω|(FtRf)(θ, ω)eiω〈θ,z〉dθ

=
|ω|

2
√
2π

∫

S1
(Ff)(ωθ)eiω〈θ,z〉dθ ,

which is the desired identity (28). Here, for the last equality
we have made use of the Fourier slice identity [25].

B. Proof of Equation (14)

Lemma A.1 yields

(FURf)(k, ω)

=
1√
2π

∫ 2π

0

(FtURf)(ϕ, s)e
−ikϕdϕ

=
|ω|
4π

∫ 2π

0

∫

S1
(Ff)(ωθ)eiω〈θ,z(ϕ)〉e−ikϕdθdϕ .

Next recall the integral representation of the k-th order Bessel
function, Jk(u) = i−k/(2π)

∫ 2π

0
eiu cos(ϕ)−ikϕdϕ. Writing

θ(α) = (cos(α), sin(α)), interchanging the order of integra-
tion, and applying the integral representation yields

(FURf)(k, ω)

=
|ω|
4π

∫ 2π

0

∫ 2π

0

(Ff)(ωθ(α))eiωR cos(α−ϕ)−ikϕdαdϕ

=
|ω|
4π

∫ 2π

0

(Ff)(ωθ(α))

∫ 2π

0

eiωR cos(α−ϕ)−ikϕdϕdα

=
|ω|
4π

∫ 2π

0

(Ff)(ωθ(α))e−ikα

∫ 2π

0

eiωR cos(ϕ)−ikϕdϕdα

=
ik

2
|ω|Jk(ωR)

∫ 2π

0

(Ff)(ωθ(α))e−ikαdα .

C. Proof of Equation (15)
Using (14) and the definition of the Fourier transform on

R2 and interchanging the order of integration yields

(FURf)(k, ω)

=
ik

4π
|ω|Jk(ωR)

∫ 2π

0

∫

R2

f(x)e−iω〈θ(α),x〉dxe−ikαdα

=
ik

4π
|ω|Jk(ωR)

∫

R2

f(x)

∫ 2π

0

e−iω‖x‖ cos(α−β)−ikαdαdx

=
ik

4π
|ω|Jk(ωR)

∫

R2

f(x)e−ikβ

∫ 2π

0

e−iω‖x‖ cos(α)−ikαdαdx

=
(−1)k

2
|ω|Jk(ωR)

∫

R2

f(x)e−ikβJk(−ω‖x‖)dx .

Here, β = arg(x) denotes the argument of x. Finally, using
Jk(−ω‖x‖) = (−1)kJk(ω‖x‖) yields (15).
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