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Abstract

In many tomographic applications and elsewhere, there arises a need to reconstruct a function
from the data on the boundary of some domain given either by the spherical means of the
function, or by the corresponding solution of the free-space wave equation. In this paper,
we show that the so-called universal back-projection formulas provide exact recovery of the
unknown function for data on any quadric hypersurfaces that can be approximated by elliptic
hypersurfaces. These quadric hypersurfaces include elliptic paraboloid as well as parabolic
and elliptic cylinders.

Keywords. Spherical means, wave equation, Radon transform, computed tomography, in-
version formula, universal backprojection.

1. Introduction

Consider a convex domain Ω ⊂ Rd, where d ≥ 2 denotes the spatial dimension, with smooth
boundary ∂Ω. Let C∞c (Ω) denote the set of all real valued smooth functions f : Rd → R
that are compactly supported in Ω. In the present paper, we deal with the problem of
reconstructing an unknown function f ∈ C∞c (Ω) from the data on the boundary ∂Ω, which
either consists of the spherical means of f or the solution of the standard free-space wave
equation with initial data (f, 0). In particular, we investigate the universal back-projection
formula (see [1, 2, 3, 4, 5, 6]) on quadric hypersurfaces that can be approximated by elliptic
hypersurfaces. For such type of quadrics we will show that the universal back-projection
formula provides an exact reconstruction.

1.1. Inversion from spherical means and the wave equation

We consider the spherical means operator M : C∞c (Ω) → C∞(Rn × (0,∞)) that maps a
function f ∈ C∞c (Ω) to the spherical means Mf : Rd × (0,∞)→ R defined by

(Mf) (x, r) :=
1

ωd−1

∫
Sd−1

f(x+ ry) ds(y), for (x, r) ∈ Rd × (0,∞) .

Here Sd−1 ⊂ Rd is the (d − 1)-dimensional unit sphere, ωd−1 is its total surface area, and
ds denotes the standard surface measure. We also consider the solution operator W : f 7→ p
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of the standard free-space wave equation, that maps a function f ∈ C∞c (Ω) to the solution
p : Rd × (0,∞)→ R of the following initial value problem

(∂2
t −∆x) p(x, t) =0 for (x, t) ∈ Rd × (0,∞),

p(x, 0) =f(x) for x ∈ Rd,

(∂tp)(x, 0) =0 for x ∈ Rd .

(1.1)

With the operators just introduced, the considered reconstruction problems can be formulated
as follows: recover the unknown function f ∈ C∞c (Ω) from either its restricted spherical means

m(x, r) = (Mf) (x, r) for (x, r) ∈ ∂Ω× (0,∞) , (1.2)

or the corresponding wave data

p(x, t) = (Wf) (x, t) for (x, t) ∈ ∂Ω× (0,∞) . (1.3)

These two problems are essentially equivalent because the solution operator W can be ex-
pressed through the spherical means operator M, and vice versa.

Ω

∂Ω

f

∂Br(x)

x

Figure 1: Illustration of the reconstruction problems. The function f is supported inside the domain Ω.
Detectors are placed on the boundary ∂Ω of the domain and record either averages of f over spherical
surfaces centered at ∂Ω or the solution of the wave equation restricted to ∂Ω× (0,∞).

The problems of recovering a function from the spherical means (1.2) or the wave data (1.3)
arise, for example, in the so-called photoacoustic tomography (PAT) and thermoacoustic
tomography (TAT), where the unknown function f represents the initial pressure of an ultra-
sonic wave that is induced by a short electromagnetic pulse. In PAT/TAT using point-like
detectors these problem arise in three spatial dimensions (see, for example, [7, 8, 9]). When
using linear of circular integrating detectors in PAT/TAT, these reconstruction problems arise
in two spatial dimensions (see [10, 11, 12, 13]). The problems of recovering a function from its
spherical means of the wave data also arises in other technologies, such as SONAR [14, 15],
SAR imaging [16, 17, 18], ultrasound tomography [19, 20], and seismic imaging [21, 22].

The derivation of explicit inversion formulas for recovering a function from data (1.2) or
(1.3) has recently been addressed by many authors. Such formulas are currently only known
for special boundaries ∂Ω. For example, explicit inversion formulas have been derived for
hyperplanes [1, 16, 22, 23, 24, 25], spheres [1, 2, 26, 27, 28] and cylinders [20]. Reconstruction
formulas for some polygons and polyhedra in two and three spatial dimensions have been
obtained in [29]. Recently, explicit formulas for inverting (1.2) and (1.3) on elliptical domains
have been derived in [3, 4, 6, 30, 31, 32]. For the special case of spherical domains, the
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formulas in [3, 4, 6] reduce the ones earlier derived in [1, 2]. According to the notion of [1]
we call these formulas the universal back-projection formulas.

It should be noted that in [3, 4, 5, 6] the use of the universal back-projection formula on
general convex bounded domains Ω was analyzed. As a result, on a general convex bounded
domain, the universal back-projection formula recovers the unknown function f up to an
additional error term that has been explicitly computed in [3, 4, 6]. For elliptic domains, in
[3, 4, 6] the error term has been shown to vanish identically. In [5], the error term has been
analyzed from a microlocal point of view. One of the results of [5] shows that for parabolic
domains the error term is an infinitely smoothing operator. Further, according to [5], one can
show that the error term is an infinitely smoothing operator for any domain of the form

Ω =

{
x ∈ Rd

∣∣∣∣∣
b∑

i=1

ᾱix
2
i <

d∑
i=b+1

ᾱix
2
i + ᾱd+1

}
, (1.4)

where x = (x1, x2, . . . , xd), b ∈ {1, . . . , d}, and ᾱi ≥ 0 with (ᾱ1, . . . , ᾱb), (ᾱb+1, . . . , ᾱd) 6= 0.
After an appropriate affine transformation, any domain of the form (1.4) belongs to one of
the following classes:

• elliptic domains

E =

{
x ∈ Rd

∣∣∣∣∣
d∑

i=1

αix
2
i < 1

}
, (1.5)

• elliptic paraboloids

P =

{
x ∈ Rd

∣∣∣∣∣
d−1∑
i=1

αix
2
i < xd

}
, (1.6)

• parabolic cylinders

Cpar =

{
x ∈ Rd

∣∣∣∣∣
b∑

i=1

αix
2
i < xd

}
with 1 ≤ b ≤ d− 2 , (1.7)

• elliptic cylinders

Cell =

{
x ∈ Rd

∣∣∣∣∣
b∑

i=1

αix
2
i < 1

}
with 1 ≤ b ≤ d− 1 . (1.8)

In the definitions of any of these domains, all coefficients αi are supposed to be positive.

The fact that the error term is an infinitely smoothing operator for any domain of the
form (1.4) indicates that the universal back-projection formula may be also exact for these
domains. In this paper, we prove that this is indeed the case. One of the key observa-
tions our proof is the possibility of approximating any domain of the form (1.4) by elliptic
domains (1.5). We also adapt the techniques of [33], where we showed that the universal
back-projection is exact for parabolic domains in two spatial dimensions.

1.2. Statement of main results

First, let us present the universal back-projection formulas Fd and Gd for the spherical means
m and wave data p, respectively, as presented in [6] (see also [1, 2, 3, 4]). In addition to the
data, the universal back-projection formulas also depend on the boundary ∂Ω of the domain
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Ω ⊂ Rd and on the reconstruction point x0 ∈ Ω. The structure of the formulas further
depends on whether the spatial dimension d is even or odd.

If d ≥ 2 is an even integer, then

Fd(∂Ω,m, x0) :=κ
(1)
d

∫
∂Ω

〈νx, x0 − x〉
∫ ∞

0

(
∂rDd−2

r rd−2m
)

(x, r)

r2 − |x0 − x|2
dr ds(x) , (1.9)

Gd(∂Ω, p, x0) :=κ
(2)
d

∫
∂Ω

〈νx, x0 − x〉
∫ ∞
|x0−x|

(
∂tD(d−2)/2

t t−1p
)

(x, t)√
t2 − |x0 − x|2

dtds(x) . (1.10)

Here κ
(1)
d := (−1)(d−2)/2ωd−1/

(
2πd
)

and κ
(2)
d := (−1)(d−2)/2/πd/2 are some constants, νx

denotes the outward pointing unit normal to ∂Ω, and Dr := (2r)−1∂r is the differentiation
operator with respect to r2. Further, 〈 · , · 〉 and | · | denote the standard inner product
and the corresponding Euclidian norm on Rd, respectively. The inner integral in (1.9) is
understood in the principal value sense.

In the case of odd dimension d ≥ 3, the universal back-projection formulas Fd and Gd are
defined as follows:

Fd(∂Ω,m, x0) :=κ
(1)
d

∫
∂Ω

〈νx, x0 − x〉
|x0 − x|

(
∂rDd−2

r rd−2m
)

(x, |x0 − x|) ds(x) , (1.11)

Gd(∂Ω, p, x0) :=κ
(2)
d

∫
∂Ω

〈νx, x0 − x〉
|x0 − x|

(
∂tD(d−3)/2

t t−1p
)

(x, |x0 − x|) ds(x) , (1.12)

with constants κ
(1)
d := (−1)(d−3)/2ωd−1/(4π

d−1) and κ
(2)
d := (−1)(d−3)/2/(2π(d−1)/2).

In [6], it has been shown that for any elliptic domain the formulas Fd and Gd provide exact
reconstruction of a function f from the spherical means data (1.2) and the wave data (1.3),
respectively. Let us specify mathematically this result.

Theorem 1.1 (Universal back-projection for elliptical domains, see [6]). Let E ⊂ Rd, with
d ≥ 2, be an elliptic domain of the form (1.5) and let f ∈ C∞c (E). Then, for every recon-
struction point x0 ∈ E,

f(x0) = Fd(∂E,Mf, x0) = Gd(∂E,Wf, x0) ,

where Fd, Gd are defined by (1.9), (1.10) and (1.11), (1.12) for even and odd d, respectively.

In this paper, we will show that the above theorem holds if E is replaced by any domain of
the form (1.4). Precisely speaking, we will show the following theorems.

Theorem 1.2 (Inversion from spherical means). Let Ω ⊂ Rd, with d ≥ 2, be a domain of
the form (1.4). Also, let f ∈ C∞c (Ω) and define Fd by (1.9) and (1.11) for even and odd d,
respectively. Then, for every reconstruction point x0 ∈ Ω,

f(x0) = Fd(∂Ω,Mf, x0) . (1.13)

In particular, the integral in Fd(∂Ω,Mf, x0) is absolutely convergent.

Proof. See Section 3.2.

Theorem 1.3 (Inversion of the wave equation). Let Ω ⊂ Rd, with d ≥ 2, be a domain of the
form (1.4). Also, let f ∈ C∞c (Ω), and Gd be defined by (1.10) and (1.12) for even and odd d,
respectively. Then, for every reconstruction point x0 ∈ Ω,

f(x0) = Gd(∂Ω,Wf, x0) . (1.14)

In particular, the integral in Gd(∂Ω,Wf, x0) is absolutely convergent.
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Proof. See Section 3.3.

As we already noted, any domains of the form (1.4) can be approximated by elliptic do-
mains. Roughly speaking, we will show that for a domain Ω in (1.5), there is a sequence of
elliptic domains En such that the sequence ∂En converges pointwise almost everywhere to
the boundary ∂Ω. Then, the proof of Theorem 1.2 is based on the corresponding results for
elliptical domains and the dominated convergence theorem. For application of the dominated
convergence, we derive equivalent representations of formulas (1.9) and (1.11). Theorem 1.3
follows from Theorem 1.2 by exploiting relationships between the operators M and W.

1.3. Organization of the paper

The rest of this paper is organized as follows. In Section 2, we derive auxiliary results
that we require for the proofs of Theorems 1.2 and 1.3. In particular, we derive equivalent
representations of the formulas (1.9) and (1.11) that we will use for the application of the
dominated convergence theorem in the proof of Theorem 1.2. Further, we will study the
approximation of domains (1.4) by elliptic domains. We present the proofs of Theorems 1.2
and 1.3 in Section 3. The paper concludes with some discussions in Section 4.

2. Auxiliary results

In this section we derive auxiliary propositions that will be used for the proof of our main
results. The first auxiliary result is an alternative representation of the inversion integral
Fd given by (1.9), (1.11). These representations are given in Propositions 2.1 and 2.2. The
second auxiliary result concerns the approximation of domains of the form (1.4) by elliptic
domains; see Proposition 2.4.

2.1. Alternative representations of Fd

In this section, we derive equivalent expressions for Fd by transforming the integrals over ∂Ω
in (1.9) and (1.11) into integrals over the unit sphere Sd−1. For this purpose, we construct a
special parameterization Φ: Sd−1 → ∂Ω of the boundary ∂Ω depending on the reconstruction
point x0 ∈ Ω.

For any given reconstruction point x0 ∈ Ω we define the mapping

Ψ: ∂Ω→ Sd−1 : x 7→ x− x0

|x− x0|
.

If Ω is convex and bounded, then Ψ is bijective and therefore, invertible. We call the corre-
sponding inverse function

Φ: Sd−1 → ∂Ω: y 7→ Ψ−1(y) (2.1)

the spherical parameterization of ∂Ω around the point x0 ∈ Ω. It can be easily seen, that
Φ(y) for y ∈ Sd−1 is the unique element in the intersection of the ray {x0 + ty | t > 0} with
the boundary ∂Ω, see Figure 2. Note that the spherical parametrisation Φ also depends on
x0. In order to keep the notation simple, we do not indicate this dependance.

For unbounded convex domains Ω, such as (1.4), the image of the function Ψ does not contain
a certain subset S ⊂ Sd−1. In such a situation, the corresponding spherical parameterization
Φ: Sd−1 \ S → ∂Ω is defined only for y /∈ S. For domains (1.4), this set S is actually a set of
surface measure zero, compare with Remark 2.3 below.
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x0

y

x0 + ty

Φ(y)

Sd−1

∂Ω

Figure 2: Illustration of the spherical parameterization Φ defined in (2.1) of the boundary ∂Ω around the
point x0 ∈ Ω. For any y ∈ Sd−1 we have {Φ(y)} = ∂Ω ∩ {x0 + ty | t > 0}.

Let Ω be convex and bounded. Then, using the spherical parameterization and the transfor-
mation rule, for any measurable function g : ∂Ω→ R we have∫

∂Ω

g(x) 〈νx, x− x0〉ds(x) =

∫
Sd−1

g (Φ(y)) |Φ(y)− x0|d ds(y) . (2.2)

Based on the integral identity (2.2) we can derive equivalent expressions for the formula Fd

that involve an integral over the unit sphere Sd−1. These expressions are presented in the
next proposition.

Proposition 2.1. Let Ω ⊂ Rd be a convex bounded domain, f ∈ C∞c (Ω), and x0 ∈ Ω.
Further, set m(x, r) := (Mf)(x, r) and (Bm)(x, r) := (Dd−2

r rd−2m)(x, r). Then, with the
spherical parameterization Φ defined in (2.1), the formula Fd defined by (1.9), (1.11) can be
expressed as follows:

(a) If d ≥ 2 is even, then

Fd(∂Ω,m, x0) = −κ(1)
d

∫
Sd−1

|x0 − Φ(y)|d
∫ ∞

0

∂r Bm (Φ(y), r)

r2 − |x0 − Φ(y)|2
drds(y) . (2.3)

(b) If d ≥ 3 is odd, then

Fd(∂Ω,m, x0) = −κ(1)
d

∫
Sd−1

|x0 − Φ(y)|d−1∂r Bm (Φ(y), |x0 − Φ(y)|) ds(y) . (2.4)

Proof. This immediately follows from the expressions (1.9), (1.11) for Fd, the definitions of
m and Bm, and the integral identity (2.2).

In the case of even spatial dimensions, (2.3) can be further modified such that it involves an
integral over a set with a finite measure being independent of ∂Ω. Such an expression will be
used for the application of the dominated convergence theorem in the proof of Theorem 1.2.

Proposition 2.2. Let d ≥ 2 be even, Ω ⊂ Rd be a convex bounded domain, f ∈ C∞c (Ω),
x0 ∈ Ω, and let Φ be the spherical parameterization around x0 defined by (2.1). Further,
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define the functions m and Bm as in Proposition 2.1, and set m( · , r) := Bm( · , r) := 0 for
r ≤ 0. Then, there exists a bounded interval I ⊂ R, that depends on the support of f but not
on Ω, such that

2

κ
(1)
d

Fd(∂Ω,m, x0) =

∫
Sd−1

∫
I

|x0 − Φ(y)|d−1
∂2
r Bm (Φ(y), ρ+ |x0 − Φ(y)|) ln |ρ|dρds(y)

+

∫
Sd−1

∫
I

|x0 − Φ(y)|d−1

ρ+ 2 |x0 − Φ(y)|
∂rBm (Φ(y), ρ+ |x0 − Φ(y)|) dρds(y) . (2.5)

Proof. For the case d = 2, the expression (2.5) has been derived in [33, Proposition 2.1(b)].
The general case d ≥ 2 is shown in an analogous manner.

Remark 2.3 (Alternative representations of Fd for domains of the form (1.4)). One can easily
verify that for any domain Ω of the form (1.4), which is convex but possibly unbounded, the
spherical parameterization Φ: Sd−1 \ S → ∂Ω is defined almost everywhere in Sd−1. Since S
is a set of surface measure zero, the integral identity (2.2) as well as the representations (2.3),
(2.4), (2.5) of the universal back-projection formula Fd hold true also for these domains.

2.2. Approximation by elliptic domains

We already mentioned in the introduction that any domain of the form (1.4) can be approx-
imated by elliptic domains (1.5). A precise statement of this fact is given by the following
proposition.

Proposition 2.4. Let Ω ⊂ Rd be any domain of the form (1.4). Then, for every compact
subset K ⊂ Ω and every point x0 ∈ K, there exists a sequence (En)n∈N of elliptic domains

En ⊂ Rd such that the following holds:

(a) For all n ∈ N, we have K ⊂ En.

(b) Let Φn and Φ be the spherical parametrizations of ∂En and ∂Ω, respectively, around x0.
Then, there exists a set S of surface measure zero, such that

lim
n→∞

Φn(y) = Φ(y) for all y ∈ Sd−1 \ S . (2.6)

Proof. It is sufficient to verify the statement of the proposition for domains of the form (1.5)-
(1.8). Then, the general case is obtained with a help of the appropriate affine transformation.
Also, it can be easily checked that statement (b) follows from statement (a) after possibly
passing to a subsequence. Therefore, we consider the proof of statement (b) only.

For any elliptic domain of the form (1.5), the Proposition holds trivially true. Consider now
an elliptic paraboloid Ω = P as in (1.6). In [33], we demonstrated how to construct a sequence
of elliptic domains in two spatial dimensions such that it satisfies condition (b). The bounding
ellipsoids of such a sequence have the following properties: one focus is kept fixed, another
focus moves along a line that goes through the first focus, and the axes of the ellipses are
appropriately related. This construction can be generalized to an arbitrary dimension as we
shall show next. For that purpose, define the sequence (En)n∈N of elliptic domains by

En =

{
x ∈ Rd

∣∣∣∣∣ 2

n

d−1∑
i=1

αix
2
i +

(xd − Tn)2

n2
< 1

}
,

where Tn := 1/4 +
√
n2 − n/2. For illustration purpose, the upper left picture in Figure 3

shows the cropped elliptic paraboloid P ∩ {x ∈ R3 | x3 ≤ 2} for d = 3 and (α1, α2) = (1, 2),
together with the cropped approximating elliptic domain En ∩ {x ∈ R3 | x3 ≤ 2.5} for n = 4.
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Next, fix an arbitrary point x0 = (x0,1, x0,2, . . . , x0,d) ∈ Ω. Let the set of directions Sd−1
1 ⊂

Sd−1 be defined as

Sd−1
1 :=

{
y ∈ Sd−1

∣∣∣ d−1∑
i=1

y2
i 6= 0

}
,

and take an arbitrary direction y = (y1, . . . yd) ∈ Sd−1
1 from this set. According to the

definition of the spherical parametrization (2.1), there is a unique tn > 0 such that Φn(y) =
x0 + tn y ∈ ∂En. From this condition, one derives the quadratic equation ant

2
n +bntn +cn = 0

for tn, where

an =

d−1∑
i=1

αiy
2
i +

y2
d

2n
,

bn = 2

d−1∑
i=1

αix0,iyi +
yd(x0,d − Tn)

n
,

cn =

d−1∑
i=1

αix
2
0,i +

(x0,d − Tn)2

2n
− n

2
.

In the same way, there is a unique t > 0 such that Φ(y) = x0 + t y ∈ ∂Ω which gives the
quadratic equation at2 + bt+ c = 0 for t, where

a =

d−1∑
i=1

αiy
2
i , b = 2

d−1∑
i=1

αix0,iyi − yd , c =

d−1∑
i=1

αix
2
0,i − x0,d .

For y ∈ Sd−1
1 , one can show that the sequences an, bn, cn converge to a, b, c, respectively.

Since the solution of the quadratic equation depends continuously on the coefficients of the
equation this implies tn → t as n→∞. This finally shows (2.6) with S := Sd−1 \Sd−1

1 being
a set of surface measure zero.

For cylindric domains of the form (1.7) or (1.8), the approximation property (2.6) can be
shown in a similar manner. Namely, for a parabolic cylinder Ω = Cpar of the form (1.7), the
sequence of elliptic domains En can be taken as

En =

{
x ∈ Rd

∣∣∣∣∣ 2

n

b∑
i=1

αix
2
i +

1

n2

d−1∑
i=b+1

x2
i +

(xd − Tn)2

n2
< 1

}
.

One can show that (2.6) holds with S = Sd−1 \ Sd−1
2 , where Sd−1

2 := {y ∈ Sd−1 |
∑b

i=1 y
2
i 6=

0}. Again for illustration purpose, the upper right picture in Figure 3 shows the cropped
parabolic cylinder Cpar ∩ {x ∈ R3 | x3 ≤ 9/4 and x2 ∈ [−3, 3]} for d = 3 and α1 = 1, as well
as the cropped approximating elliptic domain En ∩ {x ∈ R3 | x3 ≤ 3} for n = 4.

Finally, for an elliptic cylinder Cell of the form (1.8), we can verify (2.6) with

En =

{
x ∈ Rd

∣∣∣∣∣
b∑

i=1

αix
2
i +

1

n

d∑
i=b+1

x2
i < 1

}
,

and S := Sd−1 \ Sd−1
2 . The lower left image in Figure 3 shows an cropped elliptic cylinder

Cell∩{x ∈ R3 | x3 ∈ [−1, 1]} for d = 3, b = 2 and (α1, α2) = (1, 2), together with the cropped
approximating elliptic domain En ∩ {x ∈ R3 | x3 ∈ [−1.3, 1.3]} for n = 4. For b = 1, the
elliptic cylinder Cell is bounded by two parallel lines. This is shown in the lower right image
in Figure 3 which shows the cropped elliptic cylinder Cell ∩ {x ∈ R3 | x2, x3 ∈ [−1.5, 1.5]} for
b = 1 and α1 = 1 together with the approximating elliptic domain E4.
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x1x2

x3

x1

x2

x3

x1
x2

x3

x1x2

x3

Figure 3: Illustration of the approximation of the quadrics of the forms (1.6), (1.7), and (1.8) in R3 (blue
surfaces) by elliptic surfaces (red). Note that there arise two qualitatively different elliptic cylinders for the
cases b = 2 (bottom left) and b = 1 (bottom right).

3. Proofs of the main results

Throughout this section, let Ω ⊂ Rd denote a domain of the form (1.4), let f ∈ C∞c (Ω), let
x0 ∈ Ω be a reconstruction point, and let Φ: Sd−1 \S → Ω be the spherical parameterization
of ∂Ω around x0, where S is a set of surface measure zero.

According to Proposition 2.4 applied with K = {x0} ∪ supp(f), we can choose a sequence of
elliptic domains (En)n∈N such that x0 ∈ En, supp(f) ⊂ En and

lim
n→∞

Φn(y) = Φ(y) for every y ∈ Sd−1 \ S , (3.1)

where Φn : Sd−1 → ∂En is the spherical parameterization of ∂En around x0. We further
define, for every (x, r) ∈ Rd × (0,∞),

m(x, r) := (Mf) (x, r) ,

Bm(x, r) :=
(
Dd−2

r rd−2m
)

(x, r) ,

p(x, t) := (Wf) (x, t) .

As in Proposition 2.2, we again set m( · , r) := Bm( · , r) := 0 for r ≤ 0.

3.1. Representation of radial derivatives of Bm

The proof of Theorem 1.2 is based on the application of the dominated convergence theorem.
For that purpose we require estimates for the radial derivatives of Bm. Such estimates will
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be obtained using the following representations of ∂rBm and ∂2
rBm in terms of derivatives of

the spherical means m.

Lemma 3.1. For every d ≥ 3, there are constants c
(1)
d,i , c

(2)
d,i ∈ R such that

∂rBm =

d−1∑
i=0

c
(1)
d,i

1

r(d−1)−i ∂
i
rm, (3.2)

∂2
rBm =

d∑
i=0

c
(2)
d,i

1

rd−i
∂irm. (3.3)

Proof. Let us first derive an expression for Bm involving derivatives of m with respect to r.
Since Dr is the differentiation operator with respect to r2, one can use Leibniz’s rule for the
higher-order derivatives of a product of two functions to obtain the following representation
of the function Bm:

Bm = Dd−2
r

(
rd−2m

)
=

d−2∑
k=0

(
d− 2

k

)
Dd−2−k

r

(
rd−2

)
Dk

r (m) . (3.4)

Now one notes that Dr

(
rl
)

= (l/2) rl−2 for any l 6= 0. Repeated application of this identity

shows that there are constants c
(3)
k ∈ R such that the following hold:

• If d ≥ 3 is odd, then

Dk
r

(
rd−2

)
= c

(3)
k rd−2−2k for all k ≥ 0 . (3.5)

• If d ≥ 2 is even, then

Dk
r

(
rd−2

)
=

{
c
(3)
k rd−2−2k for 0 ≤ k ≤ (d− 2)/2

0 for k > (d− 2)/2 .
(3.6)

Next we use mathematical induction to show that there are constants c
(4)
k,i ∈ R such that for

any k ≥ 1 we have

Dk
r (m) =

k∑
i=1

c
(4)
k,i

1

r2k−i ∂
i
rm. (3.7)

Indeed, for k = 1, we have Dr(m) = (2r)−1∂rm which is of the form (3.7). Now suppose that
the representation (3.7) holds true for some k ≥ 1. Then,

Dk+1
r (m) =

1

2r
∂r

k∑
i=1

c
(4)
k,i

1

r2k−i ∂
i
rm

=

k∑
i=1

c
(4)
k,i

2

(
−2k + i

r2k−i+2
∂irm+

1

r2k−i+1
∂i+1
r m

)

=
c
(4)
k,1

2

−2k + 1

r2(k+1)−1
∂rm +

c
(4)
k,k

2

1

rk+1
∂k+1
r m

+

k∑
i=2

(
c
(4)
k,i(−2k + i)

2 r2(k+1)−i ∂irm+
c
(4)
k,i−1

2 r2(k+1)−i ∂
i
rm

)
. (3.8)

The last expression has the form (3.7), and therefore (3.7) holds for all k ≥ 1.
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Now, consider a non-zero term Dd−2−k
r

(
rd−2

)
Dk

r (m) in the sum (3.4). Using (3.5)-(3.7), for
k ≥ 1, this term can be written as follows:

Dd−2−k
r

(
rd−2

)
Dk

r (m) = c
(3)
d−2−k r

d−2−2(d−2−k)
k∑

i=1

c
(4)
k,i

1

r2k−i ∂
i
rm

=

k∑
i=1

c
(3)
d−2−kc

(4)
k,i

1

r(d−2)−i ∂
i
rm. (3.9)

For k = 0, we have

Dd−2
r

(
rd−2

)
m =

{
0, if d ≥ 4 is even ,

c
(3)
d−2

1
rd−2 m, if d ≥ 3 is odd .

(3.10)

From (3.9) and (3.10) we conclude that

Bm = Dd−2
r

(
rd−2m

)
=

d−2∑
i=0

c
(5)
d,i

1

r(d−2)−i ∂
i
rm, (3.11)

for certain constants c
(5)
d,i ∈ R. Expressions (3.2) and (3.3) for the radial derivatives of

Bm follow from (3.11) by applying the radial derivative ∂r and performing similar algebraic
manipulations as in (3.8).

3.2. Proof of Theorem 1.2

3.2.1. Odd dimension

Let d ≥ 3 be an odd integer. According to Theorem 1.1, the formula Fd exactly recovers f
from data (1.2) for every elliptic domain En. Then, with the representation (2.4), we have

f (x0) = −κ(1)
d

∫
Sd−1

|x0 − Φn(y)|d−1∂r Bm (Φn(y), |x0 − Φn(y)|) ds(y) . (3.12)

Since the formula (3.12) holds true for all n ∈ N, we have

f (x0) = −κ(1)
d lim

n→∞

∫
Sd−1

In(y)ds(y) , where (3.13)

In(y) := |x0 − Φn(y)|d−1
∂rBm (Φn(y), |x0 − Φn(y)|) . (3.14)

In the next Lemma, we show that the integrands In are uniformly bounded by an integrable
function which allows to apply the dominated convergence theorem to (3.13).

Lemma 3.2. For any f ∈ C∞c (Ω), there is a constant c1 > 0 such that for all n ∈ N and all
y ∈ Sd−1, we have |In(y)| ≤ c1.

Proof. First notice that In(y) = (rd−1∂r Bm) (Φn(y), |x0 − Φn(y)|). According to Lemma 3.1

there are constants c
(1)
d,i such that

rd−1∂r Bm =

d−1∑
i=0

c
(1)
d,i r

i ∂irm. (3.15)

Next note that the spherical means of any smooth function f with compact support together
with its its radial derivatives satisfy

∣∣∂irm(x, r)
∣∣ ≤ Ci min

{
r−(d−1), 1

}
for all (x, r) ∈ Rd ×
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(0,∞), where Ci are some positive constants that depend only on f . Thus, in the view
of (3.15), we can estimate

∣∣rd−1∂r Bm(x, r)
∣∣ ≤ d−1∑

i=0

∣∣∣c(1)
d,i

∣∣∣Cir
i min

{
r−(d−1), 1

}
=: b(r)

for all (x, r) ∈ Rd × (0,∞). It can be easily verified that r 7→ b(r) is bounded on (0,∞).
Consequently, the functions y 7→ In(y) = (rd−1∂r Bm) (Φn(y), |x0 − Φn(y)|) are uniformly
bounded which concludes the proof of the Lemma.

Now, we continue the proof of Theorem 1.2. According to the above Lemma, we can apply
the dominated convergence theorem to (3.13). Since the function ∂rBm(x, r) depends con-
tinuously on both of its arguments, and Φn converges pointwise to Φ almost everywhere on
Sd−1, we get

f(x0) = −κ(1)
d

∫
Sd−1

lim
n→∞

In(y)ds(y)

= −κ(1)
d

∫
Sd−1

|x0 − Φ(y)|d−1∂r Bm (Φ(y), |x0 − Φ(y)|) ds(y) .

Together with Remark 2.3 this implies identity (1.13) for the case of odd dimension.

3.2.2. Even dimension

We next consider the case of even spatial dimension. For d = 2, Theorem 1.2 has been proven
in [33]. Therefore, we assume that d ≥ 4 the following.

According to Theorem 1.1 and Proposition 2.2 we have

2

κ
(1)
d

f(x0) =

∫
Sd−1

∫
I

|x0 − Φn(y)|d−1
∂2
r Bm (Φn(y), ρ+ |x0 − Φn(y)|) ln |ρ|dρds(y)

+

∫
Sd−1

∫
I

|x0 − Φn(y)|d−1

ρ+ 2 |x0 − Φn(y)|
∂rBm (Φn(y), ρ+ |x0 − Φn(y)|) dρds(y) . (3.16)

Let us denote the integrands in the above expression by I1,n : Sd−1× I → R and I2,n : Sd−1×
I → R, that is

I1,n(y, ρ) := |x0 − Φn(y)|d−1
∂2
r Bm (Φn(y), ρ+ |x0 − Φn(y)|) ln |ρ| ,

I2,n(y, ρ) :=
|x0 − Φn(y)|d−1

ρ+ 2 |x0 − Φn(y)|
∂rBm (Φn(y), ρ+ |x0 − Φn(y)|) .

As the identity (3.16) holds for all n ∈ N we have

2

κ
(1)
d

f(x0) = lim
n→∞

∫
Sd−1

∫
I

I1,n(y, ρ) dρds(y) + lim
n→∞

∫
Sd−1

∫
I

I2,n(y, ρ) dρds(y) . (3.17)

For the application of the dominated convergence theorem to (3.17), we next show that the
integrands I1,n and I2,n are uniformly bounded by integrable functions.

Lemma 3.3. For any f ∈ C∞c (Ω), there are constants c1 > 0, c2 > 0 such that, for all n ∈ N
and all (y, ρ) ∈ Sd−1 × I, the following hold:

|I1,n(y, ρ)| ≤ c1 |ln |ρ|| , (3.18)

|I2,n(y, ρ)| ≤ c2 . (3.19)
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Proof. Define the function m̂1(x, r, ρ) := rd−1∂2
r Bm(x, ρ+ r). Then,

I1,n(y, ρ) = m̂1(Φn(y), |x0 − Φn(y)| , ρ) ln |ρ| . (3.20)

According to the choice of (En)n∈N, there exists r∗ > 0 only depending on the function f ,
such that m(x, r) = Bm(x, r) = 0 for all r < r∗ and x ∈

⋃
n∈NEn. Thus, in view of (3.20), for

proving the bound (3.18), it is sufficient to show that there exists a constant c1 > 0 such that
|m̂1(x, r, ρ)| ≤ c1 for all x ∈

⋃
n∈NEn and (r, ρ) ∈ T∗ := {(r, ρ) ∈ (0,∞)× I | r + ρ ≥ r∗ }.

With the representation (3.3) for the function ∂2
r Bm, and using the estimates |∂irm(x, r)| ≤

Ci min{r−(d−1), 1} we obtain

|m̂1(x, r, ρ)| ≤
d∑

i=0

∣∣∣c(2)
d,i

∣∣∣Ci
1

(ρ+ r)d−i
rd−1 min

{
(ρ+ r)−(d−1), 1

}
for x ∈

⋃
n∈NEn and (r, ρ) ∈ T∗. The functions rd−1 min

{
(ρ+ r)−(d−1), 1

}
and (ρ+r)−(d−i),

for i ∈ {0, 1, . . . , d}, are bounded for (r, ρ) ∈ Tr∗ which proves the first estimate (3.18). The
second estimate (3.19) is shown in a similar manner.

Lemma 3.3 allows application of the dominated convergence theorem to (3.17). As in the
case of odd spatial dimension d, this yields

2

κ
(1)
d

f(x0) =

∫
Sd−1

∫
I

|x0 − Φ(y)|d−1
∂2
r Bm (Φ(y), ρ+ |x0 − Φ(y)|) ln |ρ|dρds(y)

+

∫
Sd−1

∫
I

|x0 − Φ(y)|d−1

ρ+ 2 |x0 − Φ(y)|
∂rBm (Φ(y), ρ+ |x0 − Φ(y)|) dρds(y) .

Together with Remark 2.3 this proves the statement of Theorem 1.2 for even d ≥ 4.

3.3. Proof of Theorem 1.3

3.3.1. Odd dimension

We first consider the case of odd dimension d ≥ 3. Identity (1.13) for the spherical means m
in odd spatial dimension states

f(x0) =
(−1)(d−3)/2ωd−1

4πd−1

∫
∂Ω

〈νx, x0 − x〉
|x0 − x|

(
∂rDd−2

r rd−2m
)

(x, |x0 − x|) ds(x) . (3.21)

It is known (see, for example, [34, p. 682]), that in the case of odd spatial dimension the
solution p of the initial value problem (1.1) can be expressed through the spherical means
m =Mf as

p(x, r) =
ωd−1

4π(d−1)/2

(
∂rD(d−3)/2

r rd−2m
)

(x, r).

Application of D(d−3)/2
r r−1 yields(
D(d−3)/2

r r−1p
)

(x, r) =
ωd−1

2π(d−1)/2

(
Dd−2

r rd−2m
)

(x, r). (3.22)

Equations (3.21) and (3.22) yield

f(x0) =
(−1)(d−3)/2

2π(d−1)/2

∫
∂Ω

〈νx, x0 − x〉
|x0 − x|

(
∂tD(d−3)/2

t t−1p
)

(x, |x0 − x|) ds(x) . (3.23)

which is the desired identity for the odd dimensional case.
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3.3.2. Even dimension

In the case of even spatial dimension d ≥ 2, the inversion formula (1.14) is given by

f(x0) =
(−1)(d−2)/2

πd/2

∫
∂Ω

〈νx, x0 − x〉
∫ ∞
|x0−x|

(
∂tD(d−2)/2

t t−1p
)

(x, t)√
t2 − |x0 − x|2

dtds(x) . (3.24)

As in the proof of the odd dimensional case, we employ the inversion formula (1.13) for the
spherical means which states

f(x0) =
(−1)(d−2)/2ωd−1

2πd

∫
∂Ω

〈νx, x0 − x〉
∫ ∞

0

(
∂rDd−2

r rd−2m
)

(x, r)

r2 − |x0 − x|2
dr ds(x) . (3.25)

In the case of even dimension, the solution p of the initial value problem (1.1) and the spherical
means m =Mf satisfy the following relation (see [6, p. 226])

1

2πd/2

∫ ∞
|x0−x|

D(d−2)/2
t

χ
{
t2 − |x0 − x|2 > 0

}
√
t2 − |x0 − x|2

 p(x, t) dt =

(−1)(d−2)/2ωd−1

4πd

∫ ∞
0

(
rDd−2

r rd−2m
)

(x, r)

r2 − |x0 − x|2
dr ,

where χ{t2 − |x|2 > 0} is the characteristic function of {(x, t) ∈ Rd × R | t2 − |x|2 > 0} and
the expression on the left has to be understood in the distributional sense. Using integration
by parts in the integrals on the left and on the right hand side yields

(−1)(d−2)/2

πd/2

∫ ∞
|x0−x|

√
t2 − |x0 − x|2

(
∂tD(d−2)/2

t t−1 p
)

(x, t) dt =

(−1)(d−2)/2ωd−1

4πd

∫ ∞
0

ln
∣∣∣r2 − |x0 − x|2

∣∣∣ (∂rDd−2
r rd−2m

)
(x, r) dr. (3.26)

Applying the gradient with respect to x0 on the both sides of (3.26) further shows

(−1)(d−2)/2

πd/2
(x0 − x)

∫ ∞
|x0−x|

(
∂tD(d−2)/2

t t−1p
)

(x, t)√
t2 − |x0 − x|2

dt =

(−1)(d−2)/2ωd−1

2πd
(x0 − x)

∫ ∞
0

(
∂rDd−2

r rd−2m
)

(x, r)

r2 − |x0 − x|2
dr. (3.27)

The relationship (3.27) together with the inversion formula (3.25) for the spherical means m
implies the desired inversion formula (3.24) for the wave data p.

4. Discussion

In this paper we studied the problems of reconstructing a function from its spherical means
or the solution of the standard free-space wave equation on quadrics bounding domains of
the form (1.4). We showed that the universal back-projection formula, originally introduced
for three spatial dimensions in the context of photoacoustic tomography in [1], provides

14

Standarduser
am_pp_logo_01



exact reconstruction for these quadrics including parabolas as well as parabolic and elliptic
cylinders. Note that the universal back-projection has previously been shown to provide an
exact reconstruction on spherical and cylindrical domains in three spatial dimensions in [1],
spherical domains in any dimension in [2], elliptical domains in three dimensions in [3] and
later for elliptical domains in arbitrary dimension in [6]. The results of the present paper
have been derived by using the formulas of [6] for elliptical domains and application of the
dominated convergence theorem to receive the corresponding formulas for domains (1.4),
which can be approximated by elliptic domains.

Formulas different from the universal back-projection formulas that also exactly recover a
function from spherical means on elliptic domains have been derived in [30, 31, 32, 35]. It
would be interesting to study whether some of the formulas of [30, 31, 32, 35] for elliptical
domains work for domains (1.4) as well. It would also be interesting to clarify the relationships
between the various formulas for elliptical or more general quadric domains. Note that the
formula of [31, 35] generalize one of the formulas of [26, 27] from spherical to elliptical center
set. For the special case of spherical domains such relations have been instigated in [9, 5].
In [9] it has been shown that for a spherical observation surface in two and three spatial
dimensions, the universal back-projection formula can be derived from the inversion formulas
of [26, 27]. In [28] a class of inversion formulas has been obtained that includes the formulas
of [26, 27] as well as the universal back-projection formulas.

Another open question is whether the universal back-projection formula provides exact recon-
struction from spherical means in situations different from the ones considered in the present
paper. For example, recently in [36] the formula of [32] has been shown to provide exact
reconstruction in the case that the observation surface is a zero set of certain polynomials
(named oscillatory sets in [36]), and that the function to be recovered is supported in a certain
associated domain (named hyperbolic cavity in [36]). It is therefore tempting to analyze the
behaviour of the universal back-projection in such a situation as well. After one of the authors
presented the results of [6] at the 10th AIMS Conference on Dynamical Systems, Differential
Equations and Applications 2014 in Madrid such a study has also been suggested by Prof.
Mark Agranovsky.

Finally, note that in the practical implementation the observation surface has to be replaced
by a bounded subset of the boundary ∂Ω. This limited data problem is well known to
introduce artifacts when using explicit inversion formulas, see [37, 38, 39, 40]. Limited data
artifacts using the universal back-projection formula on an elliptic or parabolic observation
surface have been recently theoretically analyzed in [5]; compare also [41, 42, 18]. Further
theoretical aspects of spherical means that we have not touched in this paper can be found,
for example, in [43, 44, 45, 46, 47, 48, 49] and the references therein.
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