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Abstract

In this paper we propose a new method for detecting relevant variables
from a priori given high-dimensional data under the assumption that input-
output dependence is described by a nonlinear function depending on a few
variables. The method is based on the inspection of the behavior of discrepan-
cies of a multi-penalty regularization with a component-wise penalization for
small and large values of regularization parameters. We provide the justifica-
tion of the proposed method under a certain condition on sampling operators.
The effectiveness of the method is demonstrated in the example with synthetic
data and in the reconstruction of gene regulatory networks. In the latter ex-
ample, the obtained results provide a clear evidence of the competitiveness of
the proposed method.

Keywords: multi-penalty regularization, variables detection, causality networks,
gene regulatory networks.
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1 Introduction and description of approach

Natural and social phenomena usually emerge from the behavior of complex systems
consisting of interacting components or variables. In practice, we do not have a direct
access to the “laws” governing the underlying relationships between them; instead,
we are faced with a dataset recorded from the possibly interacting variables. How
can we tell from these given data whether there exists any relationship between two
or more variables?

This question can be made precise by considering a dataset

Zy = { (xilaxév“'ax;iwyi> z']il

of observed values ', i = 1,2,..., N, of a variable of interest y paired with si-
multaneously observed values 2%, v = 1,2, ..., p, of the variables xy, 23, ..., x, that
possibly interact with y. Then the set Zy is used to quantify how strong is the
effect of © = (z1,22,...,2,) on y. An instance of this situation is the problem of
reconstructing from the set Zy a multivariate function y = f(x,,,z,,,...,x,,) that
depends only on a subset {x, }._, of the variables {z,}}_, (very often, [ is much
smaller than p). In this work, we are interested in detecting such relevant variables
z,, from given data Zy.

Note that the above problem has been extensively studied under the assumption
that the target function f depends linearly on the relevant variables such that it
admits the representation

flz) = Z Bjx;

with only a few non-zero coefficients [3; for j = vy, 14, ..., 1. Under such assumption
the problem of detecting the relevant variables from the data set Zy can be reduced
to the linear regression with a sparsity constraint. The latter one is now fairly well
understood and can be solved efficiently by means of /;-regularization. We refer the
reader to the classical work by [5] and the more recent one [7] (see also references
therein) for comprehensive treatments of this subject.

Despite the computational benefit of the linear regression, it should be noted
that this model is too simple to be always appropriately matched to the underlying
dynamics and may sometimes lead to a misspecification (see the discussion in the
last section). A suitable alternative is to adopt the situation where the target
function f depends nonlinearly on the relevant variables. This situation is much
less understood, and in the literature it is mostly restricted to the so-called additive
models [9, 20, 16] in which the target function is assumed to be the sum

f(z) = ij(%‘) (1)

of nonlinear univariate functions f; in some Reproducing Kernel Hilbert Spaces
(RKHS) H; such that f; =0 for j ¢ {v;}\_;.
In [2] it has been observed that detection of the relevant variables in the model (1)

can be performed by using a technique from the multiple kernel learning [3, 13]. Then
P
an estimator of the target function (1) can be constructed as the sum Y f}(z;) of
j=1
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the minimizers of the functional

| XN A p ‘ 2 P
TI(f1, for- s foi Zn) = NZ (y - ij(a:;-)> + ) NI (2)
j=1

i=1 j=1
ie.,

T)(\I(fl/\afé\aaflg\v ZN) = Hlll’l{ T)(\I(flaf%"'afp; ZN)? fj € Hja j: 1,2,---727},
where A = (A1, A2, ..., Ay) is a vector of the regularization parameters, and ¢ > 0.

A different approach has been recently proposed in [16]. This approach is based
on the idea that the importance of a variable can be captured by partial derivatives.
Then in [16] the target function is estimated as the minimizer of the functional

N p N a2\ Y2
ﬁ(f;zN)=%Z@ﬂ—f(a:i>>z+A1||f||%{+A22(%Z(agﬁj)) ) )

i=1 j=1 i=1

where 2 = (2,25, ..., 2}), and H is some RKHS of functions f = f(z1,22,...,1,).

Note that the choice of the regularization parameters A; is an open issue in the
both above mentioned approaches. For the multiple kernel learning scheme based
on (2), an a priori parameter choice strategy has been proposed in [13]. In this
strategy the choice of \; depends only on kernels generating RKHS H; and on
distribution of the points x; involved in Zy. It is clear that such a strategy may not
be suitable for detecting relevant variables, because the functions (1) depending on
different variables z; may be associated with the same H; and x; As to the scheme
based on (3), no recipe for choosing the parameters A\;, Ay was given.

Observe also that a numerical implementation of the above mentioned approaches
can be non trivial. For example, the functional (3), as well as the functional (2)
with ¢ € (0, 1], is not differentiable and, hence, its minimization cannot be done by
simple gradient methods. Moreover, the minimizers of the functionals can only be
computed in an iterative fashion requiring the solution of a system of M = O(Np)
equations at each step, and this can be computationally expensive for large N and/or
.

In the present paper we propose a new approach attempting to detect relevant
variables one by one such that the dimension of the corresponding system of equa-
tions increases only when it is necessary. The first step of our approach consists
in constructing the minimizers f; = f;\j (27) of the functionals T} (f;; Zn) defined
by (2) with ¢ =2, p =1, \y = )}, 2% = x;-, Hi = H,;, j =1,2,.... From the
representer theorem [11, 22], it follows that such minimization is reduced to solving
systems of N linear equations. Then, the minimizers f])‘ 7(z;) are used to rank the
variables x; according to the values of the discrepancies

N , 1/2
D(f(x)): Zn) = (% > (v - 5) ) I =b2

i=1

as follows: the smaller the value of D(fj)‘j (x); Zn), the higher the rank of x;. This
step can be seen as an attempt to interpret the data Zy by using only a univariate
function, and the variable with the highest rank is considered as the first relevant
variable x,, .
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The next step consists in testing the hypothesis that a variable with the second
highest rank, say z,, is also the relevant one. For such a testing we consider the

o A A .
minimizers f,,", f." of the functional

1 N
T3 i 2) = 37 3206 = o) = Fa30) Nl + Ml (9

Our idea is based on the observation [17] that in multi-penalty regularization with
a component-wise penalization, such as (4), one needs to use small as well as large
values of the regularization parameters \,,, A,. So, in the proposed approach the
variable x, is considered as the relevant one if for {\,,,\,} C (0,1), the values of
the discrepancy

1/2
D(f". s Zn) = (%Z(yi— 31”1(:vi1)—f3“(:v2))2> (5)

are smaller than the ones for A,, € (0,1), A, > 1. If it is not the case, then the above
mentioned hypothesis is rejected, and in the same way we test the variable with the
third highest rank, and so on. In the next section we provide a theoretical justifi-
cation for the use of the values of the discrepancies corresponding to regularization
parameters from different intervals for detecting the relevant variables.

On the other hand, if the variable x, has been accepted as the second relevant
variable, i.e., x, = x,,, then to test whether or not the variable with the third
highest rank, say x,, can be taken as the third relevant variable, i.e., whether or not
Z, = T,,, we use the minimizers fy1 , f)\”2 1 of the functional

1 N

:N; (v’ = fu(@,) = fo,(ah,) — fv(l“f,))2+ o

Ml il + Nl fin e, + M

T)%(fl/nfllzale; ZN)

where, with a little abuse of notation, we use the same symbols f,, , f,f‘fl asin (4),(5).
Then as above the variable z, is considered as the relevant one if for {\,,, A, AL} C
(0, 1), the values of the discrepancy

N 1/2
DU F% 1 Zn) = ( Do (v - el = ) - £ >)> (7)

are smaller than for {\,,, A\,,} € (0,1), A, > 1. If it is not the case, then the variable
with the next highest rank is tested in the same way.

If the discrepancy (7) does exhibit the above mentioned behavior, then for testing
the variable with the next highest rank in accordance with the proposed approach,
we need to add to (6) one more penalty term corresponding to that variable, so
that the functional TE(f1, f2, .- ., fp; Zn) of the form (2) containing the whole set of
penalties may appear only at the end of the testing procedure.

In the next sections after presenting the theoretical background, we will illustrate
the application of the proposed approach to the recovery of causal relationships in a
gene regulatory network, and compare it with the results known from the literature.
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2 Theoretical background

At first, we will write a system of necessary conditions for the minimizers of the
functional (2), where, according to the proposed approach, p may take values 1,2, . . .,
and ¢ = 2.

Let RY be the N-dimensional Euclidean space of vectors u = (u!,u?, ..., ul)

N\ 2
equipped with the norm ||ul|gy := (% Z(uZ)Q) and the corresponding inner
i=1
product (-, -)gn.
Consider the sampling operators Sy ; mapping the RKHS H; generated by the

kernels K; = Kj(zj,v;), 7 =1,2,...,p, into RY such that for f € H;,

Swif = (Fa), f@2),... f(=))) € RN,

In view of the reproducing property f(x%) = (Kj(x%,-), f(:))x, of the kernels K, we
can write the adjoints SY ; RN — H; of the sampling operators as follows

(Sk0) (23) = 5 D Kl i )

In terms of Sy ;, the functional (2) has the form

2

T fr, for oo fiy Zn) =

p p
Y=>"Swifil + D Nl (9)
P =1

RN
where Y = (y%, 4%, ...,y"). Then, using the standard technique of the calculus of
variations, we obtain the following system of equations for the minimizers f])‘ I

p
Aj * L O% .
)‘jfj] +ZSN,jSN7VfI;\ - N,jY7 J = 1,2,---729- (1())
v=1

From (8) and (10), it is clear that fj)‘j can be represented as

N
£ () =Y A K, ;). (11)
=1

Note that (11) can be seen as an analog of the well-known representer theorem
[11, 22] for the case of the regularization with a component-wise penalization in
RKHS. This allows the reduction of the minimization of (9) to solving systems
of Np linear equations with respect to ”yf . Recall that in the approach described
above, p will successively take the values 1,2, ..., such that the dimension of the
corresponding system (10) increases only when it is necessary.

Now for the sake of definiteness and simplicity of the presentation, suppose that

Y =Snifi +Snafe+e, (12)

where fi = fi(z1), fo = f2(22), and the vector e € RY may represent a noise in
measurements, as well as a contribution to the data Y coming from functions of
other relevant variables. Note that (12) means that x;, x5 are relevant variables.

5
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Below we analyze the behavior of the discrepancy (5) for vy = 1, p = 2, and
Y = (y', 92, ..., y") given by (12). This means that we consider the second step of
the proposed approach when the variables x1, x5 have already received the ranks 1
and 2 respectively. The analysis of other steps and possibilities can be done similarly,
but it is too technical and is omitted here for brevity.

It is easy to check that for p = 2, the solutions of the system (10) can be written
as follows:

1 Al * * -1 - * * -1
f\ = (/\_QHKl + SNJ ()\2HN + SN,QSNQ) SN,1> SNJ (/\QHN + SN,QSNQ) Y,

A - - -

A
(13)
where Iy is the identity matrix of size N x N, and I, is the identity operator on
RKHS #; generated by the kernel Kj(x;,v,), j =1,2.

Now, we introduce the main assumption used in our theoretical analysis. This as-
sumption is formulated in terms of the elements of the singular-value decomposition
of the sampling operators

N
Sng = Y aihig(kig, Yy, G =1,2, (14)
i=1
where {h;;}, {ki;} are some orthonormal systems in RY and H; respectively, and
a;; > 0. Our assumption is that Sy ; share the same system of {h;;}, i.e.

{hin} = {hiz} = {hi}. (15)
The assumption (15) is in fact an assumption on the distribution of the sampling
points {}}. We illustrate it in the following simple example.
Example 1. Let N = 2, and 2] = 23 = ¢, x} = 7y, 3 = 7. This means that the
sampling points belong to a line parallel to the zo-axis. If z; is already accepted as
the relevant variable, then such sampling points allow an easy test whether or not
29 should be accepted as the relevant variable. Indeed, if y' # 2, then one really
needs one more variable to explain the given data Y = (y!, 3?).

In the considered case, the sampling operators look as follows

Snaf = (1), @), Snaof = (f(n), [(72) ).
Assume that both RKHS are generated by the same Gaussian kernel K(x,v) =
e~@=)* Then
Snaf =L DK (n,) + K(72,0) )/2, ), + (L =D(CK (71, ) = K(72,) )/2, [
Snaf =LK ), [,
and it is easy to check that these operators admit the decomposition (14) with

hia=hia= (1,1)/V?2, hoy = hgy = (1,-1)/V2,
(K(71,-) + K(75,-) )/ (14 e (mmm )12

1
K12 :ﬁ

1 2
oz = (K(n) = K(m,))/(1= O, iy = (1),

aro=(1+ e~ (m—m)? )1/2, aso = (1- e~ (m1—m2)? )1/2, aj = \/5, a1 = 0.

Thus, in the considered case the assumption (15) is satisfied. U

6
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We would like to stress that the assumption (15) is only of the theoretical nature.

Theorem 1. If (12) and (15) hold true, then

1
[ = Swaf = Sxalllaw < 5 (VAllill + Vsl fll) + el

Proof. From (13)-(15), it follows that

2 2
)\1(12'71 + A2a172
)\2 + )\10,1272 + )\gail

N
SN,lJCl)\1 + SN,2f2)\2 = Z \ hi<hi7 Y>RN7
i=1

Then, in view of (12), we have

Y — Snafit — Snafs? =21 + By + s,

where

N
A1 A2a; 1
Yy = , B (Ko, 7

1 ZZI Mg+ Aiagy + Aaa, (Kis [1)my

N
A1 A2a; 2
2 = : hl K’Z , ,

’ ; AAg + )xlaiQ + )\2%271 (Kiz2, f2)me

) :i A1z hi(hs, €)pn
T M+ haZ, o Mg, TR

Observe now that

- )\1)\2%1 ? 9
||21||RN - Z /\1)\2 -+ )\10,22 + /\2a21 <KJZ"17 fl)Hl

(Z

1/2

IN

a Aia 2 v
1G4,1 ‘ 2
Zl (7/\1 _i_a“) (lfz,1>f1>m>

or
2 il = S22 Al

Moreover, in the same way, we obtain that

V2

[|22[my STHfzﬂHm

al ALA 2
by = 12 hz‘,g 2
|| 3||RN (lzl (AlAQ + )\101@272 + )\2(11271) < >RN
N 1/2
S (Z(hla&:)%&]\f) = ||6||RN'

i=1

1/2

Combining these bounds with (16), we obtain the asserted statement.

7

At the same time, it is clear that a successful detection of relevant variables cannot
be done from the data sampled at poorly distributed points {x;} Therefore, some
restrictions on the sampling operators are unavoidable, and the condition (15) is
just one of them.
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The above theorem allows for the conclusion that if there is a contribution to
the data Y that comes from the functions of variables, say x1, xo, then the values of
the discrepancy corresponding to the small values of the regularization parameters
{A1, A2} C (0,1) are expected to be dominated by the ones corresponding to at least
one large parameter. It can be also seen from (17)-(18) that if a;; # 0 and a;5 # 0,
then the terms in »; and Y, are monotonically increasing functions of Ay, .

Using the similar argument, we can extend the statement of the theorem to any
number of variables, provided that corresponding sampling operators share a com-
mon singular system in R, Then the above conclusion can also be made for more
than two variables, and it is the reason behind the use of the values of the discrep-
ancies corresponding to large and small values of the regularization parameters for
detecting relevant variables as it has been described in Introduction. Thus, if the
discrepancy

l
D (oo s Zn) = |V = D Swa fy? (19)
Jj=1 RN
as a function of (A, A, ..., A,) exhibits the above mentioned behavior, then the
variables x,,, x,,, ..., 2, are considered as the relevant ones.

Since in applications it is usually difficult to check the values of (19) for all
Avis Augs - -y Ay, One can realize the above mentioned approach by using Monte-
Carlo-type simulations. Namely, if x,,,2,,,...,z,,_, have been already accepted as
relevant variables, then the values of (19) for the randomly chosen (A,,, Ap,, ..., Ay) €

(0,1)! are compared to the ones for the randomly chosen (A, Ay, - .-, Ay,) € (0, 1)1 x
[1,B], B > 1, and x,, is accepted as the relevant variable if in the above simula-

tions the values of (19) for (A, A, .-+, Ay,) € (0,1)" are dominated by the ones for

Aty Ausy - -5 Ay) € (0, 1)1 x [1, B].

Remark 1. Note that the conclusion about the ordered behavior of the discrepancy

made on the basis of Theorem 1 can be seen as an extension of the following in-

terpretation of the values of discrepancies ||Sy 1 f;\j — Y||g~ for the single penalty

regularization. From [26, Lemma 3.1], it follows that

lim ’
)\]'—)0

Aj .
Swafy? =Y |, = it [1Swsf =Yl
. Aj o
i [t ] =1Vl

Then it is clear that if H; is dense in the corresponding space of continuous functions,
and
Y =5Snifite lelry <Y,

then for small \; and large j\j, one can expect

HSN’jfj)\j —Y

s
RN = HSN’jfjj -r

RN
On the other hand, if Y € (Range(Sy,;))* such that there is no contribution to ¥
allowing a representation in terms of the values of f; € H; at the points {xz N

then the discrepancjes SN,jf]{\j _ YH N do not behave in the ordered way.
R

Of course, in the case of the single variable and penalty, no additional assump-
tions like, for example, (15) are needed to justify the ordered behavior of the dis-

crepancy HSN,jfj)‘j _YHRN for Y = Sn;f; +e. O

8


Standarduser
am_pp_logo_01


At the end of this theoretical section, we illustrate the above approach on
the example from [16], where for p = 40 and N = 100, the data set Zy =
{ (28, 2%, ... ,x;; y') Y, is simulated in such a way that the values T’ are sam-
pled uniformly at random from the interval [—2, 2], and

= Z (:pé)Q + si, (20)

j=1

where €' are zero-mean Gaussian random variables with variances chosen so that
the signal-to-noise ratio is 15 : 1.

The input (20) means that in this example the target function (1) depends on
the first 4 variables. Recall that in our approach we, at first, need to rank the

variables xy, zo, . . ., x40 according to the values of the discrepancies D( f;\j (x); Zn),
7 =1,2,...,40, where f])‘ 7 is the minimizer of the Tikhonov functional
| XN
TS 2 = = 1) A 21)

In our experiments, we choose in (21) A = \; = A*) from the set
Aso={A=X® =10"*. (1.3 k=1,2,...,50 }

according to the quasi-optimality criterion (see, e.g. [25, 4, 12]). Moreover, in (21)
the space H is chosen to be the RKHS generated by the polynomial kernel of degree
2. This choice is made according to [16], where the same kernel has been used in
the approach (3) for dealing with the data (20).

For the considered simulation of the data (20) the sequence of the variables
ordered according to their ranks looks as follows:

X2, X4, T3,T1,T33,Le, ..., L18- (22)

Then as it is described above, the next step consists in testing whether the values
of the discrepancy

N 1/2
1 i i i) 2
D, f5 ) = (NZ(y - R - 24<x4>>>
i=1

corresponding to the small values Ay, Ay are dominated by the ones corresponding

to the small Ay and the large ;. Here and below we use the convention that in the

. A A A Auj o
notation D <fm‘”, o ZN>, the symbols fu;] mean the minimizers of the

functional

2 !
T)?(fumfuza'“afum ZN NZ( Zf“]< M]>> _'_Z)\/‘j Hf“jHiluj'
j=1

In our experiments the small values of the regularization parameters are ran-
domly chosen within the set

AT ={A=2A" =10 (13" k=1,2,...,15 },

9
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while the large values are selected at random from
Arse — £ = AB) = 107% . (1.3)%, k = 40,41,...,50 }.

Moreover, in all experiments the random choice of the regularization parameters
from Az and A5 is performed 15 times.

For the considered simulations of the data (20) and randomly chosen Ay, A4, the
values of the discrepancy D(f5?, fi*; Zy) are displayed in Figure 1. In this Figure,
as well as in all figures below, the horizontal axis represents the run number of the
simulation, while the vertical axis represents the observed value of the discrepancy.
Furthermore, the values corresponding to the simulations with the parameters from

Asmall and AP are connected by red solid lines and blue dashed lines respectively.

discrepancy value

I I I I I
2 4 6 8 10 12

simulation number

Figure 1: The experiment with the data (20). The behavior of the discrepancy
D (f22, 1% Zn) for {ho, Aa} C AZ (red solid line), and Xy € AZ, Ay € A®
(blue dashed line).

Note that in Figure 1 and in some other figures below, the curves displaying
the values of the discrepancy for the regularization parameters from A3 look like
straight lines. In view of Theorem 1, the fluctuations in the values of the discrepancy
corresponding to the small values of the regularization parameters are indeed small.
They are not so much visible because of the vertical axis scaling used in the figures.

According to our approach, the behavior of the discrepancy displayed in Figure 1
means that the corresponding variables xs, x4 have to be accepted as the relevant
ones. Then taking into account the ranking (22), we need to check the behavior of
the discrepancy D(f52, f*, fa*; Zn) for {dg, Ay, A3} € Azl and { g, Ay} © Agmell,
A3 € A% This behavior is displayed in Figure 2 and it allows the acceptance of
3 as the next relevant variable.

In view of Figure 3 displaying the behavior of the discrepancy

A2 A4 A3 AL
D(2,4,3,1,ZN),

the same conclusion can be made regarding the variable z;.
At the same time, further testing along the ranking list (22) shows that the

discrepancies D(f32, fi4, 3:\3, M fj)‘j; Zy) with j = 33,6, ..., 18 do not exhibit the
ordered behavior for A; € Az and \; € A%®. Typical examples are displayed in

10
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19— ! v [ ! ' 4
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discrepancy value

1181 El

17

simulation number

Figure 2: The experiment with the data (20). The behavior of the discrepancy
D(f32, 4, [2%; Zn) for {Ag, Mg, A3} € Agwall (ved solid line), and {Ay, Ay} € Azl
A3 € AE (blue dashed line).

Figure 4 and Figure 5. Therefore, our approach does not allow the acceptance of
33, Tg, . .., T1g as the relevant variables.

Thus, for the considered simulation of the data (20) all relevant variables are
correctly detected by the proposed approach.

3 Application to the reconstruction of a causality
network

In this section we discuss the application of our approach based on multi-penalty
regularization to the inverse problem of detecting causal relationships between genes
from the time series of their expression levels.

Viewing each gene in a genome as a distinct variable, say u,, associated to the
rate of gene expression, the value u!, = wu,(t) of this variable at time moment ¢
can be influenced by the values u} = uj(7), 5 = 1,...,p, at the time moments
preceding t, i.e., 7 < t. This influence is realized through the regulatory proteins
produced by genes. Moreover, gene expression levels u} are often interpreted and
measured in terms of levels or amounts of such proteins. Therefore, time series gene
expression data can be used for detecting causal relationships between genes and
constructing gene regulatory networks allowing better insights into the underlying
cellular mechanisms.

A gene regulatory network or, more generally, a causality network is a directed
graph with nodes that are variables u,, v = 1,2, ..., p, and directed edges represent-
ing causal relations between variables. We write w, < u; if the variable u; has the
causal influence on the variable u,. An example of such a network is presented in
Figure 6. This network contains genes that are active in the human cancer cell line
HeLa [27]. It was derived from the biological experiments in [14], and then, it was
used for testing several algorithms devoted to the causality detection [21, 15, 23, 19].
Using the same data as in the above papers, we discuss an applicability of our ap-

11
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discrepancy value

simulation number

Figure 3: The experiment with the data (20). The behavior of the discrep-
ancy D(f32, f4, £33, [ Zn) for {Xg, Aay Az, it € Agl (red solid line), and
(X2, g, st € Agmall X\ € AZ® (blue dashed line).

proach in reconstructing the causalities within this network.

A causality network can be characterized by the so-called adjacency matrix A =
{A,;} ;=1 with the following elements A, ; = 1 if u, ¢ u;, otherwise, 4, ; = 0. In
Figure 7 we present the adjacency matrix A = A™° corresponding to the causality
network displayed in Figure 6. Adjacency matrices allow a convenient comparison
of different reconstruction methods of causality networks.

Note that causality networks arise in various scientific contexts. A detailed
overview of the approaches for measuring a causal influence can be found in [10],
where it is mentioned that the introduction of the concept of causality into the
analysis of data observed in time series is due to Clive W. J. Granger [8], who was
awarded the Nobel Prize in Economic Sciences in 2003.

The concept of causality in the Granger approach is based on the assumption
that (i) the cause should precede its effect, and (ii) the cause contains an information
about the effect that is in no other variable. A consequence of these assumptions
is that the causal variable u; can help to forecast the effect variable u,. In this
restricted sense of causality, referred to as Granger causality, the variable w; is said
to cause another variable u, if future values v, t = L+ 1,L +2,...,T, of u, can
be better predicted using the past values uj, uj, 7 =t —1,t —2,...,t — L, of u;
and u, rather than using only the past values of u,. Here L is the maximum lag
allowed in the past observations, and we assume that the available time series data
are {UE}thla {up by

The notion of Granger causality was originally defined for a pair of time series
and was based on linear regression models. If we are interested in cases in which p
time series variables are presented and we wish to determine a causal relationships
between them, then we naturally turn to the Graphical Granger modeling based on
the linear multivariate regression of the form

P L
ub e Y Bl t=L+1,L+2,....T (23)
j=1 1=1
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discrepancy value

simulation number

Figure 4: The experiment with the data (20). The behavior of the discrepancy
D(f2, 24, 23, 12 235, Zn) for {ha, A, Az, A, sz} © ARl (red solid line), and
{02, Ay Az, Ay € Asll \as e AR (blue dashed line).

Then, u; is said to be Granger-causal for u, if the corresponding coefficients Bé,
l =1,2,...,L, are in some sense significant. Thus, we are interested in selecting
the most important coefficients. For this purpose, a particular relevant class of
methodologies is those that combine regression with variable selection, such as the
Lasso [24, 31], which minimizes the squared discrepancy plus a penalty on the sum,
or the weighted sum of the absolute values of the regression coefficients Bé.

Lasso-type estimates have been used for discovering graphical Granger causality
by a number of researchers, including [1, 23, 19]. Note that in regularization theory
Lasso is known as the [;-Tikhonov regularization. It has been extensively studied in
the framework of the reconstruction of the sparse structure of an unknown signal. It
should be also mentioned that the sparsity enforcing regularization techniques, such
as Lasso, are viewed now as a methodology for the quantitative inverse problems in
systems biology [6].

At the same time, as it is mentioned in [15], the Lasso estimate of the graphical
Granger causality may result in a model (23) in which the large (significant) coeffi-

L
cients ﬁ; appear in many sums » ﬁjl.uﬁ-’l. Such a model is hard to interpret, because
=1

of natural groupings existing between time series variables {uz-_l}le, 7=12,...,p.
We mean that the time series variables {uﬁ_l}le with the same index, say j = ji,
should be either selected or eliminated as a whole. The group Lasso procedure
29, 30] was invented to address this issue and it was used in [15] in order to obtain
the corresponding Granger graphical model of gene regulatory networks. According
to this model, a gene u;, causes a gene w, if in (23) the coefficients 6;1, l=1,2,...,L,
are significant components of the vector = (ﬁ]l) solving the minimization problem

. b L 2 o /L 1/2
Z <uty - Z §u2_1> + A Z <Z(ﬁ§)2> — mﬂin. (24)

t=L-+1 j=1 1=1 j=1 \i=1

1/2

Here note that similarly to (3) by using the square root (-)'/* in the penalty term,
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discrepancy value

simulation number

Figure 5: The experiment with the data (20). The behavior of the discrepancy
D(f32, 4 23, 2 205 Zn) for { Mg, Mg, A3, A, A} € Aspll (red solid line), and
{02, Ay Az, Ay} € Asll \g e A (blue dashed line).

Figure 6: Causality network of the human cancer cell line HeLa from the BioGRID
database (www.thebiogrid.org).

one encourages the coefficients associated with each particular gene to be similar in
amplitude, as contrary to using the [;-norm, for example. The opposite side of this
is that the procedures of minimizing (24) are nonlinear and require the solution of
O(pL) equations on each iteration step. This can be computationally expensive for
large number p of genes.

On the other hand, the above mentioned natural groupings between the val-
ues uj of variables u; can be introduced already in the multivariate regression by
considering instead of (23) the following form

L

p
ui%Z/}(Z éuﬁ‘l>> t=L+1LL+2...T, (25)
j=1

=1

where f; are univariate functions in some Reproducing Kernel Hilbert Spaces H;.
Note that (25) can be seen as a particular form of structural equation models dis-
cussed in [18]. Then a conclusion that the gene wu; causes the gene w, can be
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Atrue AMP ATL

Figure 7: The adjacency matrix A" for the causality network in Figure 6 and its
various estimations. The white squares correspond to A; ; = 1; the black squares —

to the zero-elements. The genes are numbered in the following order: CDC2, CDC6,
CDKN3, E2F1, PCNA, RFC4, CCNA2, CCNB1, CCNE1.

drawn by determining that the variable x;, is a relevant variable of a function of the
form (1) whose values at the points

L

ph=Y "Bttt i=12,  T—L j=12...p (26)
=1

are equal to A A
y'=ult i=1,2,...,T — L. (27)

14

Of course, the latter conclusion can be drawn only when in (26) some values of
the coefficients 5; have been already set. For example, these regression coefficients
can be precomputed in (23) by some inexpensive algorithm such as the ordinary or
regularized least squares (OLS or RLS). Note that such a precomputation step is
also required in Adaptive Lasso [31] that has been discussed in the context of the
regulatory networks discovery in [15], and where an auxiliary vector estimator of
the coefficients in (23) is usually obtained by OLS or Ridge Regression.

Another possibility of determining the coefficients BJ‘» in (26) is to use the output
vector of any of the graphical Granger models based on (23) such as [15, 23]. In
this case, the discussed approach provides an opportunity of additional evaluation of
these models in the sense that causal relationships detected by them and confirmed
in the discussed approach can be considered as more certain.

After specifying the coefficients B; in (26), the values (26), (27) can form the
data set Zy = {(x},2%,...,2% ; y")};L;, N = T — L. Then, the detection of the
relevant variables from the data Zy follows the approach described in Section 1 and
analyzed in Section 2. The only adjustment is that in view of the idea of Granger
causality (comparison of the accuracy of regressing for u, in terms of its own past
values with that of regressing in terms of the values u, and the values of a possible
cause), we start the ranking list of variables with the variable x, when looking for
the genes causing the gene u,,.
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P R Fy
AMP 1 0.78 0.88
ACNET 0.36 0.44 0.4
AGL 0.24 0.44 0.3
ATL 0.3 0.33 0.32

Table 1: The values of the performance measures for the adjacency matrices in
Figure 7.

Below we present the results of the application of the proposed approach to the
data of the gene expressions for the network of genes displayed in Figure 6. These
data is taken as in [21, 15, 23]. In (9), (10), (25) all univariate functions f; are
assumed to be in the same RKHS generated by the Gaussian kernel K(z,v) =
e~ (@) Moreover, the standard RLS-algorithm has been used for precomputing
the regression coefficients in (25), (26). The regularization parameter in RLS has
been chosen according to the quasi-optimality criterion. As in [21, 15, 23] the gene
expressions {u}} are observed for ¢t = 1,2,...,47, and, as it is suggested in [19],
the maximum lag was chosen as L. = 4. Then, we follow the same steps as in the
illustrating example in Section 2. In particular, we use the same sets AZpl ALE

The application of the proposed approach to the above mentioned data results
in the adjacency matrix AMY displayed in Figure 7.

As it has been already mentioned, the data corresponding to the causality net-
work in Figure 6 was used for testing several methods devoted to the regulatory
networks modeling. First, it was used in [21], where the authors developed a search-
based algorithm, called CNET, and applied it to this set of data. Then, the same
set of nine genes was also analyzed in [15] by means of group Lasso (GL) algorithm
based on the minimization of the functionals of the form (24). In [23] the authors
pointed out some limitations of GL-algorithm and proposed to overcome them by
means of the so-called truncating Lasso (TL) penalty algorithm. Figure 7 presents
the adjacency matrices ASNET  AGL AT of the estimated causality network with
the genes from Figure 6 obtained respectively by the algorithms from [21, 15, 23].

As in [23] to assess the performance of the discussed algorithms, we use three
well-known performance measures: precision (P), recall (R), and their harmonic
mean (F)) (see, e.g., [28]). Table 1 contains the values of these measures for the
adjacency matrices given by the discussed methods and displayed in Figure 7. This
table shows that the best performance is achieved by our approach.

To illustrate the steps of our approach in reconstructing the network from Fig-
ure 6, we present Figures 8-10 displaying the behavior of the discrepancies, which
in the present context play the role of the indicators for the causal relationships.
These figures are related to CDC2 gene numbered as x;. We take this gene as an
example because its causing genes are poorly detected by the CNET, GL, and TL
algorithms.

Using the data for this gene and transforming them into (26),(27) with v = 1,
we receive the following sequence of the variables ordered according to their ranks

L1, X3, X7, T5,T4,2T9, L6, L2, T3-
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Figures 8-10 display the behavior of the discrepancies

A1 o£A3 £hs,
D( 1 »J3 »J5 > ZN)a
A1 A3 rAs A9 6.
D( 1 +J3 5J5 »J9 »J6 > ZN)a

/\1 )\3 )\5 )\9 /\8.
D(1737579a872N)

considered respectively at 3th, 6th and 8th steps of our approach. The reason to
present these steps as examples is explained below.

The behavior of the discrepancy displayed in Figure 8 indicates that according
to our approach, the variable x5, which corresponds to PCNA gene, should be
considered as the cause for CDC2. From Figure 6 one can see that this causal
relationship is true, but it has not been detected by any other considered algorithms.

discrepancy value
T
L

simulation number

Figure 8: The experiment with the gene expressions data. The behavior of the
discrepancy D ( 1)‘1, 3)‘3, 5’\5; Z N) for small values of the regularization parameters

(red solid line) and for small Ay, A3 and large A5 (blue dashed line).

According to our approach, the interpretation of the erratic behavior of the
discrepancies in Figure 9 is that xg is not the relevant variable, and therefore, the
corresponding gene RFC4 does not cause CDC2. This conclusion is also in agreement
with Figure 6. At the same time, the relationship RFC4 — CDC2 is wrongly
detected by both Lasso-based algorithms GL and TL.

The situation in Figure 10 is opposite. According to our approach, the be-
havior displayed in this Figure means that zg is the relevant variable and, thus,
CCNB1 — CDC2. This relationship is true, but it was not detected by the Lasso-
based algorithms.

Therefore, in our opinion, Table 1 and Figures 8-10 can be seen as an evidence
of the reliability of the proposed approach in the application to the real data.

4 Conclusion

We have proposed a new method for detecting the relevant variables. The method
is based on the inspection of the behavior of discrepancies of multi-penalty reg-
ularization with a component-wise penalization for small and large values of the

17


Standarduser
am_pp_logo_01


discrepancy value

simulation number

Figure 9: The experiment with the gene expressions data. The behavior of the
discrepancy D ( f‘l, 5\3, 5\5, 9’\9, 6)‘6; Z N) for small values of the regularization pa-

rameters (red solid line) and for small A\, A3, A5, Ag and large A\ (blue dashed line).

regularization parameters. An ordered behavior suggests the acceptance of the hy-
pothesis that the corresponding variable is the relevant one, while an erratic behavior
of discrepancies is the signal for the rejection of the hypothesis.

We provided justification of the proposed method under the condition that the
corresponding sampling operators share a common singular system in R™. Then we
demonstrated the method in the application to the inverse problem of the recon-
struction of the gene regulatory networks.

A promising performance of the method in the mentioned application calls for its
further investigation. In particular, it is interesting to study the conditions on the
sampling points/operators guaranteeing or preventing the detection of the relevant
variables. It is also interesting to study the application of the proposed approach
to the detection of the cause-effect relationships in various scientific contexts. As it
was mentioned, the approach can be realized on the top of different techniques for
discovering Granger causality. So, the coupling of the known techniques with the
presented approach is a further interesting point for detailed investigations.

5 Acknowledgements

The major part of this work has been prepared, when the second author was stay-
ing at RICAM as a PostDoc. She gratefully acknowledges the partial support by
the Austrian Fonds zur Forderung der Wissenschaftlichen Forschung (FWF), grant
P25424 “Data-driven and problem-oriented choice of the regularization space.”

References

[1] A. Arnold, Y. Liu, and N. Abe. Temporal causal modeling with graphical
Granger methods. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 66—75, USA, 2007.
ACM New York.

18


Standarduser
am_pp_logo_01


discrepancy value
T
L

simulation number

Figure 10: The experiment with the gene expressions data. The behavior of the

Al A3 pAs rAg

discrepancy D( FER PN PN P 8)‘8; ZN) for small values of the regularization pa-
rameters (red solid line) and for small A\, A3, A5, Ag and large A\g (blue dashed line).

2]

[10]

[11]

F. Bach. Exploring large feature spaces with hierarchical multiple kernel learn-
ing. In D. Koller and et al, editors, Advances in Neural Information Processing
Systems 21, pages 105-112. 2009.

F. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic
duality, and the SMO algorithm. In Proceedings of the Twenty-first Interna-
tional Conference on Machine Learning, 2004.

F. Bauer and M. Reif}. Regularization independent of the noise level: an analysis
of quasi-optimality. Inverse Probl., 24(5):16 p., 2008.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Commun. Pure Appl.
Math., 57(11):1413-1457, 2004.

H. W. Engl, C. Flamm, J. Lu, P. Kiigler, S. Miiller, and P. Schuster. Inverse
problems in systems biology. Inverse Probl., 25(12):123014, 2009.

S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sens-
ing. Springer, New York, 2013.

C. Granger. Investigating causal relations by econometric models and crossspec-
tral methods. Econometrica, 37:424-438, 1969.

T. Hastie and R. Tibshirani. Generalized additive models. Chapman and Hall,
1990.

K. Hlavackova-Schindler, M. Palus, M. Vejmelka, and J. Bhattacharya. Causal-
ity detection based on information-theoretic approaches in time series analysis.
Physics Reports, 441:1-46, 2007.

G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation
on stochastic processes and smoothing by splines. The Annals of Mathematical
Statistics, 41(2):495-502, 1970.

19


Standarduser
am_pp_logo_01


[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Kindermann and A. Neubauer. On the convergence of the quasioptimal-
ity criterion for (iterated) Tikhonov regularization. Inverse Probl. Imaging,
2(2):291-299, 2008.

V. Koltchinskii and M. Yuan. Sparsity in multiple kernel learning. Ann. Stat.,
38(6):3660-3695, 2010.

X. Li and et al. Discovery of time-delayed gene regulatory networks based on
temporal gene expression profiling. BMC' Bioinformatics, 7(26), 2006.

A. C. Lozano, N. Abe, Y. Liu, and S. Rosset. Grouped graphical Granger
modeling for gene expression regulatory networks discovery. Bioinformatics,
25:110-118, 2009.

S. Mosci, L. Rosasco, M. Santoro, A. Verri, and S. Villa. Nonparametric sparsity
and regularization. Technical Report 41, MIT, CSAIL, Cambridge, USA, 2011.

V. Naumova and S. Pereverzyev.  Multi-penalty regularization with a
component-wise penalization. Inverse Probl., 29(7):15, 2013.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University
Press, Cambridge, 2000.

S. Pereverzyev Jr and K. Hlavackova-Schindler. Graphical Lasso Granger
method with 2-levels-thresholding for recovering causality networks. Technical
report, University of Innsbruck, Department of Mathematics, Applied Mathe-
matics Group, 2013.

P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. Sparse additive models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
71(5):1009-1030, 20009.

F. Sambo, B. D. Camillo, and G. Toffolo. CNET: an algorithm for reverse
engineering of causal gene networks. In NETTAB2008, Varenna, Italy, 2008.

B. Scholkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem.
In Computational learning theory, pages 416-426. Springer: Lecture Notes in
Computer Science 2111, 2001.

A. Shojaie and G. Michailidis. Discovering graphical Granger causality using
the truncating lasso penalty. Bioinformatics, 26:1517-1523, 2010.

R. Tibshirani. Regression shrinkage and selection via the Lasso. J. R. Stat.
Soc. B, 58:267-288, 1996.

A. N. Tikhonov and V. B. Glasko. Use of the regularization method in non-
linear problems. USSR Comp. Math. Math. Phys., 5:93-107, 1965.

G. M. Vainikko and A. Y. Veretennikov. [lteration Procedures in Ill-Posed Prob-
lems. Moscow: Nauka, 1986. In Russian.

M. L. Whitfield and et al. Identification of genes periodically expressed in the
human cell cycle and their expression in tumors. Mol. Biol. Cell, 13:1977-2000,
2002.

20


Standarduser
am_pp_logo_01


[28] Wikipedia. Precision and recall — Wikipedia, The Free Encyclopedia, 2014.
[Online; accessed 3-January-2014].

[29] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. J. R. Stat. Soc. B, 68:49-67, 2006.

[30] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for
grouped and hierarchical variable selection. Ann. Stat., 37(6A):3468-3497,
2009.

[31] H. Zou. The adaptive Lasso and its oracle properties. J. Am. Stat. Ass.,
101(476):1418-1429, 2006.

21


Standarduser
am_pp_logo_01


