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1 Introduction

Computed tomography (CT) is one of the most important diagnostic tools in mod-

ern medicine. While the term computed tomography was initially reserved for x-ray

based CT scanners, it nowadays covers various non-invasive imaging technologies,

where mathematics plays a major role for obtaining diagnostic images. Examples

include x-ray CT, single photon emission computed tomography (SPECT), positron

emission tomography (PET), magnetic resonance tomography (MRT), ultrasound

tomography, electrical impedance tomography, optical imaging, as well as photoa-

coustic tomography and the closely related thermoacoustic tomography.

A unifying element of all tomographic applications is that only indirect informa-

tion about the quantity of interest (usually modelled as a function defined on R
2 or

R
3) can be collected when scanning the patient. Due to the modeling imperfections,

measurement errors and statistical uncertainties, the data are additionally corrupted

by deterministic or random noise. Such type of applications are most conveniently

be studied in the framework of inverse problems, where the reconstruction problem

is formulated as an operator equation

Y = Kf + ǫ .

Here K is a linear or non-liner operator modeling the particular inverse problem, f
is the unknown (infinite dimensional) parameter, ǫ is the noise, and Y are the given

noisy data. In many medical imaging technologies the operator K can be modelled

as a Radon transform, which maps a function to its integrals over curves or other

manifolds. For example, the data in the classical x-ray CT as well as in single pho-

ton emission tomography provide approximate integrals of the unknown parameter

over straight lines. In the more recent photoacoustic tomography, the underlying

transform is the spherical Radon transform, which integrates the unknown function

over spherical surfaces.
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In this note, we highlight two prime examples of computed tomography, namely

classical x-ray based CT and the more recent photoacoustic tomography. For both

applications we present the underlying modeling equations. We further discuss ba-

sic mathematical results that form the foundation of the filtered backprojection al-

gorithm, which is still the most widely used reconstruction algorithm in medical CT

scanners. More extensive introductions to the mathematics of computed tomogra-

phy can be found, for example, in [KS01, Kuc14, Nat01, NW01, Her09].

2 The classical Radon transform

X-ray CT is the oldest non-invasive medical imaging methodology, where math-

ematical reconstruction algorithms play a major role for creating slice images of

some patient. Like medical radiography, it is based on the physical properties that

x-rays mainly propagate along straight lines in tissue and that the spatially varying

x-ray attenuation depends on the structure in the interior of the patient. However, in

radiology only projection images (averages of the attenuation function over lines)

are captured and displayed, whereas x-ray CT uses mathematical reconstruction

algorithms combining several projection images to provide section images of the

interior of the patient as final output.

The Radon transform, which maps a function defined in the Euclidian plane to

its integrals over straight lines forms the mathematical basis of x-ray CT. Image

reconstruction in x-ray CT therefore requires a precise understanding of the Radon

transform and in particular requires methods for its analytical or numerical inver-

sion. In 1963, Cormack [Cor63] was the first to point out the possible application

of the Radon transform for medical applications. The first commercially available

CT system was constructed by Hounsfield [Hou73], and the first patient brain-scan

in a hospital was made in 1972. In 1979, Cormack and Hounsfield shared the No-

bel Prize for Medicine and Physiology for the development of computed tomogra-

phy. Later Cormack realized that the transform he studied, was already analyzed in

1917 by Johann Radon (see [Rad17]), an Austrian mathematician interested in the

problem of recovering a function from its line integrals from a purely mathemati-

cal perspective. A long time before the invention of computed tomography Radon

already derived an inversion formula for the transform that was later named after

him. Radon itself was inspired by work of another Austrian mathematician, Paul

Funk, who studied a similar problem, namely that of recovering a function on the

two-dimensional sphere from its integrals over all great circles [Fun13].

2.1 Mathematical modeling of x-ray CT

For the following, let Ω ⊂ R
2 be some convex domain in the Euclidian plane mod-

eling a slice of some human patient. We denote by f : R2 → R the spatially varying

x-ray absorption coefficient which is assumed to be supported in Ω. Suppose fur-

ther, that an x-ray beam origins at some position x0 outside of Ω, propagates along a
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Figure 1: An x-ray is emitted at some point x0 outside of Ω, propagates along the

line L through Ω, and is finally recorded at another location x1 outside of Ω.

straight line L and is finally recorded at another point x1 outside of Ω; see Figure 1.

We parameterize the line L by γ : R → R
2 : t 7→ x0 + ta, where a ∈ R

2 is a unit

vector pointing from x0 to x1 and denote by I(t) the intensity of the x-ray beam at

location γ(t). The intensity at the source position x0 will be denoted by I0 and the

intensity at the receiver position x1 by I1.
According to Beer’s law, the loss of intensity in a small interval [t, t + ∆t] is

approximately proportional to the intensity I(t), the attenuation coefficient f(γ(t)),
and the length ∆t of the interval. Hence we have I(t+∆t)−I(t) ≈ −f

(

γ(t)
)

I(t)∆t
and taking the limit ∆t → 0 yields the initial value problem







dI

dt
(t) = −f

(

γ(t)
)

I(t) for t ∈ R

I(0) = I0 .

Integrating this equation gives I(t) = I0 exp
(

−
∫ t

0
f
(

γ(t)
)

dt
)

. Evaluating this ex-

pression at the special value t1 = |x1 − x0| (corresponding to the detector location)

and using I1 = I(t1) yields

∫

L

f(x)ds(x) :=

∫ t1

0

f(γ(t))dt = log

(

I0
I1

)

. (1)

From (1) we conclude, that every pair of intensity I0 emitted by some x-ray source

at x0 and intensity I1 measured by an x-ray detector at x1 provides the integral of f
over the straight line through the points x0 and x1.

By varying the positions of the x-ray sources and detectors, respectively, one

collects several integrals of f over different lines. The mathematical task of CT is

to recover the function f from these line integrals. The first CT scanner operated

in parallel beam mode. As illustrated in the left picture in Figure 2, the source and

detector translate linearly, where at any instance a single line integral is collected.

3

Standarduser
am_pp_logo_01



source

so
ur

ce

detector de
te

ct
or

source

detector ring

Figure 2: LEFT: In a first generation CT scanner a single source and detector pair

is translated linearly. Subsequently the source and detector are rotated and the mea-

surement process is repeated for different orientations. RIGHT: In modern fourth

generation CT scanner a single source sends out a fan-shaped bunch of x-rays that

are recorded with a detector ring surrounding the patient. Subsequently the source

is rotated and the measurement process is repeated with different source locations.

Subsequently, the whole apparatus is rotated by a certain angle and the measure-

ments are repeated until the whole angular range is covered. Such type of scanners

are now known as first generation x-ray scanners. Modern fourth generation x-ray

scanners operate in fan beam shape where a whole bunch of x-rays is emitted from

a single source which rotates around the object of interest (see the right picture in

Figure 2).

2.2 The Radon transform

The Radon transform, which integrates a function f : R2 → R over all lines, forms

the mathematical basis of x-ray tomography. Let us write any line in the plane in

the form L = {sθ + tθ⊥ : t ∈ R}, where θ ∈ S1 is a normal vector, s ∈ R is the

oriented distance of the line from the origin, and let θ⊥ ∈ S1 denote a unit vector

orthogonal to θ.

Definition 1 (Radon transform). The Radon transform Rf : S1 × R → R of an

integrable function f : R2 → R is defined by

(Rf)(θ, s) :=

∫

R

f(sθ + tθ⊥)dt .

For fixed θ ∈ S1 we call the univariate function (Rf)(θ, · ) : R → R the linear

projection of f orthogonal to θ.
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By Fubini’s theorem (Rf)(θ, s) is well defined for almost any (θ, s) ∈ S1 ×
R. We sometimes suppose that f is supported in the open unit disc D = {x ∈
R

2 : |x| < 1}. One easily shows, that R then defines a linear bounded operator

R : L2(D) → L2(S1 × (−1, 1)), see [Nat01].

Two main theorems

The most basic and probably most important result for the Radon transform is the

Fourier slice theorem, that relates the Radon transform to the Fourier transform. For

that purpose we denote by

(Ff)(ξ) :=

∫

Rd

f(x)e−i〈ξ,x〉dx for ξ ∈ R
d ,

the d-dimensional Fourier transform and by (F2g)(θ, σ) := (Fg(θ, · ))(σ) the Fourier

transform of a function g : S1 × R → R in the second argument.

Theorem 2 (Fourier slice theorem). For any integrable function f : R2 → R we

have

(Ff)(σθ) = (F2Rf)(θ, σ) for (θ, σ) ∈ S1 × R . (2)

Proof. This is a simple application of Fubini’s theorem. In fact, by Fubini’s theorem

and the orthonormality of θ and θ⊥, we have

(F2Rf)(θ, σ) =

∫

R

e−iσs

∫

R

f(sθ + tθ⊥)dtds

=

∫

R

∫

R

e−i〈σθ,sθ+tθ⊥〉f(sθ + tθ⊥)dtds = (Ff)(σθ) ,

where the last equality follows by the change of variables x = sθ + tθ⊥.

The argument σθ appearing on the left hand side of (2) fills in the whole Fourier

plane, which is required to invert the Fourier transform using the well known, ex-

plicit and stable Fourier inversion formula f(x) = 1
4π2

∫

R2(Ff)(ξ)ei〈ξ,x〉dξ. Hence

the function f can be reconstructed by means of one-dimensional Fourier trans-

form, followed by an interpolation based on (2), and finally performing an in-

verse two-dimensional Fourier transform. Note however, that interpolation in the

Fourier domain is a critical issue and such Fourier domain algorithms have not been

very successful in early stages of CT. More recently, such type of algorithms have

been improved significantly using ideas from nonuniform fast Fourier transforms

[Bey95, DR93, Fes07, Fou03, GGF00, GL04, KKP09, PST01] or by gridding tech-

niques originally developed for magnetic resonance tomography [O’S85, ST95].

While reconstruction algorithms based on the Fourier slice theorem exist, much

more common are algorithms of the filtered back-projection type. Such algorithms
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are based on explicit inversion formulas we shall consider next. For that purpose

we denote by

(H2g)(θ, s) :=
1

π

∫

R

g(θ, t)

s− t
for (θ, s) ∈ S1 × R , (3)

the Hilbert transform of a function g : S1×R → R applied in the second argument.

Here the integral is understood in the Cauchy principal value sense. The Hilbert

transform is the convolution with the distribution P.V.[1/(πs)] and has the well

known Fourier representation (F2H2g)(θ, σ) = −i sign(σ)(F2g)(θ, σ). Likewise

we denote by ∂2g the derivative of g in the second argument.

Theorem 3 (Filtered back-projection type inversion formula). For any continuously

differentiable function f : R2 → R with support in D, we have

f(x) =
1

4π

∫

S1

(H2∂2Rf) (θ, 〈θ, x〉) dθ

=
1

4π2

∫

S1

(
∫

R

(∂2Rf)(θ, t)

〈θ, x〉 − t
dt

)

dθ for x ∈ R
2 . (4)

There are several different ways to derive the important inversion formula (4);

see for example [Hel80, KS01, Nat01]. Below we shall give a simple proof based

on the Fourier slice theorem.

Proof of Theorem 3. By the two-dimensional Fourier inversion formula, the use of

polar coordinates ξ = σθ, and the Fourier slice theorem we have

f(x) =
1

4π2

∫

R2

(Ff)(ξ)ei〈ξ,x〉dx

=
1

4π2

∫

S1

∫ ∞

0

σ(F2Rf)(θ, σ)eiσ〈θ,x〉dσdθ

=
1

8π2

∫

S1

∫

R

|σ| (F2Rf)(θ, σ)eiσ〈θ,x〉dσdθ .

The Fourier representations of the Hilbert transform and the derivative in the second

argument show |σ| (F2Rf)(θ, σ) = (F2H2∂2Rf)(θ, σ). Hence, application of the

one-dimensional Fourier inversion formula yields

f(x) =
1

8π2

∫

S1

∫

R

(F2H2∂2Rf)(θ, σ)eσ〈θ,x〉dσdθ

=
1

4π

∫

S1

(H2∂2Rf)(θ, 〈θ, x〉)dθ ,

which is the first claimed inversion formula. The second inversion follows after

inserting the definition of the Hilbert transform in the former.
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There exist several other explicit inversion formulas for the Radon transform

(see for example [Hel80, KS01, Nat01]), which are more or less equivalent to the

one of Theorem 3. The first such formula has been derived by Johann Radon in

1917 a long time before the development of computed tomography (see [Rad17]; the

original paper is reprinted in the book [Hel80, pp. 177–192]). Note that Cormack

and Hounsfield, the inventors of CT, had originally been unaware of the work of

Radon and therefore independently (of Radon and each other) derived appropriate

inversion techniques.

Dual convolution

While the filtered backprojection algorithm can be seen as a numerical implemen-

tation of (6) it is more naturally developed using a convolution identity for the dual

Radon transform we shall study next. For that purpose, we denote by (f1∗f2)(x) :=
∫

Rd f1(x − y)f2(y)dy the convolution of two functions f1, f2 : R
d → R. When ap-

plied to functions defined on S1 × R, we make the convention that it only acts in

the second component. Further, we define dual Radon transform

(

R♯g
)

(x) =

∫

S1

g(θ, 〈θ, x〉)dθ ,

for some integrable function g : S1 ×R → R. One easily shows that one has in fact

the following dual property

∫

S1

∫

R

(Rf) (θ, s)g(θ, s)dsdθ =

∫

R2

f(x)
(

R♯g
)

(x)dx .

Further, the following important properties hold, which serves as the basis of the

filtered backprojection algorithm we derive in the next section.

Theorem 4 (Dual convolution). Let f : R2 → R be integrable and let g : S1×R →
R be C1 with sufficient decay at infinity. Then

(a)
(

R♯g
)

∗ f = R♯ (g ∗ Rf)

(b) For all ξ ∈ R
2, we have

(

FR♯g
)

(ξ) = 2 |ξ|−1 F2g (ξ/ |ξ| , |ξ|).
(Note that the function R♯g is in general not integrable and therefore FR♯g
has to be defined in the sense of distributions.)

Proof. (a) The definition of the dual transform and Fubini’s thm show

(

R♯g
)

∗ f(x) =
∫

R2

∫

S1

g (〈θ, x− y〉) dθf(y)dy

=

∫

S1

∫

R

∫

R

g (〈θ, x〉 − s) f(sθ + tθ⊥)dtdsdθ

=

∫

S1

∫

R

g (〈θ, x〉 − s)Rf(θ, s)dsdθ
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= R♯ (g ∗ Rf) (x) .

(b) Suppose that ϕ ∈ S (R2) is any Schwartz function. According to the distri-

butional definition of the Fourier transform and the Fourier slice theorem,
∫

R2

(

R♯g
)

(x) (Fϕ) (x)dx =

∫

S1

∫

R

g(θ, σ) (RFϕ) (θ, σ)dσdθ

=

∫

S1

∫

R

(Fg) (θ, σ)
(

F−1RFϕ
)

(θ, σ)dσdθ

= 2

∫

S1

∫

0

(Fg) (θ, σ)ϕ(σθ)dσdθ

= 2

∫

R2

(Fg) (ξ/ |ξ| , |ξ|)
|ξ| ϕ(ξ)dξ .

This shows that FR♯g is a regular distribution and represented by the function ξ 7→
2 (Fg)(ξ/|ξ|,|ξ|)

|ξ|
.

Generalization to higher dimensions

The Radon transform can easily be generalized to higher dimensions, where it maps

a function f : Rn → R to its integrals (Rf)(θ, s) =
∫

H(θ,s)
f(x)dS(x) over hyper-

planes H(θ, s) = {x ∈ R
n : 〈θ, x〉 = s}, where θ is a normal vector of the hyper-

plane H(θ, s), s its oriented distance from the origin and dS denotes the n − 1
dimensional surface measure. Most results for the two dimensional case generalize

to higher dimensions as well (see, for example [Hel80, Nat01, NW01]).

For example, in three spatial dimensions, the analogon of the filtered back-

projection inversion formula (6) reads

f(x) = − 1

8π2

∫

S2

(Rf)′′(θ, 〈θ, x〉)dθ for x ∈ R
3 , (5)

where (Rf)′′ denotes the second derivative of Rf with respect to the second vari-

able. One notices that the inversion formula for the Radon transform in three dimen-

sions looks simpler than its analogon in two dimensions. Moreover, the inversion

formula in three dimensions is local in the sense that recovering f at a single point

x ∈ R
3 using (5) only requires values of the Radon transform corresponding to

planes which pass through an arbitrarily small neighbourhood of the reconstruction

point x. Opposed to that, the 2D inversion formula (4) is non-local: Recovering f
at a single point requires knowledge of the integrals of f over all lines in the plane.

Note that such a discrepancy also holds in higher dimension: Inversion of the Radon

transform is local in every odd dimension and non-local in every even dimension.

2.3 The filtered back-projection algorithm

The filtered backprojection (FBP) algorithm is still the most commonly used recon-

struction algorithm for medical x-ray CT, see [PSV09]. It may be seen as a com-

puter implementation of the filtered backprojection inversion formula (4). However,
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due to the presence of the derivative, the inversion formula is sensitive to error in

the data Rf . Such an instability in inherently in the Radon transform and one can

show that inversion of the Radon transform is ill-posed of degree 1/2 (see, [Nat01,

Chap. II, Thm. 5.1]). For solving such an ill-posed one has to apply regularization

techniques, which replace the exact solution by an approximate but stable one.

It is therefore reasonable to derive the FBP algorithm from the already regular-

ized formula (see Theorem 4)

(Wb ∗ f) (x) =
(

R♯ (wb ∗ Rf)
)

(x)

=

∫

S1

∫

R

wb(θ, s) (Rf) (θ, 〈θ, x〉 − s) ds dθ , (6)

where 1/b > 0 is a regularization parameter and Wb : R
2 → R and wb : S

1 × R →
R satisfy the dual equation Wb = R♯wb. In (6) the regularization effect comes

from the convolution of the unknown f with a smooth radially symmetric mollifier

Wb : R
2 → R. If the family {Wb}b>0 is such that Wb ∗ f → f as b → ∞, then

Wb ∗ f is a smooth approximation of the unknown f that can be computed in stable

way from the Radon data Rf .

The approximate inversion formula (6) is again of the filtered backprojection

type. The inner operation is the convolution in the variable s with a smooth kernel

and is referred to as the filtering step. The outer operation is refereed to as back-

projection and integrates wb ∗Rf over all lines that pass through the reconstruction

point x. The function wb is the filtering kernel and requires solving the dual equa-

tion Wb = R♯wb. A variety of filtering kernels can be designed using the following

corollary of Theorem 4.

Corollary 5. Suppose Φ: [0,∞) → R is an integrable function satisfying 0 ≤ Φ ≤
1 and Φ(σ) = 0 for σ ≥ 1. Further, let Wb denote the inverse Fourier transform of

Ŵb : R
2 → R : ξ 7→ Φ

( |ξ|
b

)

. (7)

Then (6) holds with

F2wb (θ, σ) =
|σ|
2

Φ

( |σ|
b

)

. (8)

Proof. Defining Wb, wb by their Fourier representations (7), (8), Item (b) in Theo-

rem 4 shows Wb = R♯wb and therefore (6) follows from Theorem 4 (a).

The standard FBP algorithm is a straightforward numerical implementation of

(6). For that purpose, suppose that only discrete data

gj,k := (Rf)(θj, k∆s) , for (j, k) ∈ {1, . . . , N} × {−M, . . . ,M} ,

are given, where θj := (cosϕj, sinϕj) with ϕj = 2(j − 1)π/N and ∆s := 1/M .

The FBP algorithm uses the composite trapezoidal rule for discretizing the inner
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integral in (6) at the sampling points which yields

∆s

M
∑

ℓ=−M

wb(k∆s− ℓ∆s)gj,ℓ ≃
∫

R

wb(s− t)Rf(θj, s)ds . (9)

Notice that wb is independent of θ ∈ S1 and we have dropped this first argument.

The outer integration (backprojection operation) is also discretized with the com-

posite trapezoidal rule evaluated at certain grid points x ∈ D. The required values

of (wb ∗ Rf) (θj, · ) evaluated at 〈θj, x〉 are computed with (9) and subsequent lin-

ear interpolation in the second argument.

The most critical step in the FBP algorithm is the discrete convolution in (9),

defined by the discrete reconstruction filter

(wb(k∆s))k=−M,...,M ,

whose entries are samples of the filtering kernel wb at the sampling points k∆s.

Based on Corollary 5 one can derive most reconstruction filters used in CT. For

example, the strict low pass filter defined by Φ(σ) = 1 for σ ∈ [0, 1] and Φ(σ) = 0
otherwise, yields the filter coefficients

wb(k∆s) =
b2

2π2











1/4 for k = 0

−1/(π2k2) for k odd

0 otherwise .

This filter has been proposed in 1971 by Ramachandran and Lakshminarayanan

[RL71] and is referred to as Ram-Lak filter. The choice Φ(σ) = sin(σπ/2)/(σπ/2)
for σ ∈ [0, 1] and Φ(σ) = 0 otherwise has been proposed in 1974 by Shepp and

Logan. The resulting Shepp-Logan filter coefficients are given by

wb(k∆s) =
b2

π4

1

1− 4k2
.

For more details on the FBP algorithm and filter design, see [Dea83, KS01, Nat01].

3 The spherical Radon transform

The classical Radon transform maps a function to its integrals over straight lines. As

we have seen in the previous section, it serves as the basis of x-ray CT. In a number

of different imaging technologies, there arises a need to reconstruct an unknown

function from its integrals over spheres. This leads to the inversion of the so-called

spherical Radon transform, which we study in this section.

For an integrable function f : Rn → R, we define the spherical Radon transform

Rsphf : R
n × (0,∞) → R by

(Rsphf)(x, t) :=

∫

∂B(x,t)

f(y)ds(y) for (x, t) ∈ R
n × (0,∞) .

10
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Here B(x, t) := {y ∈ R
n : |x− y| < t} is the open n-dimensional ball of radius

t > 0 centered at x with respect to the usual Euclidean norm, ∂B(x, t) is its bound-

ary, and ds denotes the standard surface measure. For n = 2, one also calls Rsph

the circular Radon transform.

The spherical Radon transform arises, for example, in photoacoustic tomog-

raphy (PAT) [BBMG+07, FR09, KK08, XW06], sound navigation and ranging

(SONAR) [BF09, QRS11], synthetic aperture radar (SAR) [And88, RP03], ultra-

sound tomography [Nor80, NL81], and seismic imaging [BCSJ01, Faw85]. In the

following subsection, we show how the 2D and 3D spherical Radon transforms arise

in the quite recently developed PAT.

3.1 Photoacoustic tomography

PAT is based on the so-called photoacoustic effect. When short pulses of non-

ionising electromagnetic energy are delivered into a biological (semi-transparent)

tissue, then parts of the electromagnetic energy become absorbed. The absorbed

energy leads to a nonuniform thermoelastic expansion (depending on the tissue

structure), which in turn generates an ultrasonic wave. These waves are detected

by a measurement device on the boundary of the tissue (see Figure 3). The math-

ematical task in PAT is to reconstruct the spatially varying absorption coefficient

using these measurements.

While x-ray CT has a rather low contrast in soft tissues, the electromagnetic

absorption coefficient at some lower frequencies shows significantly higher varia-

tion. PAT therefore provides good imaging contrast in soft tissues making it a very

promising technique for detecting various types of early cancer, such as breast can-

cer or skin melanoma. In 1998, the first clinical prototype of a PAT scanner for

breast screeing has been developed by Kruger [KSK02]. Various practical aspects

of PAT are discussed in [XW06].

The reconstruction of the absorption coefficient in an object under investiga-

tion from the measured acoustic waves on the boundary of the object requires a

mathematical model for the relationship between the absorption coefficient and the

boundary acoustic waves. Below we briefly review such a model, following the

approach presented in [Hal10, HSS05, SGG+09].

Mathematical modeling

Suppose the object to be investigated is supported in a domain Ω ⊂ R
3 that is il-

luminated with a short pule of electromagnetic energy near the visible range. We

denote by I(x, t) = J(x)j(t) the intensity of the electromagnetic energy at loca-

tion x ∈ R
3 and time t ∈ R with J(x) being the spatial and j(t) the temporal

intensity distribution. The rate of absorbed electromagnetic energy is described by

the absorbed electromagnetic power r(x, t) = µabs(x) I(x, t), where µabs(x) is the

spatially varying absorption coefficient. The rate of absorbed energy causes a tem-

perature change which is in turn related to an increase of acoustic pressure p(x, t).

11
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Figure 3: Illustration of PAT. Electromagnetic pulses are delivered into the tissue.

Ultrasound detectors measure the generated acoustic waves on the boundary.

Since the pulse duration is very short, the heat transfer by conduction can be ne-

glected [Tam86].

Employing the linearised equations of fluid dynamics (for details, see [Hal10]

or [SGG+09, Section 1.5]) one shows

1

vs(x)2
∂2p(x, t)

∂t2
−∆p(x, t) = f(x)

dj

dt
(t) , for (x, t) ∈ R

3 × R , (10)

with f(x) = I(x)β(x)µabs(x)/Cp(x). Here Cp(x) is the specific heat capacity, β(x)
is the thermal expansion coefficient at constant pressure and vs(x) is the speed of

sound. The wave equation (10) is augmented with the initial conditions p(x, t) = 0
for t < 0, reflecting the fact that there is no acoustic pressure before the illumination

starts at t = 0.

In the following we assume that the sound speed vs = vs(x) is constant and

after rescaling we can assume that vs equals one, and that j(t) is approximates the

one-dimensional δ-distribution. Then, by Duhamel’s principle [Eva98, p. 81], the

solution of (10) coincides, for t > 0, with the solution of the initial value problem















(

∂2
t −∆

)

p(x, t) = 0 for (x, t) ∈ R
3 × (0,∞)

p(x, 0) = f(x) for x ∈ R
3

∂p

∂t
(x, 0) = 0 for x ∈ R

3 .

(11)

The aim of PAT is to reconstruct the function f(x), proportional to the absorption

coefficient, from measurements of the solution of (11) taken outside of the support

of f . The particular mathematical problem to solve, also depends on the way how

the acoustic signals are measured. Different measurement setups lead to different

mathematical problems. Below we shortly review the concepts of point-like and

12
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linear integrating measurement setups, which yield to the inversion of the spherical

Radon transform in three and two dimensions, respectively.

Point measurement: 3D spherical Radon transform

In the standard measurement procedure used in PAT, small piezoelectric detectors

are placed on the object’s boundary and they record arriving acoustic waves there

(see Figure 4 left). These detectors can be seen as an approximation to idealised

point detectors that record the solution of (11) pointwise on the boundary ∂Ω.

detector

t

Line detectors

Figure 4: LEFT: The data measured by small piezoelectric detectors can provide

integrals of the unknown function over spheres. RIGHT: The array of the line de-

tectors measures the acoustic waves during the rotation around the object.

The well known explicit expression for the solution of the initial value problem

(11) in terms of the three-dimensional spherical Radon transform (see, for example,

[Eva98, page 72]) reads

p(x, t) =
∂

∂t

[

1

4πt
(Rsphf)(x, t)

]

for (x, t) ∈ R
3 × (0,∞) .

Integrating this expression with respect to t yields

(Rsphf)(x, t) = 4πt

∫ t

0

p(x, s)ds.

Thus, the reconstruction of the initial pressure distribution from measurements of

point detectors on the object boundary yield to the problem of inverting the spherical

Radon with centers restricted to ∂Ω.

13
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Line measurement: 2D spherical Radon transform

Since in practice every acoustic detector has a finite size, the algorithms that are

based on the assumption of point-like measurements produce blurred reconstruc-

tion (see [HZ10, RHN+14, XW03]). In order to partially compensate for this ef-

fect, in [HSBP04] it is suggested to use large planar detectors that measure inte-

grals of the acoustic pressure over planes. As a further development in [BHP+05,

PNHB07b] so-called line detectors have bee proposed that use integrals of the

acoustic pressure over lines and which can be efficiently realized in practice.

The measurement setup with line detectors is as follows. The devices are put

into an array of detectors that are parallel to each other, and this array is rotated

around a single axis (Figure 4 right). Let p be the solution of (11) and assume that

the line detectors are parallel to the direction e1 := (1, 0, 0). Also, let us write

x = (x1, x
′) with x1 ∈ R and x′ ∈ R

2, and denote by

p̄(x′, t) =

∫

R

p(x1, x
′, t)dx1 for (x′, t) ∈ R

2 × (0,∞)

the pressure values integrated in direction e1. It is not hard to show that the inte-

grated pressure p̄ satisfies the following two dimensional initial value problem (see,

for example, [BBMG+07])














(

∂2
t −∆

)

p̄(x′, t) = 0 for (x′, t) ∈ R
2 × (0,∞)

p̄(x′, 0) = f̄(x′) for x′ ∈ R
2

∂p̄

∂t
(x′, 0) = 0 for x′ ∈ R

2 .

(12)

Here f̄(x′) :=
∫

R
f(x1, x

′)dx1 is the linear projection of f in direction e1. Data of

line detectors provide values p(x′, t) for certain measurement positions x′ outside of

the support of f ′. Note that having obtained the linear projections f̄ from different

directions, the reconstruction of f can be obtained from the inversion of the classical

(linear) Radon transform studied in Section 2.

Similar to its three dimensional counterpart, the two dimensional reconstruction

problem based on (12) can be recast as the problem of inverting the spherical Radon

transform: Note that the solution of the 2D wave equation is given by (see, for

example, [Joh82, Equation (1.24a)])

p̄(x′, t) =
1

2π

∂

∂t

∫ t

0

(

Rsphf̄
)

(x′, r)√
t2 − r2

dr for (x′, t) ∈ R
2 × (0,∞) .

Application of standard tools for solving Abel type integral equations (see, for ex-

ample, [GV91, Nat01]) yields the following expression for Rsphf̄ in terms of the

data values:
(

Rsphf̄
)

(x′, r) = 4r

∫ r

0

p̄(x′, t)√
r2 − t2

dt .

Consequently, PAT with integrating line detectors yields to the problem of recon-

structing f̄ from its circular Radon transform, which is the 2D analogon of the 3D

reconstruction problem in PAT using point-like measurements.

14
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3.2 Inversion formulas

Exact inversion formulas for the spherical Radon transform are currently known

for boundaries of special domains, including spheres, cylinders and hyperplanes.

Recently explicit inversion formulas for elliptic domains started to appear in the

literature [AFMS13, Hal13, Hal14a, Hal14b, Nat12, Pal12]. In [HP14], we showed

that the formula [Hal13] for elliptic domains in 2D is also exact for parabolic do-

mains.

Exemplarily we present inversion formulas from [FHR07] for the circular Radon

transform with centers centers of integration restricted to a circle, and the inversion

formulas from [Hal13] for boundaries of ellipses, which are also exact for circles.

Recall that B(x, t) ⊂ R
2 denotes the open ball of radius t > 0 centered at x.

For a general domain Ω ⊂ R
2, we denote by C∞

c (Ω) the set of all smooth functions

f : R2 → R that are compactly supported in Ω.

Theorem 6 (Inversion formulas of [FHR07]). Let DR := B(0, R) ⊂ R
2 denote

the disc of radius R centered at the origin, suppose that f ∈ C∞
c (DR) and extend

(Rsphf)(x, t) as an even function in the second variable t.
Then, for all x0 ∈ DR, the function f can be recovered from Rsphf with the

help of the following formulas:

f(x0) =
1

4π2R

∫

∂DR

∫ 2R

−2R

(t∂tt
−1Rsphf)(x, t)

|x0 − x| − t
dtds(x) ,

f(x0) =
1

4π2R

∫

∂DR

|x0 − x|
∫ 2R

−2R

(∂tt
−1Rsphf)(x, t)

|x0 − x| − t
dtds(x) ,

where the inner integrals are taken in the principal value sense.

Note that many researchers believed that exact reconstruction formulas in 2D

exist only for circles and lines. However recently, it was shown in [Nat12] that the

so-called universal back-projection formula from [XW05] is theoretically exact for

ellipsoids in R
3. In [Hal13] such formulas have been derived for ellipses in R

2.

The formulas of [Nat12, Hal13] in fact can be used for arbitrary bounded convex

domains. However, in this case the formulas do not recover the underlying function

exactly and give an error. In both papers [Nat12, Hal13], the corresponding error

term has been explicitly derived. The results of [Nat12, Hal13] have been general-

ized to arbitrary dimension in [Hal14b]. Note that for the special case of spherical

domains the formulas of [Hal14b] also coincide with the formulas of [Kun07]. Very

recently one of the formulas of [FHR07, FPR04] has been generalized to elliptical

domains in [Salar, Hal14a].

The inversion formulas from [Hal13] read as follows.

Theorem 7 (Inversion formulas of [Hal13]). Suppose Ω ⊂ R
2 is a circular or

elliptical domain and let f ∈ C∞
c (Ω). Then, for all x0 ∈ Ω, the following holdf:

f(x0) =
1

2π2
∇x0

·
∫

∂Ω

νx

∫ ∞

0

Rsphf(x, t)

t2 − |x0 − x|2
dtds(x) ,
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f(x0) =
1

2π2

∫

∂Ω

〈νx, x0 − x〉
∫ ∞

0

(∂tt
−1Rsph)f(x, t)

t2 − |x0 − x|2
dtds(x) . (13)

Here νx denotes the outwards pointing unit normal to ∂Ω and the inner integrals

are understood in the principal value sense.

In [HP14], we showed that the second formula in the above theorem is also exact

for the case where Ω is a parabolic domain.

If one has the pure wave data p̄(x, t), i.e. the solution of the initial value prob-

lem (12) is given on the boundary of an elliptic or parabolic domain Ω, then the

corresponding initial pressure distribution can be recovered by means of the follow-

ing formula (see [BBMG+07, Hal13, HP14]):

f̄(x0) =
1

π

∫

∂Ω

〈νx, x0 − x〉
∫ ∞

|x0−x|

(∂tt
−1p̄) (x, t)

√

t2 − |x0 − x|2
dtds(x), (14)

for any reconstruction point x0 ∈ Ω.

3.3 Numerical results

The formulas (13), (14) can be implemented as outlined in [BBMG+07, FHR07].

For illustration, we present numerical results for the recovery from the wave data

(the solution (12)) in two spatial dimensions. We consider a function f̄ : R2 → R

given by the phantom shown in Figure 5. The same phantom has been used for

testing the numerical performance of the reconstruction formulas in [BBMG+07,

Hal13, HP14]. The support of the corresponding function f̄ is included in the

parabolic domain

P =
{

(a, b) ∈ R
2 | b > 0.6 a2 − 1

}

.
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Figure 5: LEFT: The phantom in the parabolic domain P that is used for the nu-

merical results. RIGHT: The simulated wave data p̄ on the recording curve Γ1. The

variable a is considered as the curve parameter.
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Figure 6: The numerical reconstructions f̄i, i = 1, 2, 3 (from left to right) on the

reconstruction subdomain P̄ . The gray scale is as for the phantom of Figure.

For the numerical realization of formula (14), one first has to replace the integral

over ∂P by the integral over a curve with finite length. We take the following

integration curves:

Γi =
{

(a, b) ∈ R
2 | b = 0.6 a2 − 1, a ∈ [−ai, ai]

}

for i = 1, 2, 3 ,

with a1 = 2, a2 = 4, a3 = 6, respectively. The simulated wave data p̄ on the curve

Γ1 is presented in Figure 5.

Let us present the reconstructions f̄i(x) that are obtained by the numerical re-

alization of formula (14) where the integration curve ∂P is replaced by Γi. These

reconstructions on the reconstruction subdomain (the set where the inversion for-

mula is evaluated)

P̄ =
{

(a, b) ∈ R
2 | 0.6 a2 − 1 < b < 0.6 · 22 − 1, a ∈ (−2, 2)

}

at the points {0.015(i, j) : (i, j)} ∈ Z
2} ∩ P̄ are shown in Figure 6. The time step

size for the inner integral in (14) is taken 0.01. The integration curves are dis-

cretized such that the distance between two consecutive points is in the interval

[0.0099, 0.0101]. The numbers of the discretization points on the considered inte-

gration curves are the following: 659, 2166, 4617.

The reconstruction errors for the finite parabolas Γi decrease as the length of

Γi increases. It should be noted that the reconstruction problem in the case of the

open curves Γi corresponds to the so-called limited view problem [Kun08, PNB09,

PNHB07a, XWAK04]. For each reconstruction point inside the reconstruction sub-

domain P̄ there is a considerable set of directions for which the boundary wave data

is missing, which is known to create reconstruction artefacts. We refer to [HP14]

for the comparison with the reconstructions on closed parabolas and ellipses.

4 Concluding remarks

In this note we have given a brief introduction to CT and presented mathemati-

cal results serving as basis of FBP reconstruction algorithms. We thereby focused

on two prime examples, namely classic x-ray CT and the more recent PAT. These
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applications require inversion of the classical Radon transform and the spherical

Radon transform, respectively. The most common algorithm for these applications

is the filtered backprojection (FBP) algorithm, which implements exact inversion

formulas we presented above.

Note that we mainly focused on the development of FBP algorithms for in-

verting Radon type transforms. In some tomographic applications iterative re-

construction algorithms are more common. For example, in single photo emis-

sion tomography (SPECT), the statistical noise is an important issue and itera-

tive reconstruction algorithms based on a maximum likelihood minimization are

favoured. A prominent iterative procedures for maximum likelihood minimization

is the EM algorithm (expectation maximisation algorithm) of Dempster, Laird and

Rubin [DLR77], which has been introduced to computed tomography in [SV82,

VSK85]. Note that also the first reconstruction algorithms in x-ray CT have been

of iterative nature (see [Hou73, GBH70]). The used algorithm became popular

known under the name ART (algebraic reconstruction technique) and was later (see

[GKK+74]) identified as Kaczmarz’s iterative procedure [Kac37] for the solution

of systems of linear equations. See, for example, [Her09, Nat01, NW01] for more

details on the use of iterative reconstruction algorithm in CT.

Finally, note that some tomographic applications are better modelled as param-

eter identification problems for partial differential equations. This often yields to

nonlinear inverse problems. See [EHN96, Isa98, IVT02, Mor93, SGG+09, TA77]

for general solution methods approaching such type of problems.
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[Kac37] S. Kaczmarz. Angenäherte Auflösung von Systemen linearer Gle-

ichungen. Bull. Int. Acad. Pol. Sci. Lett. A, 35:355–357, 1937.

[KKP09] J. Keiner, S. Kunis, and D. Potts. Using NFFT 3—a software library

for various nonequispaced fast Fourier transforms. ACM Trans. Math.

Software, 36(4): Article No. 19, 2009.

[KK08] P. Kuchment and L. A. Kunyansky. Mathematics of thermoacoustic

and photoacoustic tomography. European J. Appl. Math., 19:191–

224, 2008.

[KS01] A. C. Kak and M. Slaney. Principles of Computerized Tomographic

Imaging, volume 33 of Classics in Applied Mathematics. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

[KSK02] R. A. Kruger, K. M. Stantz, and W. L. Kiser. Thermoacoustic CT of

the breast. In [AY02], pages 521–525, 2002.

[Kuc14] P. Kuchment. The Radon transform and medical imaging, volume 85

of CBMS-NSF Regional Conference Series in Applied Mathematics.

Society for Industrial and Applied Mathematics (SIAM), Philadel-

phia, PA, 2014.

[Kun07] L. A. Kunyansky. Explicit inversion formulae for the spherical mean

Radon transform. Inverse Probl., 23(1):373–383, 2007.

[Kun08] L. A. Kunyansky. Thermoacoustic tomography with detectors on an

open curve: an efficient reconstruction algorithm. Inverse Problems,

24(5):055021, 2008.

[Mor93] V. A. Morozov. Regularization Methods for Ill-Posed Problems. CRC

Press, Boca Raton, 1993.

21

Standarduser
am_pp_logo_01



[Nat01] F. Natterer. The Mathematics of Computerized Tomography, vol-

ume 32 of Classics in Applied Mathematics. SIAM, Philadelphia,

2001.

[Nat12] F. Natterer. Photo-acoustic inversion in convex domains. Inverse

Probl. Imaging, 6(2):1–6, 2012.

[NL81] S. J. Norton and M. Linzer. Ultrasonic reflectivity imaging in three

dimensions: Exact inverse scattering solutions for plane, cylindrical

and spherical apertures. IEEE Trans. Biomed. Eng., 28(2):202–220,

1981.

[Nor80] S. J. Norton. Reconstruction of a two-dimensional reflecting medium

over a circular domain: Exact solution. J. Acoust. Soc. Amer.,

67(4):1266–1273, 1980.
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