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Abstract

Denoising by frame thresholding is one of the most basic and efficient methods
for recovering a discrete signal or image from data that are corrupted by additive

Gaussian white noise. The basic idea is to select a frame of analyzing elements that
separates the data in few large coefficients due to the signal and many small coeffi-
cients mainly due to the noise ǫn. Removing all data coefficients being in magnitude

below a certain threshold yields a reconstruction of the original signal. In order to
properly balance the amount of noise to be removed and the relevant signal features
to be kept, a precise understanding of the statistical properties of thresholding is im-

portant. For that purpose we derive the asymptotic distribution of maxω∈Ωn |〈φ
n

ω
, ǫn〉|

for a wide class of redundant frames
(

φn

ω
: ω ∈ Ωn

)

. Based on our theoretical re-
sults we give a rationale for universal extreme value thresholding techniques yielding

asymptotically sharp confidence regions and smoothness estimates corresponding to
prescribed significance levels. The results cover many frames used in imaging and
signal recovery applications, such as redundant wavelet systems, curvelet frames,

or unions of bases. We show that ‘generically’ a standard Gumbel law results as it is
known from the case of orthonormal wavelet bases. However, for specific highly re-
dundant frames other limiting laws may occur. We indeed verify that the translation

invariant wavelet transform shows a different asymptotic behaviour.

Keywords. Denoising, thresholding estimation, extreme value analysis, Gum-
bel distribution, Berman’s inequality, wavelet thresholding, curvelet thresholding,
translation invariant wavelets, extreme value threshold, frames, redundant dictio-

naries.
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1 Introduction

We consider the problem of estimating a d-signal or image un from noisy observations

Vn (k) = un (k) + ǫn (k) , for k ∈ In := {0, . . . , n− 1}d with d ∈ N . (1.1)

Here ǫn (k) ∼ N
(

0, σ2
)

are independent normally distributed random variables (the
noise), n is the level of discretization, and σ2 is the variance of the data (the noise level).
The signal un is assumed to be a discrete approximation of some underlying contin-
uous domain signal obtained by discretizing a function u : [0, 1]d → R. One may think
of the entries of un as point samples un (k) = u (k/n) on an equidistant grid. However,
in some situations it may be more realistic to consider other discretization models.
Area samples, for example, are more appropriate in many imaging applications. In
this paper we will not pursue this topic further, because most of the presented results
do not crucially depend on the particular discretization model as long as un can be
associated with a function u∗n : [0, 1]

d → R (some kind of abstract interpolation) which,
in a suitable way, tends to u as n→ ∞.

The aim of denoising is to estimate the unknown signal un :=
(

un (k) : k ∈ In
)

∈ R
In

from the data Vn :=
(

Vn (k) : k ∈ In
)

∈ R
In . The particular estimation procedure we

will analyze in detail is soft-thresholding in frames and overcomplete dictionaries. We
stress, however, that a similar analysis also applies to different thresholding methods,
such as block thresholding techniques (as considered, for example, in [7, 8, 14, 37]).

1.1 Wavelet Soft-Thresholding

In order to motivate our results for thresholding for general frames we start by one
dimensional wavelet soft-thresholding. For that purpose, let

(

ψn
j,k : (j, k) ∈ Ωn

)

denote

an orthonormal wavelet basis of Rn, where n = 2J is the number of data points and

Ωn :=
{

(j, k) : j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , 2j − 1}
}

the index set of the wavelet basis. Wavelet soft-thresholding is by now a standard
method for signal and image denoising (see, for example, [1, 18, 25, 26, 28, 38, 39,
46, 53] for surveys and some original references). It consists of the following three
basic steps:

1) Compute all empirical wavelet coefficients Yn (j, k) =
〈

ψn
j,k, Vn

〉

of the given noisy
data with respect to the considered orthonormal wavelet basis.

2) For some threshold Tn ∈ (0,∞), depending on the noise level and the number of
data points, apply the nonlinear soft-thresholding function

S
(

· , Tn
)

: R → R : y 7→ S (y, Tn) :=











y + Tn if y ≤ −Tn
y − Tn if y ≥ Tn

0 otherwise

(1.2)

to each wavelet coefficient of the data. The resulting thresholded coefficients
S(Yn(j, k), T ) are then considered as estimates for the wavelet coefficients of un.
Notice, that the soft-thresholding function can be written in the compact form
S (y, Tn) = sign (y) (|y| − Tn)+. Further, it sets all coefficients being in magnitude
smaller than Tn to zero and shrinks the remaining coefficients towards zero by
the value Tn.
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3) The desired estimate for the signal un is then defined by the wavelet series of the
thresholded empirical coefficients S(Yn(j, k), T ),

ûn =

J
∑

j=0

2j−1
∑

k=0

S(Yn(j, k), Tn)ψ
n
j,k . (1.3)

Every step in the above procedure can be computed in O(n) operation counts and
hence the overall procedure of wavelet soft-thresholding is linear in the number n of
unknown parameters (see [16, 26, 46]). It is thus not only conceptually simple but
also allows for fast numerical implementation. Even simple linear spectral denoising
techniques using the FFT algorithm have a numerical complexity of O

(

n logn
)

floating
point operations. Besides these practical advantages, wavelet soft-thresholding also
obeys certain theoretical optimality properties. It yields to an almost optimal mean
square error simultaneously over a wide range of function spaces (including Sobolev
and Besov spaces) and, at the same time, has a smoothing effect with respect to any
of the norms in these spaces. Hence soft-thresholding automatically adapts to the
unknown smoothness of the desired signal [25, 27].

Any particular choice of the thresholding parameter Tn is a tradeoff between signal
approximation and noise reduction: A large threshold removes much of the noise but
also removes parts of the signal. Hence a reasonable threshold choice should be as
small as possible under the side constrained that a significant amount of the noise
is removed. The smaller the actual threshold is taken, the more emphasis is given
on signal representation and the less emphasis on noise reduction. A commonly used
threshold is the so called universal threshold Tn = σ

√
2 logn as proposed in the seminal

work [25], where the following result is shown.

Theorem 1.1 (Denoising property of wavelet soft-thresholding [25]).
Suppose that Dn are consistent with an underlying orthonormal wavelet basis D on [0, 1]
having m-times continuously differentiable elements and m vanishing moments, that

un (k) = u (k/n), for k = 0, . . . n − 1, denote point samples of a function u : [0, 1] → R and

that ûn are constructed by (1.3) with the universal threshold Tn = σ
√
2 logn. Then, there

exists a special smooth interpolation of ûn producing a function u∗n : [0, 1] → R. Further,

there are universal constants (πn)n ⊂ (0, 1) with πn → 1 as n = 2J → ∞, such that for any

Besov space Br
p,q which embeds continuously into C[0, 1] (hence r > 1/p) and for which D

is an unconditional basis (hence r < m),

P

{

‖u∗n‖Br
p,q

≤ c(Br
p,q,D) ‖u‖Br

p,q
; ∀u ∈ Br

p,q

}

≥ πn , (1.4)

for constants c(Br
p,q,D) depending on Br

p,q and D but neither on u nor on n.

Theorem 1.1 states that the estimate u∗n is, with probability tending to one, simultane-
ously as smooth as u for all smoothness spaces Br

p,q. This result can be derived from
the denoising property (see [25, 39, 40] and also Section 3.2)

P

{

max
(j,k)∈Ωn

∣

∣

〈

ψn
j,k, ǫn

〉∣

∣ ≤ σ
√

2 logn

}

≥ πn → 1 as n→ ∞ . (1.5)

For an orthonormal basis, the noise coefficients 〈ψn
j,k, ǫn〉 ∼ N(0, σ2) are independently

distributed. Hence Equation (1.5) is a consequence from standard extreme value re-
sults for independent normally distributed random vectors [21, 44]. Extreme value
theory also implies the limiting Gumbel law

lim
n→∞

P

{

max
ω∈Ωn

∣

∣

〈

φnω , ǫn
〉∣

∣ ≤ σ
√

2 logn+ σ
2z − log logn− log π

2
√
2 logn

}

= exp
(

−e−z
)

, (1.6)

3

Standarduser
am_pp_logo_01



uniformly in z ∈ R. This even allows to exactly characterize all thresholding sequences
Tn yielding a denoising property like (1.5) with Tn in place of σ

√
2 logn.

In the case that a redundant frame is considered instead of an orthonormal wavelet
basis, then the empirical coefficients are no more linear independent and limiting
result like (1.6) are much harder to come up with. In this paper we verify that a
similar distributional result as in (1.6) holds for a wide class of redundant frames with
n replaced by the number of frame elements. This class is shown to include non-
orthogonal wavelets, curvelet frames and unions of bases (see Theorems 4.4, 4.7 and
4.12). Roughly speaking, the reason is, that the redundancy is of these frames weak
enough that it asymptotically vanishes in a statistical sense and the system behaves
as an independent system. However, we also an important example (in the form of the
translational wavelet system; see Theorem 4.9) which shows that highly redundant
systems may show a different asymptotic behaviour.

Our work is motivated by the well known observation that the universal threshold
sigma σ

√
2 logn often is found to be too large in applications, hence including too few

coefficients into the final estimator (see [2, 27, 46]). This recently has initiated further
research on refined thresholding methods and we would like to shed some light on
this phenomenon for a large class of frame systems by providing a refined asymptotics
as in (1.6) in addition to results of the type (1.5). We also provide a selective review
on current thresholding methodology where we focus on the link between statistical
extreme value theory and thresholding techniques.

1.2 Frame Soft-Thresholding: Main Results

For any n ∈ N, let Dn =
(

φnω : ω ∈ Ωn

)

denote a frame of RIn , where Ωn is a finite index
set, that consists of normalized frame elements (that is, ‖φnω‖ = 1 holds for all ω ∈ Ωn)
and has frame bounds an ≤ bn (compare Section 2.1). Our main results concerning
thresholding estimation in the frame Dn will hold for asymptotically stable frames,
which are defined as follows.

Definition 1.2 (Asymptotically stable frames).
We say that a family of frames (Dn)n∈N with normalized frame elements is asymptoti-
cally stable, if the following assertions hold true:

(i) For some ρ ∈ (0, 1),
∣

∣{(ω, ω′) ∈ Ω2
n : |〈φnω , φnω′〉| ≥ ρ}

∣

∣ = o

(

|Ωn|√
log|Ωn|

)

as n→ ∞.

(ii) The upper frame bounds bn are uniformly bounded, i.e., B := sup {bn : n ∈ N} <∞.

The following Theorem 1.3 is the key to most results of this paper. It states, that after
proper normalization the distribution of maxω∈Ωn |〈φnω , ǫn〉| converges to the Gumbel
distribution – provided that the frames are asymptotically stable.

Theorem 1.3 (Limiting distribution for asymptotically stable frames).
Assume that (Dn)n∈N is an asymptotically stable family of frames, and let (ǫn)n∈N be a

sequence of random vectors in R
In with independent N(0, σ2)-distributed entries. Then,

for every z ∈ R,

lim
n→∞

P

{

max
ω∈Ωn

∣

∣

〈

φnω, ǫn
〉∣

∣ ≤ σ
√

2 log |Ωn|+ σ
2z − log log |Ωn| − log π

2
√

2 log |Ωn|

}

= exp
(

−e−z
)

. (1.7)

The function z 7→ exp
(

− e−z
)

is known as the Gumbel distribution.

Proof. See Section 3.1.

4

Standarduser
am_pp_logo_01



In the case that Dn are orthonormal bases, results similar to the one of Theorem 1.3
follow from standard extreme value results (see, for example, [21, 44]) and are well
known in the wavelet community (see, for example, [25, 39, 46]). However, neither the
convergence of the maxima including absolute values (which is the actually relevant
case) nor the use of redundant systems are covered by these results. In Section 4
we shall verify that many redundant frames, such as non-orthogonal wavelet frames,
curvelets and unions of bases, are asymptotically stable and hence the limiting Gum-
bel law of Theorem 1.3 can be applied. Based on this limiting extreme value distri-
bution we provide an exact characterisation of all thresholds Tn satisfying a denoising
property similar to the one of (1.5) for general frame thresholding; see Section 3 for
details.

Suppose that (αn)n∈N is a sequence in (0, 1) converging to α ∈ [0, 1), let zn satisfy
exp (−e−zn) = αn and let un denote the wavelet soft-thresholding estimate with the
threshold

Tn = σ
√

2 log |Ωn|+ σ
2zn − log log |Ωn| − log π

2
√

2 log |Ωn|
. (1.8)

According to Theorem 1.3, the probability that un is contained in Rn = {ūn : |〈φj,k, Vn −
ūn〉| ≤ Tn for all ω ∈ Ωn} tends to 1 − α as n → ∞. Hence the sets Rn define asymptot-
ically sharp confidence regions around the given data for any significance level α; see
Section 3.3 for details.

The proof of Theorem 1.3 relies on new extreme value results for dependent chi-square
distributed random variables (with one degree of freedom) which we establish in Sec-
tion A. In the field of statistical extreme value theory, the following definition is com-
mon.

Definition 1.4 (Gumbel type).
A sequence (Mn)n∈N

of real valued random variables is said to be of Gumbel type (or

to be of extreme value typ I), if there are real valued normalizing sequences (an)n∈N
and

(bn)n∈N
, such that the limit P {Mn ≤ anz + bn} → exp

(

− e−z
)

as n → ∞ holds point-wise

for all z ∈ R (and therefore uniformly).

Using the notion just introduced, Theorem 1.3 states that maxω∈Ωn |〈φnω , ǫn〉| is of Gum-
bel type, with normalizing sequences σa

(

χ, |Ωn|
)

and σb
(

χ, |Ωn|
)

, where

a
(

χ, |Ωn|
)

:=
1

√

2 log |Ωn|
, (1.9)

b
(

χ, |Ωn|
)

:=
√

2 log |Ωn| −
log log |Ωn|+ log π

2
√

2 log |Ωn|
. (1.10)

As shown in Theorem 3.3, the maxima of 〈φnω , ǫn〉 without taking absolute values are
also of Gumbel type. We emphasize, however, that the corresponding normalizing
sequences differ from those required for the maxima with absolute values. Indeed,
maxω∈Ωn |〈φnω , ǫn〉| behaves as the maximum of 2 |Ωn| (opposed to |Ωn|) independent stan-
dard normally distributed random variables; compare with Remark A.6. The different
fluctuation behaviour of the maxima with and without absolute values is not resem-
bled by Equation (1.5), which is exactly the same for the maxima with and without
absolute values. Only in a refined distributional limit (1.7) this difference becomes
visible. Moreover, in the case that the frames Dn are redundant, no result similar to
Theorem 1.3 is known at all.

Asymptotical stability typically fails for frames without an underlying infinite dimen-
sional frame. A prototype for such a family is the dyadic translation invariant wavelet
transform (see Section 4.1.4). In this case, the redundancy of the translation invari-
ant wavelet system increases boundlessly with increasing n, which implies that the
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corresponding upper frame bounds tend to infinity as n → ∞. We indeed prove the
following counterexample if Condition (ii) in Definition 1.2 fails to hold.

Theorem 1.5 (Tighter bound for translation invariant wavelet systems).
Suppose that (ψω)ω∈Ωn is a discrete translation invariant wavelet system with unit norm

elements generated by a mother wavelet ψ that is continuously differentiable, and let

(ǫn)n∈N be a sequence of random vectors in R
In with independent N(0, σ2)-distributed

entries. Then, for some constant c > 0 and all z ∈ R we have

lim inf
n→∞

P

{

max
ω∈Ωn

∣

∣

〈

ψn
ω, ǫn

〉∣

∣ ≤
√

2 logn+
z + log (c/π)√

2 logn

}

≥ exp
(

−e−z
)

.

Proof. This follows from Theorem 4.9, that we proof in Section B.2.

Theorem 1.5 shows that the maximum of the translation invariant wavelet coefficients
is strictly smaller (in a distributional sense; see Section 4.1.4) than the maximum of
an asymptotically stable frame with |Ωn| = n logn elements and therefore the result
of Theorem 1.3 does not hold for a translation invariant wavelet system. Moreover,
Theorem 1.5 shows that there exists a thresholding sequence being strictly smaller
than

√

2 log |Ωn| yields asymptotic smoothness; see Section 4.1.4 for details. This
also reveals the necessity of a detailed extreme value analysis of the empirical noise
coefficients in the case of redundant frames.

1.3 Outline

In the following Section 2 we introduce some notation used throughout this paper.
In particular, we define the soft-thresholding estimator in redundant frames. The
core part of this paper is Section 3, where we proof the asymptotic distribution of
the frame coefficients claimed in Theorem 1.3. This result is then applied to define
extreme value based thresholding rules and corresponding sharp confidence regions.
Moreover, in this section we show that the resulting thresholding estimators satisfy
both, oracle inequalities for the mean square error and smoothness estimates for a
wide class of smoothness measures. Our proofs require new facts from statistical
extreme value theory for the maxima of absolute values of dependent normal random
variables that we derive in Section A. Finally, in section in Section 4 discuss in detail
several examples, including, non orthogonal frames, biorthogonal wavelets, curvelets
and unions of bases in detail

2 Thresholding in Redundant Frames

For the following recall the model (1.1) and write ǫn =
(

ǫn (k) : k ∈ In
)

∈ R
In for the noise

vector in (1.1). We assume throughout that the variance σ2 of the noise is given. Fast
and efficient methods for estimating the variance are well known (see, for example,
[6, 22, 34, 36] for d = 1 and [47] for d ≥ 2).

Throughout this paper all estimates for the signal un are based on thresholding the co-
efficients of the given data Vn with respect to prescribed frames of analyzing elements.
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2.1 Frames

In the sequel Dn :=
(

φnω : ω ∈ Ωn

)

⊂ R
In denotes a frame of RIn , with Ωn being a finite

index set. Hence there exist constants 0 < an ≤ bn <∞, such that

(

∀un ∈ R
In
)

an
∥

∥un
∥

∥

2 ≤
∑

ω∈Ωn

∣

∣

〈

φnω , un
〉∣

∣

2 ≤ bn
∥

∥un
∥

∥

2
. (2.1)

(Here ‖ · ‖ is the Euclidean norm on R
In and 〈 · , · 〉 the corresponding inner product.)

The largest and smallest numbers an and bn, respectively, that satisfy (2.1) are referred
to as frame bounds. Notice that in a finite dimensional setting any family that spans
the whole space is a frame.

We further denote by Φn : R
In → R

Ωn the operator that maps the signal un ∈ R
In to the

analyzing coefficients with respect to the given frame,

(∀ω ∈ Ωn) (Φnun) (ω) := 〈φnω , un〉 .

The mapping Φn is named the analysis operator, its adjoint Φ∗
n the synthesis operator,

and Φ
∗
nΦn the frame operator corresponding to Dn.

The frame property (2.1) implies that the frame operator Φ
∗
nΦn : R

In → R
In is an invert-

ible linear mapping. Hence, for any ω ∈ Ωn, the elements

φ̃nω := (Φ∗
nΦn)

−1
φnω

are well defined and the family
(

φ̃nω : ω ∈ Ωn

)

is again a frame of R
In . It is called the

dual frame and has frame bounds 1/bn ≤ 1/an.

Finally, we denote by Φ
+
n :=

(

Φ
∗
nΦn

)−1
Φ

∗
n the pseudoinverse of the analysis operator

Φn. Due to linearity and the definitions of the pseudoinverse and the dual frame
elements, we have the identities

(

∀un ∈ R
In
)

un = Φ
+
nΦnun =

∑

ω∈Ωn

〈φnω , un〉 φ̃nω . (2.2)

In particular, the mapping Φ
+
n is the synthesis operator corresponding to the dual

frame. Equation (2.2) provides a simple representation of the given signal in terms of
its analyzing coefficients. This serves as basis of thresholding estimators defined and
studied in the following subsection. For further details on frames see, for example,
[15, 46].

Remark 2.1 (Thresholding in a subspace). It is not essential at all, that Dn is a frame

of the whole image space R
In . In fact, in typical thresholding applications, such as in

wavelet denoising, the space R
In naturally decomposes into a low resolution space hav-

ing small fixed dimension and a detail space having large dimension that increases with

n. The soft-thresholding procedure is then only applied to the signal part in the detail

space and hence it is sufficient to assume that Dn is a frame therein. In order to avoid

unessential technical complication we present our results for the case of frames of the

whole image space. In the concrete applications presented in Section 4 the thresholding

will indeed only be performed in some subspace; all results carry over to such a situation

in a straightforward manner.

2.2 Thresholding Estimation

By applying Φn to both sides of (1.1), the original denoising problem in the signal space
R

In is transferred into the denoising problem

Yn(ω) = xn(ω) + (Φnǫn) (ω) , for ω ∈ Ωn , (2.3)

7
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in the possibly higher dimensional coefficient space R
Ωn . Here and in the following we

denote by
Yn(ω) := 〈φnω, Vn〉 and xn(ω) := 〈φnω , un〉 , (2.4)

the coefficients of the data Vn and the signal un with respect to the given frame. The
following elementary Lemma 2.2 states that the noise term in (2.3) is again a centered
normal vector but has possibly non-vanishing covariances. Indeed it implies that
the entries of Φnǫn are not uncorrelated and hence not independent, unless Dn is an
orthogonal basis.

Lemma 2.2 (Covariance matrix). Let ǫn be a random vector in the image space R
In with

independent N(0, σ2)-distributed entries. Then Φnǫn is a centered normal vector in R
Ωn

and the covariance matrix of Φnǫn has entries Cov
(

Φnǫn(ω),Φnǫn(ω
′)
)

= σ2
〈

φnω , φ
n
ω′

〉

.

Proof. As the sum of normal random variables with zero mean, the random variables
(Φnǫn)(ω) =

∑

k∈In
φnω (k) ǫn (k) are again normally distributed with zero mean. In par-

ticular, we have Cov
(

Φnǫn(ω),Φnǫn(ω
′)
)

= E
(

Φnǫn(ω)Φnǫn(ω
′)
)

. Hence the claim fol-
lows from the linearity of the expectation value and the independence of ǫn (k).

Recall the soft-thresholding function S (y, Tn) = sign (y) (|y| − Tn)+ defined by Equation

(1.2). The thresholding estimators we consider apply S
(

· , Tn
)

to each coefficient of Yn
in (2.3) to define an estimator for the parameter xn. In order to get an estimate for the
signal un one must map the coefficient estimate back to the original signal domain.
This is usually implemented by applying the dual synthesis operator (compare with
Equation (2.2)).

Definition 2.3 (Frame thresholding). Consider the data models (1.1) and (2.3) and let

Tn > 0 be a given thresholding parameter.

(a) The soft-thresholding estimator for xn ∈ R
Ωn using the threshold Tn is defined by

x̂n = S (Yn, Tn) := (S(Yn(ω), Tn) : ω ∈ Ωn) ∈ R
Ωn . (2.5)

(b) The soft-thresholding estimator for un with respect to the frame Dn using the thresh-

old Tn is defined by

ûn = Φ
+
n ◦ S (ΦnVn, Tn) =

∑

ω∈Ωn

S (〈φnω , Vn〉, Tn) φ̃nω . (2.6)

Hence the frame soft-thresholding estimator ûn is simply the composition of analysis

with Φn, component-wise thresholding, and dual synthesis with Φ
+
n .

If Dn is an overcomplete frame, then Φn has infinitely many left-inverses, and the
pseudoinverse used in Definition 2.3 is a particular one. In principle one could use
other left inverses for defining the soft thresholding estimator (2.6). Since, in general,
S (Yn, Tn) 6∈ Ran

(

Φn

)

is outside the range of Φn, the use of a different left inverse will

result in a different estimator. The special choice Φ
+
n has the advantage that for many

frames used in practical applications, the dual synthesis operator is known explicitly
and, more importantly, that fast algorithms are available for its computation (typically
algorithms using only O

(

|In| log|In|
)

or even O
(

|In|
)

floating point operations [46]).

Remark 2.4 (Thresholding variations). Instead of the soft thresholding function S
(

· , Tn
)

several other nonlinear thresholding methods have been proposed and used. Prominent

examples are the hard thresholding function z 7→ zχ{|z|≥Tn} and the nonnegative garrote

z 7→ zmax{1 − T 2
n/z

2, 0} of [5, 30]. Strictly taken, the smoothness estimates derived in

Section 3.5 only hold for thresholding functions F
(

· , Tn
)

satisfying the shrinkage prop-

erty |F
(

y ± Tn, Tn
)

| ≤ |y| for all y ∈ R. This property is, for example, not satisfied by
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the nonnegative garrote. In this case, however, similar estimates may be derived under

additional assumptions on the signals of interest. Other prominent denoising techniques

are based on block-thresholding (see, for example, [7, 8, 13, 35]). In this case, the

derivation of sharp smoothness estimates requires extreme value results for dependent

χ2-distributed random variables (with more than one degree of freedom). Such an ex-

treme value analysis seems possible but is beyond the scope of this paper. Our given

results can be seen as the first step towards a more general theory.

Remark 2.5 (Multiple selections). Be aware, that we allow certain elements φnω to be

contained more than once in the frame Dn. Hence we may have |{φnω : ω ∈ Ωn}| < |Ωn|.
Such multiple selections often arises naturally for frames that are the union of sev-

eral bases having some elements in common. A standard example is the wavelet cycle

spinning procedure of [18], where the underlying frame is the union of several shifted

orthonormal wavelet bases (see Section 4.1.3). Multiple selections of frame elements

also affect the pseudoinverse and finally the soft-thresholding estimator. Hence, if
(

φnω : ω ∈ Ωn

)

and
(

ψn
λ : λ ∈ Λn

)

denote two frames composed by the same frame el-

ements,
{

φnω : ω ∈ Ωn

}

=
{

ψn
λ : λ ∈ Λn

}

, but having different cardinalities |Ωn| 6= |Λn|,
then the soft-thresholding estimators corresponding to these frames differ from each

other.

2.3 Rationale Behind Thresholding Estimation

We conclude this section by commenting on the underlying rationale behind thresh-
olding estimation and situations where it is expected to produce good results.

The basic assumption underlying thresholding estimation is that the frame opera-
tor separates the data into large coefficients due to the signal and small coefficients
mainly due to the noise. For additive noise models Vn = un + ǫn both issues can be
studied separately. In this case, one requires that for some threshold Tn (which finally
judges between signal and noise) the following two conditions are satisfied:

(1) Coherence between signal and frame: The signal un is well represented by few
large coefficients having |〈φnω , un〉| > Tn.

(2) Incoherence between noise and frame: With high probability, all noise coeffi-
cients with respect to the frame Dn satisfy |〈φnω , ǫn〉| ≤ Tn.

In the following sections we shall see, that Item (2) can be analyzed in a unified way
for asymptotically stable frames. Item (1), however, is more an approximation issue
rather than an estimation issue. Given a frame, it, of course, cannot be satisfied for
every un ∈ R

n. The choice of a ‘good frame’ depends on the specific application at hand
and in particular on the type of signals that are expected. The better the signals of
interest are represented by a few but large frame coefficients, the better the denoising
result will be. The richer the analyzing family is, the more signals can be expected to
be recovered properly. The price to pay must be, of course, a higher computational
cost.

The following two simple examples demonstrate how the use of redundant frames may
significantly improve the performance of the thresholding estimation.

Example 2.6 (Thresholding in the sine basis). We consider the discrete signal un ∈ R
n

defined by un (k) = 5
√
2/16 sin

(

πω1k/n
)

+5
√
2/16 sin

(

πω2k/n
)

, which is a superposition of

two sine waves having frequencies ω1 = 150 and ω2 = 380, respectively, and amplitudes

5
√
2/16 ≃ 0.45. The left image in Figure 2.1 shows the signal un and the noisy data

Vn = un + ǫn obtained by adding Gaussian white noise of variance equal to one to the

signal. Apparently, there seems little hope to recover un from the data Vn in the original

signal domain. Almost like a miracle, the situation changes drastically after computing
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Figure 2.1: Left: Signal un (superposition of two sine waves) and data Vn = un+ ǫn from
Example 2.6. Right: Coefficients of the signal and the data with respect to the sine
basis.

the coefficients with respect to the sine basis
(

n−1/2 sin(πωk/n) : ω = 1, . . . , n
)

. Now,

the signal and the noise are clearly separated as can be seen from the right image in

Figure 2.1. Obviously we will get an almost perfect reconstruction by simply removing

all coefficients below a proper threshold.
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signal
data

signal
data

Figure 2.2: Left: Coefficients of the signal u′n and the data V ′
n = u′n + ǫn from Exam-

ple 2.7 with respect the sine basis. Right: Coefficients of the same signal and data
with respect to the two times oversampled sine frame.

Example 2.7 (Thresholding in a redundant sine frame). The signal in Example 2.6 is

a combination of sine waves with integer frequencies covered by the sine frame. How-

ever, in practical application the signal may also have non-integer frequencies. In order

to investigate this issue, we now consider the signal u′n (k) = 5
√
2/16 sin

(

πω′
1k/n

)

+

5
√
2/16 sin

(

πω2k/n
)

having frequencies ω′
1 = 150.5 and ω2 = 380 (hence ω′

1 is a slight

perturbation of the frequency ω1 considered in Example 2.6). The new signal u′n is not

a sparse linear combination of elements of the sine basis. As a matter of fact, the

energy of the first sine wave is spread over many coefficients and thus submerges

in the noise. Indeed, as can be seen from the left image in Figure 2.2, the low fre-

quency coefficient disappears. However, by taking the two times redundant frame
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Figure 2.3: Left: Signal u′n, and the reconstructions from the data V ′
n = u′n + ǫn by

soft-thresholding in the sine basis and in the overcomplete sine frame, respectively.
Only the first 64 components are plotted. Right: Sine wave 5

√
2/16 sin

(

πω′
1k/n

)

and
residuals of the two reconstructions. As can be seen, thresholding in the sine frame
almost perfectly recovers the signal un, whereas the result of thresholding in the sine
basis is useless (the residual is almost equal to the displayed sine wave of frequency
ω′
1.)

(

n−1/2 sin (πωk/n) : ω = {1/2, 1, . . . , n}
)

instead of the sine basis, the coefficient due to

frequency ω′
1 appears again in the transformed domain. Moreover, as can be seen from

Figure 2.3 the reconstruction by thresholding the coefficients with respect to the over-

complete sine frame is almost perfect, whereas the reconstruction by thresholding the

basis coefficients is useless.

In Examples 2.6 and 2.7 the threshold choice is not a very delicate issue since the
signal and the noise are separated very clearly in the transformed domain. Indeed as
can be seen from the right plots in Figures 2.1 and 2.2 there is a quite wide range of
thresholds that would yield an almost noise free estimate close to the original signal.
However, if the signal also contains important coefficients of moderate size, then the
choice of a good threshold is crucial and difficult. This is typically the case for image
denoising using wavelets or curvelet frames: Natural images are approximately sparse
in these frames but almost never strictly sparse. The particular threshold choice
now will always be a tradeoff between noise removal and signal representation and
becomes a delicate issue. In order to develop rationale threshold choices, a precise
understanding of the distribution of |〈φnω, ǫn〉| is helpful. This is the subject of our
following considerations.

3 Extreme Value Analysis of Frame Thresholding

Now we turn back to the denoising problem (1.1). After application of the analysis
operator Φn corresponding to the normalized frame D =

(

φnω : ω ∈ Ωn

)

our aim is to es-
timate the vector xn ∈ R

Ωn from given noisy coefficients (compare with Equation (2.3))

Yn(ω) = xn(ω) + (Φnǫn) (ω) , for ω ∈ Ωn .

Here Φnǫn is the transformed noise vector which is normally distributed, has zero
mean and covariance matrix κn(ω, ω

′) = σ2〈φnω , φnω′〉; see Lemma 2.2. In this section we
shall analyze in detail the component-wise soft-thresholding estimator x̂n = S

(

Yn, Tn
)
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defined by (2.5). We will start by computing the extreme value distribution of Φnǫn
claimed in Theorem 1.3. Based on the limiting law will then introduce extreme value
thresholding techniques that will be shown to provide asymptotically sharp confidence
regions.

3.1 Proof of Theorem 1.3

The main aim of this subsection is to verify Theorem 1.3, which states that the dis-
tribution of the maxima of the noise coefficients Φnǫn(ω) are of Gumbel type with
explicitly given normalization constants. The proof of Theorem 1.3 will be a conse-
quence of Lemmas 3.1 and 3.2 to be derived in the following. The main Lemma 3.1
relies itself on a new extreme value result established in Section A.

Lemma 3.1. Let
(

ξn
)

n∈N
be a sequence of normal random vectors in R

Ωn with covariance

matrices κn having ones in the diagonal. Assume additionally, that the following holds:

(i) For every δ ∈ (0, 1),
∣

∣

{

(ω, ω′) ∈ Ω2
n : |κn(ω, ω′)| ≥ δ

}∣

∣ = O (|Ωn|) as n→ ∞.

(ii) For some ρ ∈ (0, 1),
∣

∣

{

(ω, ω′) ∈ Ω2
n : |κn(ω, ω′)| ≥ ρ

}
∣

∣ = o
(

|Ωn| /
√

log |Ωn|
)

as n→ ∞.

(iii) B := sup
{
∑

ω′∈Ωn
|κn(ω, ω′)|2 : n ∈ N and ω ∈ Ωn

}

<∞.

Then, ‖ξn‖∞ is of Gumbel type (see Definition 1.4) with normalization constants a
(

χ, |Ωn|
)

and b
(

χ, |Ωn|
)

defined by (1.9) and (1.10).

Proof. Let
(

ξn
)

n∈N
be a sequence of normal random vectors satisfying Conditions (i)–

(iii). According to Theorem A.8 it is sufficient to show that

Rn :=
∑

ω 6=ω′

∣

∣κn(ω, ω
′)
∣

∣

(

log |Ωn|
|Ωn|2

)1/(1+|κn(ω,ω′)|)

→ 0 as n→ ∞ .

This will be done by splitting the sum Rn into three parts and showing that each of
them tends to zero as n → ∞. For that purpose, let δ ∈ (0, 1/3) be any small number,
let ρ ∈ (0, 1) be as in Condition (ii) and define

Λn (1) :=
{

(ω, ω′) ∈ Ω2
n : ω 6= ω′ and |κn(ω, ω′)| ≥ ρ

}

,

Λn (2) :=
{

(ω, ω′) ∈ Ω2
n : δ ≤ |κn(ω, ω′)| < ρ

}

,

Λn (3) :=
{

(ω, ω′) ∈ Ω2
n : |κn(ω, ω′)| < δ

}

.

We further write Rn = Rn (1) +Rn (2) +Rn (3) with

Rn (i) =
∑

(ω,ω′)∈Λn(i)

|κn(ω, ω′)|
(

log |Ωn|
|Ωn|2

)1/(1+|κn(ω,ω′)|)

for i ∈ {1, 2, 3} .

It remains to verify that any of the terms Rn (i) converges to zero as n→ ∞.

• Since any ξn is a normal random vector with zero mean and unit variance, we
have |κn(ω, ω′)| ≤ 1 for any index pair (ω, ω′) ∈ Ω2

n, which yields the inequality

Rn (1) ≤ |Λn (1)|
√

log |Ωn|/|Ωn|. By Condition (ii) we have |Λn (1)| = o
(

|Ωn| /
√

log |Ωn|
)

which shows that Rn (1) → 0 as n→ ∞.

• To estimate the second sum Rn (2), recall that by definition of the set Λn (2), we
have |κn(ω, ω′)| ≤ ρ for any pair of indices (ω, ω′) ∈ Λn (2). Moreover, recall that by
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Condition (i) we further have |Λn (2)| = O (|Ωn|). Hence we obtain

Rn (2) ≤
∣

∣Λn (2)
∣

∣

(

log |Ωn|
|Ωn|2

)1/(1+ρ)

= (log |Ωn|)1/(1+ρ) O
(

|Ωn|1−2/(1+ρ)
)

.

Since by assumption ρ < 1, the inequality 1 − 2/ (1 + ρ) < 0 holds which implies
that we have Rn (2) → 0 as n→ ∞.

• It remains to estimate the final sum Rn (3). The Cauchy-Schwarz inequality,
Condition (iii), and the estimate |κn(ω, ω′)| ≤ δ yield

Rn (3)
2 ≤

∑

(ω,ω′)∈Λn(3)

|κn(ω, ω′)|2
∑

(ω,ω′)∈Λn(3)

(

log |Ωn|
|Ωn|2

)2/(1+δ)

≤ B |Ωn|
(

log |Ωn|
|Ωn|2

)2/(1+δ)

|Ωn|2 = (log |Ωn|)2/(1+δ) O
(

|Ωn|3−4/(1+δ)
)

.

Now, by assumption the inequality δ < 1/3 holds and hence we have 4/ (1 + δ) > 3.
This implies that also Rn (3) tends to zero as n→ ∞.

In summary, we have verified that Rn (i) → 0 as n → ∞ for every i ∈ {1, 2, 3}. Hence
their sum Rn converges to zero, too. The claimed distributional convergence results
now follows from Theorem A.8 and concludes the proof.

We next state a simple auxiliary Lemma that bounds the number of inner products
〈

φnω , φ
n
ω′

〉

being bounded away from zero.

Lemma 3.2. For any n let
(

φnω : ω ∈ Ωn

)

be a family of normalized vectors in R
In , such

that the upper frame bounds bn are uniformly bounded. Then, for every δ > 0, we have

∣

∣{(ω, ω′) ∈ Ω2
n : |〈φnω , φnω′〉| ≥ δ}

∣

∣ = O (|Ωn|) . (3.1)

Proof. To verify (3.1) it is sufficient to find, for every given δ > 0, some constant K ∈ N

such that
(∀n ∈ N)(∀ω ∈ Ωn) |{ω′ ∈ Ωn : |〈φnω , φnω′〉| ≥ δ}| ≤ K . (3.2)

Indeed, if (3.2) holds then summing over all ω ∈ Ωn yields (3.1).

To show (3.2) we assume to the contrary that there is some δ > 0 such that for all
m ∈ N there exists some n (m) ∈ N and some ω ∈ Ωn(m) such that the set Λm = {ω′ ∈
Ωn(m) : |〈φn(m)

ω , φ
n(m)
ω′ 〉| ≥ δ} contains more then m elements. By Assumption we have

the equality ‖φn(m)
ω ‖ = 1 for all ω ∈ Ωn. Together with Assumption (ii) this implies

B = B
∥

∥φn(m)
ω

∥

∥

2 ≥
∑

ω′∈Ωn(m)

∣

∣

〈

φn(m)
ω , φ

n(m)
ω′

〉∣

∣

2 ≥
∑

ω′∈ΛM

∣

∣

〈

φn(m)
ω , φ

n(m)
ω′

〉∣

∣

2 ≥ mδ .

Since the last estimate should hold for all m ∈ N and we have B < ∞ by assumption,
this obviously gives is a contradiction.

Proof of Theorem 1.3. Theorem 1.3 is now an immediate consequence of the above

results: Lemma 2.2 and Lemma 3.2 show that the sequence of normalized frame coeffi-

cients (Φnǫn/σ)n∈N satisfies Conditions (i)–(iii) of Lemma 3.1. Hence Lemma 3.1 applied

to the random vectors ξn = Φnǫn/σ shows the assertion.

We conclude this subsection by stating an extreme value result for the maximum with-
out the absolute values. Although we do not need this result further, the distributional
limit is interesting in its own.
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Theorem 3.3 (Limiting Gumbel law without absolute values). Assume that the frames

Dn are asymptotically stable and let (ǫn)n∈N be a sequence of random vectors in R
In hav-

ing independent N(0, 1)-distributed entries. Then, the random sequence of the maxima

max (Φnǫn) := max{〈φnω, ǫn〉 : ω ∈ Ωn} is of Gumbel type with normalization constants

a
(

N, |Ωn|
)

:=
1

√

2 log |Ωn|
, (3.3)

b
(

N, |Ωn|
)

:=
√

2 log |Ωn| −
log log |Ωn|+ log (4π)

2
√

2 log |Ωn|
. (3.4)

Proof. The proof is analogous to the proof of Theorem 1.3 and uses the extreme value
result of Theorem A.4 for dependent normal random vectors instead of the one of
Theorem A.8 for absolute values of dependent normal random vectors.

3.2 Universal Threshold: Qualitative Denoising Property

In the case that the family Dn =
(

φnω : ω ∈ Ωn

)

is an orthonormal basis it is well known

that the thresholding sequence Tn = σ
√

2 log |Ωn| satisfies the asymptotic denoising
property (see, for example, [25, 39, 46] and also Section 1.1 in the introduction), that
is,

lim
n→∞

P {‖Φnǫn‖∞ ≤ Tn} = 1 . (3.5)

Equation (3.5) implies that the estimates obtained with the threshold σ
√

2 log |Ωn|
are, with probabilities tending to one, at least as smooth as un. Hence the relation
(3.5) is often used as theoretical justification for using the universal threshold choice
σ
√

2 log |Ωn| originally proposed by Donoho and Johnstone (see [25, 26]). The follow-
ing Proposition 3.4 states that the same denoising property indeed holds true for any
normalized frame. Actually it proves much more: First, we verify (3.5) for a wide class
of thresholds including the Donoho-Johnstone threshold. Second, we show that this
class in fact includes all thresholds that satisfy the denoising property (3.5) – provided
that the frames are asymptotically stable. Our results can be seen as a generalization
and a refinement of [25, Theorem 4.1] from the basis case to the possibly redundant
frame case.

Proposition 3.4 (Thresholds yielding the denoising property). Assume that Dn are

frames of R
In having normalized frame elements and analysis operators Φn, and let

(ǫn)n∈N be a sequence of noise vectors in R
In with independent N(0, σ2)-distributed en-

tries.

(a) If (Dn)n∈N is asymptotically stable, then a sequence
(

Tn
)

n∈N
of thresholds satis-

fies (3.5) if and only if it has the form

Tn := σ
√

2 log |Ωn|+ σ
2zn − log log |Ωn| − log π

2
√

2 log |Ωn|
with lim

n→∞
zn = ∞ . (3.6)

(b) If (Dn)n∈N is not necessarily asymptotically stable, then still any sequence
(

Tn
)

n∈N
⊂

(0,∞) of the form (3.6) satisfies the asymptotic denoising property (3.5).

Proof. (a) Theorem 1.3 immediately implies that a sequence (Tn)n∈N satisfies (3.5) if
and only if it has the form

Tn = σ
√

2 log |Ωn|+ σ
2zn − log log |Ωn| − log π

2
√

2 log |Ωn|

for some sequence (zn)n∈N with zn → ∞.
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(b) Now let Dn be any sequence of frames that is not necessarily asymptotically stable.
Further, let ηn be a sequence of random vectors with independent N(0, σ2)-distributed
entries. Since Φnǫn is a random vector with possibly dependent N(0, σ2)-distributed
entries, Lemma A.9 implies that

P {‖Φnǫn‖∞ ≤ Tn} ≥ P {‖ηn‖∞ ≤ Tn} .

By Item (a) we already know that P{‖ηn‖∞ ≤ Tn} → 1 as n → ∞, for any sequence
of thresholds satisfying (3.6), and hence the same must hold true for P{‖Φnǫn‖∞ ≤
Tn}.

According to Proposition 3.4, any sequence (zn)n∈N with limn→∞ zn = ∞ defines a se-
quence of thresholds (3.6) that satisfies the asymptotic denoising property. In partic-
ular, by taking 2zn = log log |Ωn| + log π the thresholds in (3.6) reduce to the universal
threshold σ

√

2 log |Ωn| of Donoho and Johnstone. Proposition 3.4 further shows that

the asymptotic relation Tn ∼ σ
√

2 log |Ωn| alone is not sufficient for the denoising prop-
erty (3.5) to hold and that second order approximations have to be considered. One
may call a thresholding sequence (Tn)n smaller than (T ′

n)n, if
(

T ′
n − Tn

)

Tn → ∞ for
n→ ∞. The smaller the thresholding sequence is taken, the slower the convergence of
P
{

‖Φnǫn‖∞ ≤ Tn
}

will be, and hence this just yields a different compromise between
noise reduction and signal approximation.

3.3 Extreme Value Threshold: Sharp Confidence Regions

For the following notice that the soft-thresholding estimate x̂n = S (Yn, Tn) with thresh-
olding parameter Tn is an element of the ‖ · ‖∞-ball

R
(

Yn, Tn
)

:=
{

x̄n ∈ R
Ωn : ‖x̄n − Yn‖∞ ≤ Tn

}

(3.7)

around the given data Yn. Our aim is to select the thresholding value Tn in such
a way, that R

(

Yn, Tn
)

is an asymptotically sharp confidence region corresponding to
some prescribed significance level α, in the sense that the probability that we have
xn ∈ R

(

Yn, Tn
)

tends to 1 − α as n → ∞. By definition, xn ∈ R(Yn, Tn) if and only if
‖xn − Yn‖∞ ≤ Tn. The data model Yn = xn +Φnǫn thus implies that

P
{

xn ∈ R
(

Yn, Tn
)

; ∀xn ∈ Ran(Φn)
}

= P {‖Φnǫn‖∞ ≤ Tn} . (3.8)

Here and in similar situations, P
{

xn ∈ R
(

Yn, Tn
)

; ∀xn ∈ Ran(Φn)
}

denotes the proba-

bility of the intersection of all the events
{

xn ∈ R
(

Yn, Tn
)}

taken over all xn ∈ Ran(Φn).

Now assume that the frames are asymptotically stable. Then Theorem 1.3 states that
the probabilities in Equation (3.8) with Tn = σa

(

χ, |Ωn|
)

z + σb
(

χ, |Ωn|
)

tend to the Gum-
bel distribution exp (− exp (−z)). This suggests the following threshold choice based on
the quantiles of the limiting Gumbel distribution.

Definition 3.5 (Extreme value threshold). Let (αn)n∈N ∈ (0, 1) be any sequence of sig-

nificance levels, denote by z(αn) = − log log
(

1/(1 − αn)
)

the αn-quantile of the Gumbel

distribution, and set

T (αn, |Ωn|) := σ
√

2 log |Ωn|+ σ
2z(αn)− log log |Ωn| − log π

2
√

2 log |Ωn|
. (3.9)

We then name T
(

αn, |Ωn|
)

the sequence of extreme value threshold (EVT) corresponding

to the significance levels αn.

The following Theorem 3.6 states that the EVTs defined by Equation (3.9) indeed define
asymptotically sharp confidence regions. Actually it is mere a corollary of the extreme
value result derived in Theorem 1.3.
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Theorem 3.6 (Asymptotically sharp confidence regions). Let (Dn)n∈N be a asymptoti-

cally stable family of frames in R
In and let (αn)n∈N be a sequence of numbers in (0, 1)

converging to some α ∈ [0, 1). Then, with the extreme value thresholds T
(

αn, |Ωn|
)

de-

fined in Equation (3.9), we have

lim
n→∞

P
{

xn ∈ R
(

Yn, T
(

αn, |Ωn|
))

; ∀xn ∈ Ran(Φn)
}

= 1− α . (3.10)

Hence, the sets R
(

Yn, T
(

αn, |Ωn|
))

defined in (3.7) are asymptotically sharp confidence

regions with significance level α.

Proof. According to (3.8) it is sufficient to show that P
{

‖Φnǫn‖∞ ≤ T
(

αn, |Ωn|
)}

→ 1−α
as n → ∞. Theorem 1.3 and the definition of the thresholds in (3.9) imply that the
probability of the event

{

‖Φnǫn‖∞ ≤ T
(

αn, |Ωn|
)}

converges to exp
(

− exp(−z(α))
)

as
n→ ∞. Since the quantile z(α) is defined as the solution of exp (− exp (−z)) = 1−α this
yields Equation (3.10).

Corollary 3.7. Let (Dn)n∈N be any family of frames (not necessarily asymptotic stable)

having normalized elements, and consider the data model Yn = xn + Φnǫn with noise

vectors ǫn having possibly dependent N
(

0, σ2
)

-distributed entries. Then, it still holds

that

lim inf
n→∞

P
{

xn ∈ R
(

Yn, T
(

αn, |Ωn|
))

; ∀xn ∈ Ran(Φn)
}

≥ 1− α . (3.11)

Proof. This follows from Theorem 3.6 and Lemma A.9.

Notice, that in Corollary 3.7 the sets R
(

Yn, T
(

αn, |Ωn|
))

are not necessarily asymp-
totically sharp confidence regions, in the sense that inequality (3.11) may be strict.
Actually, we believe that asymptotical stability of the frames Dn is close to being
necessary for the sets R

(

Yn, T
(

αn, |Ωn|
))

defining asymptotically sharp confidence re-
gions. For specific highly redundant dictionaries where asymptotic stability fails to
hold (such as the translation invariant wavelet frame; see Section 4.1.4) we expect
that P

{

‖Φnǫn‖∞ ≤ σanz + σbn
}

still converges to the Gumbel distribution – however

with normalization sequences an and bn being strictly smaller than σa
(

χ, |Ωn|
)

and

σb
(

χ, |Ωn|
)

. If this is the case, then the smaller thresholds Tn = σanz(αn) + σbn again
define sharp confidence regions. Surprisingly, results on the distributional conver-
gence of ‖Φnǫn‖∞ or even of max

(

Φnǫn
)

for redundant frames are almost nonexistent.

3.4 Rate of Approximation

Strictly taken, Theorem 3.6 only claims that the ‖ · ‖∞-balls R
(

Yn, T
(

αn, |Ωn|
))

turn into
confidence regions in the limit n→ ∞, but it does not directly give any result for finite
n. Sometimes it is argued that, even in the independent case without taking absolute
values, the rate of convergence of P

{

max(Φnǫn) ≤ T
}

to the Gumbel distribution is
known to be rather slow (see, for example, [44, Section 2.4]). Another option could be
to derive non-asymptotic coverage probabilities along the lines of [41], however at the
price of typically quite conservative confidence bands.

Nevertheless, numerical simulations clearly demonstrate, that even for moderate n,
the approximation of P

{

‖Φnǫn‖∞ ≤ σa(χ, |Ωn|)z + σb(χ, |Ωn|)
}

with the limiting Gum-
bel distribution is quite good. This even holds true for redundant frames as can be
seen from Figure 3.1, where the distribution functions of the rescaled maxima of the
coefficients with respect to the two times oversampled sine frame of Example 2.7 are
compared with the limiting Gumbel distribution. The top line in Figure 3.1 displays
the normalized empirical distributions of ‖Φnǫn‖∞ for signal lengths of n = 128, n = 512
and n = 1024 (computed from 10000 realizations in each case) and the limiting Gumbel
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Figure 3.1: Top: Rescaled distribution of ‖Φnǫn‖∞ and the Gumbel distribution for
n = 128 (left), n = 512 (middle) and n = 1024 (right) . Bottom: Q-Q-plot of those
distributions.

distribution. As can be seen, there is only a small difference between those functions.
The bottom line in Figure 3.1 shows a Q-Q-plot (quantile against quantile) of those dis-
tributions and again indicates that the quantiles of the rescaled maximum for finite n
are quite well approximated by the ones of the limiting Gumbel distribution.

3.5 Smoothness Estimates

We have just seen that the xn is contained in the confidence regions R(Yn, T (αn, |Ωn|))
around the data Yn with probability tending to 1− α. Moreover, by definition, the soft-
thresholding estimate x̂n = S (Yn, T (αn, |Ωn|)) is contained in R(Yn, T (αn, |Ωn|)), too. The
following theorem shows that the soft-thresholding estimate is indeed the smoothest
element in this confidence region, with smoothness measured in terms of a wide class
of functionals.

Theorem 3.8 (Smoothness estimates). Let
(

Jn

)

n∈N
be a family of functionals Jn : R

Ωn →
R ∪ {∞} having the property that

Jn

(

xn
)

≤ Jn

(

x̄n
)

whenever |xn(ω)| ≤ |x̄n(ω)| for all ω ∈ Ωn . (3.12)

Moreover, consider the data model Yn = xn+Φnǫn, where (ǫn)n∈N is a sequence of random

vectors with N(0, σ2)-distributed entries, let (αn)n∈N be a sequence in (0, 1) converging to

some α ∈ [0, 1), and denote x̂n := S
(

Yn, T (αn, |Ωn|)
)

. Then,

lim inf
n→∞

P
{

Jn

(

x̂n
)

≤ Jn

(

xn
)

; ∀xn ∈ Ran(Φn)
}

≥ 1− α . (3.13)

Hence, the soft-thresholding estimate x̂n is at least as smooth as the original parameter

xn, with probability tending to 1− α as n→ ∞, where smoothness is measured in terms

of any family of functionals Jn satisfying (3.12).

Proof. The definition of the soft-thresholding function implies that x̂n is an element of
the confidence region R

(

Yn, T
(

αn, |Ωn|
))

and that for every other element x̄n contained
in this confidence region we have |x̂n(ω)| ≤ |x̄n(ω)| for all ω ∈ Ωn. By Corollary 3.7 the
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true parameter xn is contained in R
(

Yn, T
(

αn, |Ωn|
))

, too, with a probability tending to
1− α. We conclude that

lim inf
n→∞

P {|x̂n(ω)| ≤ |xn(ω)| ;ω ∈ Ωn ; ∀xn ∈ Ran(Φn)} ≥ 1− α . (3.14)

The assumption (3.12) on component-wise monotonicity of the functionals Jn now
implies that the event

{

|x̂n(ω)| ≤ |xn(ω)| ; ∀ω ∈ Ωn ; ∀xn ∈ Ran(Φn)
}

is contained in the
event {Jn(x̂n) ≤ Jn(xn) ; ∀xn ∈ Ran(Φn)}. Together with (3.14) this yields (3.13).

Remark 3.9 (Shrinkage property). The proof of Theorem 3.8 uses two main ingredi-

ents: First, soft-thresholding selects that element in R
(

Yn, T (αn, |Ωn|)
)

which has min-

imal component-wise magnitudes and second, the true coefficient x̂n is contained in

the set R
(

Yn, T (αn, |Ωn|)
)

with probability tending to 1 − α. The former property is of-

ten referred to as the shrinkage property of soft-thresholding and has already been

used in [25] for deriving smoothness estimates for orthogonal wavelet soft-thresholding.

The second property relies on our extreme value result derived in Theorem 1.3. Notice,

that the weaker result P{Jn(x̂n) ≤ Jn(xn)} → 0 using the threshold σ
√

2 log |Ωn| is well

known; compare [40]. However, the proof of Theorem 3.8 reveals that for asymptoti-

cally stable frames the considered thresholds T (αn, |Ωn|) are close to being the smallest

ones yielding smoothness estimates of the form (3.13). For strongly redundant frames,

however, where asymptotic stability fails to hold, smaller thresholds yielding the same

smoothness bounds can exist. In Theorem 4.9 we show that this is indeed the case for

the dyadic discrete translation invariant wavelet system.

Basic but important examples for functionals satisfying the component-wise mono-
tonicity property (3.12) are powers of weighted ℓ2-norms,

∥

∥xn
∥

∥

2
:=

√

∑

ω∈Ωn

c(ω)
∣

∣xn(ω)
∣

∣

2
for some c( · ) > 0 .

In the case of wavelet and Fourier frames, these norms of the coefficients provide norm
equivalents to Sobolev norms in the original signal domain (assuming an appropriate
discretization model u 7→ un). Sobolev norms are definitely the most basic smoothness
measures of functions. More general and also practically relevant classes of smooth-
ness measures are Besov norms. Assume for the moment that Dn is a wavelet frame
where the index set has the multiresolution form Ωn =

{

(λ, k) : λ ∈ Λn and k ∈ Dλ

}

for some index sets Λn and Dλ corresponding to scale/resolution and scale dependent
location, respectively. In this case one takes the functional Jn as one of the weighted
ℓp,q-norms

∥

∥xn
∥

∥

p,q
:= q

√

∑

λ∈Λn

c (λ)
∥

∥xn (λ, ·)
∥

∥

q

p
for some c ( · ) > 0 .

These norms again satisfy the monotonicity property (3.12) and moreover yield to norm
equivalents of Besov norms for properly chosen weights c (λ); see Section 4.1. Such
weighted (p, q)-norms are also reasonable in combination with other multiresolution
systems, such as the curvelet frame (see Section 4.2).

3.6 Risk Estimates

Although the main focus in this work is on confidence regions and smoothness esti-
mates, in the following Proposition 3.10 we shall verify that using the EVTs of Defini-
tion 3.5 yields risk estimates similar to the oracle inequalities of [26]. The following
result is non-standard regarding two aspects: First, it allows arbitrary frames instead
of orthonormal bases. Second, and more importantly, it considers our more general
class of extreme value thresholds instead of the universal threshold σ

√

2 log |Ωn|.
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Proposition 3.10 (Oracle inequality). Let Dn = (φnω : ω ∈ Ωn) be a frame in R
In with

corresponding analysis operator Φn. Moreover, let ûn = Φ
+
n ◦ S (Φn(Vn), T ) denote the

soft-thresholding estimator in (2.6) corresponding to the extreme value thresholds T =
T
(

αn, |Ωn|
)

defined by Equation (3.9), and assume for simplicity that T
(

αn, |Ωn|
)

≤ σ
√

2 log |Ωn|.
Then, we have

E

(

‖un − ûn‖2
)

≤ σ2

an

(

log (1/(1− αn))
√

π log |Ωn|

+ (1 + 2 log |Ωn|)
∑

ω∈Ωn

min

{

1,
|〈φnω , un〉|2

σ2

})

. (3.15)

Here an is the lower frame bound of DN ; see Equation (2.1).

Proof. Section B.1.

4 Examples from Signal and Image Denoising

In this section we verify that many important frames used for thresholding in signal
and image processing are asymptotically stable and thus covered by the results of the
previous section. These examples include redundant wavelet systems and curvelet
frames. We also consider an important example, where our basic asymptotic stability
fails to hold; namely the discrete translation invariant wavelet frame. Actually, we
show that not even the result of Theorem 1.3 (and thus all of its implications) holds
in this case. This indicates that the stated conditions are close to being necessary
for the asymptotical distributional law of Theorem 1.3. Further, we derive confidence
regions and smoothness estimates for the translation invariant wavelet transform that
significantly improve over simple application of Proposition 3.4, Item (b) (and also the
main result of [3]).

4.1 Redundant and Non-Redundant Wavelet Denoising

In the following we consider one dimensional wavelet denoising. The generalization
to higher dimensional wavelet denoising is straightforward. We shall discuss thresh-
olding in biorthogonal wavelet bases, certain overcomplete wavelet frames (using the
so called cycle spinning procedure), and fully translation invariant wavelet systems.
Before considering those particular examples, we collect some notation and present
basic facts about biorthogonal wavelets (which include the orthogonal ones) that we
need for the application of our general results.

4.1.1 Biorthogonal Wavelet Bases

One dimensional wavelets are generated by dilating and translating a single function,
the so called mother wavelet. The distinguished feature of wavelet systems is that
various classical smoothness measures (Triebel, Sobolev and Besov norms) can be
characterized by simple norms in the wavelet domain. In the following, for the sake of
simplicity, we only consider real valued periodic wavelets on the interval [0, 1]. More-
over, we restrict ourselves to compactly supported biorthogonal wavelets that arise
from a multiresolution decomposition.

Denote by Ω the set of all index pairs of the form (j, k) with j ∈ N and k ∈ {0, . . . , 2j − 1}.
The index j is refereed to as resolution or scale index and k to as the discrete location
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index. Moreover, let φ, ψ ∈ L2 (R) denote the father and mother wavelet, respectively,
which are assumed to be compactly supported and to have unit norm with respect
to ‖ · ‖2, the Euclidian norm on L2 (0, 1). For any (j, k) ∈ Ω one then defines (periodic)
wavelets ψj,k and (periodic) scaling functions φj,k on [0, 1]by

(∀t ∈ [0, 1]) ψj,k(t) = 2j/2
∑

m∈Z

ψ
(

2j (t−m)− k
)

, φj,k(t) = 2j/2
∑

m∈Z

φ
(

2j (t−m)− k
)

.

The wavelet and the scaling coefficients of some signal u ∈ L2 (0, 1) are then simply
the inner products of u with the wavelets ψj,k and the scaling functions φj,k, respec-
tively. We further write W,V : L2 (0, 1) → ℓ2 (Ω) for the mappings that take the signal
u ∈ L2 (0, 1) to the inner products (Wu) (j, k) :=

〈

ψj,k, u
〉

and (Vu) (j, k) :=
〈

φj,k, u
〉

,
respectively.

In order to get a (biorthogonal) wavelet basis one has to impose some completeness
condition and some connections between the wavelets and the scaling functions. Such
assumptions are most naturally formulated in the multiresolution framework (below
already adapted to the periodic setting). Hence, in the following we assume the ex-
istence of subspaces Vj and Wj of L2 (0, 1), referred to as scaling and detail spaces,
respectively, meeting the following requirements:

• For every j ∈ N, the following mappings are bijections:

Vj → R
2j : u 7→

(〈

φj,k, u
〉

: k ∈ {0, . . . , 2j − 1}
)

,

Wj → R
2j : u 7→

(〈

ψj,k, u
〉

: k ∈ {0, . . . , 2j − 1}
)

.

• For every j ∈ N, we have the multiresolution decomposition Vj = Vj−1 ⊕Wj−1.

• The union
⋃

j∈N
Vj is dense in L2 (0, 1).

Repeated application of the multiresolution decomposition yields the decomposition of
the signal space into the sum of the scaling space V0 and the wavelet space W :=
⊕

j≥0 Wj. Moreover, the above conditions imply that there is a stable one to one
correspondence between any element in W and its inner product with respect to
D :=

(

ψj,k : (j, k) ∈ Ω
)

. Moreover, the multiresolution decomposition serves as the
basis of both, discretization and fast implementation. Notice that the construction
of compactly supported orthogonal and biorthogonal wavelets is non-trivial and such
systems have been constructed for the first time in [17, 19]. By now such wavelet sys-
tems are well known; a detailed construction of orthogonal and biorthogonal wavelet
systems together with many interesting details may be found in [16, 20, 46].

Remark 4.1 (Biorthogonal basis). If the spaces Vj and Wj are orthogonal to each other,

then D is an orthonormal wavelet basis and Vj and Wj are spanned by the scaling and

wavelet functions, respectively. However, we do not require orthogonality in the follow-

ing. In this more general case, the scaling and wavelet spaces are spanned by certain

dual systems (or biorthogonal bases; thus the name). Biorthogonal wavelets are often

preferred to strictly orthogonal ones since they allow more freedom to adapt them to a

particular application in mind. Especially, opposed to orthogonal wavelets, biorthogonal

wavelets can at the same time be smooth, symmetric and compactly supported.

Remark 4.2 (Computing the wavelet transform). The multiresolution decomposition

Vj = Vj−1 ⊕ Wj−1 is the basis for fast computation of the wavelet transform. Given the

scaling coefficients at some scale L > 0, the scaling and wavelet coefficients at scale L−1
can be computed by cyclic convolution of the given scaling coefficients with a certain dis-

crete filter pair. Repeated application of this procedure eventually yields all scaling and

all wavelet coefficients at scales below L. In the case of biorthogonal wavelets, the mul-

tiresolution decomposition can be inverted again by repeated application of convolution

with a different pair of reconstruction filters.
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Throughout the following we assume that a discrete signal un ∈ R
n is given, where the

discretization number n = 2J is an integer power of some maximal level of resolution.
One then interprets the components of the discrete signal as the scaling coefficients
of some underlying continuous domain signal, that is,

(∀k ∈ {0, . . . , n− 1}) un (k) = (Vu) (J, k) = 〈φJ,k, u〉 .

Obviously there are infinitely many continuous domain signals yielding to the same
scaling coefficients. However, according to the made assumptions, there exists a
unique element in the scaling space VJ having scaling coefficients un. This element
will be denoted as u∗n ∈ VJ .

The wavelet coefficients of the discrete signal are then simply defined as the wavelet
coefficients of the continuous domain signal with indices in

Ωn :=
{

(j, k) : j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , 2j − 1}
}

.

According to the multiresolution decomposition, these coefficients depend only on the
discrete signal and can also be written as discrete inner products

(∀un ∈ R
n)(∀(j, k) ∈ Ωn)

〈

ψn
j,k, un

〉

:= 〈ψj,k, u〉 .

This serves as definition of both, the discrete wavelets ψn
j,k ∈ R

n and the wavelet co-
efficients of un. Finally we define Dn as the family of all discrete wavelets ψn

j,k and

denote by Wn : R
n → R

Ωn the corresponding analysis operator, which we refer to as
the discrete wavelet transform.

Remark 4.3 (Numerical computation). The discrete wavelet transform is computed by

repeated application of the multiresolution decomposition, yielding to all discrete wavelet

coefficients and the scaling coefficient u1 = 〈φ0,0, u〉; see Remark 4.2. Since the discrete

filters usually have small support, the wavelet transform can be computed using only

O (n) operation counts and the same holds true for recovering un from those coefficients.

Notice that the discrete wavelets are never computed explicitly in the multiresolution

algorithm. We defined them in order to verify our general framework. Finally, we stress

again that the wavelet coefficients of un coincide with the one of u up to scale log (n/2).

4.1.2 Biorthogonal Basis Denoising

Now consider the denoising problem (1.1), which simple reads Vn = un + ǫn. The
wavelet soft-thresholding procedure is usually only applied to coefficients above some
scale; compare with Remark 2.1. For simplicity we shall consider the case where all
wavelet coefficients are thresholded but not the scaling coefficient. Hence, the wavelet
soft-thresholding estimator (for the wavelet part of un) is defined by

ûn = W
−1
n ◦ S (WnVn, T ) .

Thanks to the multiresolution algorithm, the wavelet soft-thresholding estimator can
be computed with only O (n) operation counts.

We measure smoothness of the considered estimates in terms of Besov norms. To that
end, assume that the mother wavelet has sufficiently many vanishing moments and is
sufficiently smooth. Then, for given norm parameters p, q ≥ 1 and given smoothness
parameter r ≥ 0 one defines

∥

∥x
∥

∥

p,q,r
= q

√

∑

j∈N

2jsq
∥

∥x(j, · )
∥

∥

q

p
with s = r +

1

2
− 1

p
.
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for any x ∈ ℓ2 (Ω) and with ‖ · ‖p denoting the usual ℓp-norm taken for fixed scale
j ∈ N. It is then clear that any of these norms satisfies the component-wise monotony
property (3.12). We further write ‖u‖Br

p,q
:= ‖Wu‖p,q,r for the corresponding norm of

some u ∈ L2 (0, 1) and finally denote by Br
p,q the set of all signals having finite norm

‖u‖Br
p,q

< ∞. The pair
(

Br
p,q, ‖ · ‖Br

p,q

)

is a Banach space and referred to as Besov space.

The given definitions provide norm equivalents of ‖ · ‖Br
p,q

to the definition of Besov
norms in classical analysis, as long as the mother wavelet has m > r vanishing mo-
ments and is m-times continuously differentiable.

Theorem 4.4 (Soft-thresholding in wavelet bases). The discrete wavelet bases Dn =
(

ψn
j,k : (j, k) ∈ Ωn

)

are asymptotically stable. In particular, the following holds:

(a) Distribution: Let ǫn be a sequence of noise vectors in R
n with independent N(0, σ2)-

distributed entries. Then, the sequence ‖Wnǫn‖∞ is of Gumbel type with normal-

ization constants σa (χ, n), σb (χ, n) defined by (1.9), (1.10).

(b) Confidence regions: Let (αn)n∈N ⊂ (0, 1) be a sequence of significance levels con-

verging to some α ∈ [0, 1) and let T
(

αn, n
)

denote the corresponding EVTs defined

in (3.9). Then,

lim
n→∞

P
{

‖Wn(un − Vn)‖∞ ≤ T
(

αn, n
)

; ∀un ∈ R
In
}

= 1− α ,

(c) Smoothness: Let û∗n denote the soft-thresholding estimator using the extreme

value thresholds T
(

αn, n
)

. If the considered mother wavelet has m > r vanish-

ing moments and is m times continuously differentiable, then

lim inf
n→∞

P

{

‖û∗n‖Br
p,q

≤ ‖u‖Br
p,q

; ∀u ∈ Br
p,q

}

≥ 1− α .

Proof. By definition, for any n ∈ N and pair of any indices (j, k), (j′, k′), the inner prod-
ucts 〈ψn

j,k, ψ
n
j′,k′〉 of the discrete wavelets coincide with the inner product 〈ψj,k, ψj′,k′〉 of

the continuous domain wavelets. Since the family
(

ψj,k : (j, k) ∈ Ω
)

is a Riesz basis
with normalized elements this immediately yields Condition (ii) required in the Defini-
tion 1.2 for asymptotically stable frames.

Condition (i) of Definition 1.2 is satisfied since all |〈ψj,k, ψj′,k′〉| are bounded away from
one. To see that this holds true, it is sufficient to consider the case where ψ(2jt − k)
and ψ(2j

′

t− k′) are both supported in the interval (0, 1) and satisfy j′ ≤ j. Application
of the substitution rule yields

|〈ψj,k, ψj′,k′〉| = 2j/2+j′/2

∣

∣

∣

∣

∫

R

ψ(2jt− k)ψ(2j
′

t− k′) dt

∣

∣

∣

∣

= 2(j−j′)/2

∣

∣

∣

∣

∫

R

ψ(2j−j′ t− k + 2j−j′k)ψ(t) dt

∣

∣

∣

∣

= |〈ψj−j′ ,k−2j−j′k, ψ〉| .

Because all wavelets have unit norm, the Cauchy-Schwarz inequality shows |〈ψj−j′ ,k−2j−j′k, ψ〉| <
1. The upper frame bound implies that

∑

(j,k)∈Ωn
|〈ψj,k, ψ〉|2 < ∞, and hence the se-

quence
(

〈ψj,k, ψ〉 : (j, k) ∈ Ωn

)

in particular converges to zero. As a consequence, the
numbers |〈ψj,k, ψj′,k′〉| are uniformly bounded by some constant ρ < 1.

The other claims in Items (a)–(c) then follow from the asymptotic stability of the
frames Dn and the general results derived the previous section. Actually, the first
two items are just restatements of Theorems 1.3 and 3.6 adapted to the wavelet set-
ting. For Item (c) note that the norms ‖ · ‖p,q,r satisfy the component-wise monotony
property (3.12) and therefore Theorem 3.8 yields

lim inf
n→∞

P
{

‖x̂n‖p,q,r ≤ ‖Wnun‖p,q,r ; ∀u ∈ Br
p,q

}

≥ 1− α with x̂n := S
(

Vn, T
(

αn, |Ωn|
))

.
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By definition we have ‖x̂n‖p,q,r = ‖û∗n‖Br
p,q

and the inequality ‖Wnun‖p,q,r ≤ ‖u‖Br
p,q

for
all n which finally yields Item (c) and concludes the proof.

4.1.3 Cycle Spinning

A mayor drawback of thresholding in a wavelet basis is its missing translation invari-
ance. This typically causes visually disturbing Gibbs-like artifacts near discontinuities
at non-dyadic locations. One way to significantly reduce these artifacts is via so called
cycle spinning (see [18]). The idea there is to reduce the artifacts by averaging several
estimates obtained by denoising shifted copies of the noisy data.

Let Dn =
(

ψn
j,k : (j, k) ∈ Ωn

)

be an orthonormal wavelet basis and denote by Tm : Rn →
R

n the cyclic translation operator, defined by (Tmun)(k) = un(k − m) for un ∈ R
n and

all k,m ∈ {0, . . . , n− 1}. Cycle spinning then averages the wavelet soft-thresholding
estimates of the translated data Tmun over all shifts m = 0, . . . ,M −1, where M is some
prescribed number of considered translations. Hence, one defines

ûn,M :=
1

M

M−1
∑

m=0

T−mW
∗
n ◦ S (WnTmVn, T ) . (4.1)

The following elementary Lemma 4.5 states that the cycle spinning estimator (4.1) is
equal to the soft-thresholding estimator defined by Equation (2.6) corresponding to
the overcomplete wavelet frame

Dn,M := (T−mψj,k : (j, k,m) ∈ Ωn,M ) with Ωn,M := Ωn × {0, . . . ,M − 1} . (4.2)

Hence wavelet cycle spinning fits into the general framework of soft-thresholding in-
troduced in Section 2.

Lemma 4.5. Let Dn,M be the overcomplete wavelet frame defined in (4.2) and denote

by Wn,M : Rn → R
nM the corresponding analysis operator. Then, the cycle spinning

estimator (4.1) has the representations

ûn,M =
1

M
W

∗
n,M ◦ S (Wn,MVn, T ) = W

+
n,M ◦ S (Wn,MVn, T ) . (4.3)

Hence the cycle spinning estimator equals the soft-thresholding estimator corresponding

to the redundant wavelet frame Dn,M .

Proof. The first identity in (4.3) immediately follows from (4.2) and (4.1). Next we verify
the second equality. Since the decimated wavelet transform Wn and the translation
operators Tm are isometries, we have

∥

∥Wn,Mun
∥

∥

2
=

M−1
∑

m=0

∥

∥WnTmun
∥

∥

2
=M

∥

∥un
∥

∥

2

whenever un are the scaling coefficients of a member u of the wavelet space W. Hence
Dn,M is a tight frame with frame bound equals M . This implies that the dual synthesis
operator W

+
n,M corresponding to the cycle spinning frame is simply given by W

+
n,M =

W
∗
n,M/M , which yields the second equality in (4.3).

In the following we will show that redundant cycle spinning frame is asymptotic stable
and thus allows the application of our general results. Strictly taken, these conditions
do not hold for the frame Dn,M , since some of the elements Tmψj,k occur more than
once in Dn,M . In particular, the cardinality of the set {Tmψj,k : (j, k,m) ∈ Ωn,M} is
strictly less than |Ωn,M | = nM ; the exact number of different frame elements is com-
puted in the following Lemma 4.6. Asymptotic stability will then be satisfied for the
frame that contains every element Tmψj,k exactly once.
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Lemma 4.6. For any M ≤ n, the number of different elements of the frame Dn,M defined

in (4.2) is given by

∣

∣

{

Tmψj,k : (j, k,m) ∈ Ωn,M

}∣

∣ = n ⌊log2M⌋+M
(

2⌈log2 n/M⌉ − 1
)

(4.4)

Proof. The definition of the wavelet basis implies that ψj,k = Tn2−jkψj,0 for very (j, k) ∈
Ωn and hence the periodicity of ψj,0 implies that

Tmψj,k = Tm+n2−jkψj,0 = ψj,k+m2j/n .

whenever m2j/n is an integer number. This shows that for every given scale index
j ∈ {0, . . . , log2 n− 1}, there are exactly min{n,M2j} different wavelets. One concludes
that

|{Tmψj,k : (j, k,m) ∈ Ωn,M}| = n
∣

∣{j : n/M ≤ 2j ≤ n/2}
∣

∣+M
∑

M2j<n

2j

= n
(

log2 n−
⌈

log2
n

M

⌉)

+M

⌈log2 n/M⌉−1
∑

j=0

2j .

This shows Equation (4.4).

In the following we shall for simplicity assume that M , the number of shifts in the
cycle spin procedure, is an integer power of two. In this case, Equation (4.4) simplifies
to

∣

∣{Tmψj,k : (j, k,m) ∈ Ωn,M}
∣

∣ = n log2 (M) + n−M . (4.5)

Note that this is significantly smaller (at least for large M ) than the naive bound Mn
given by the cardinality of Ωn,M .

Theorem 4.7 (Soft-thresholding using cycle spinning). Let M be any fixed integer

power of two, denote by Dn,M =
(

Tmψj,k : (j, k,m) ∈ Ωn,M

)

the overcomplete wavelet cy-

cle spinning frame and by Wn,M the corresponding analysis operator. Then the following

assertions hold true:

(a) Distribution: Let (ǫn)n∈N be a sequence of noise vectors in R
n with independent

N
(

0, σ2
)

-distributed entries. Then, the sequence ‖Wn,Mǫn‖∞ is of Gumbel type with

normalization constants σa (χ, n) (defined by (1.9)) and σbM (χ, n), where

bM (χ, n) :=
√

2 logn+
− log logn− log π + 2 log log2 (M)

2
√
2 logn

.

(b) Confidence regions: Let αn ∈ (0, 1) be a sequence of significance levels converging

to some α ∈ [0, 1) and let T
(

αn, |Dn,M |
)

denote the corresponding EVTs defined in

(3.9). Then,

lim
n→∞

P
{

‖Wn,M(un − Vn)‖∞ ≤ T
(

αn, |Dn,M |
)

; ∀un ∈ R
In
}

= 1− α .

(Here by some abuse of notation |Dn,M | denotes the number of different elements

in that frame, see (4.5).) The same holds true if we replace T
(

αn, |Dn,M |
)

by

TM (αn, n) := −σa (χ, n) log log
(

1/(1− αn)
)

+ σbM (χ, n) . (4.6)

(c) Smoothness: Let û∗n,M denote the soft-thresholding estimator using either T
(

αn, |Dn|
)

or Tn,M (αn) as threshold. If the considered mother wavelet has m > r vanishing

moments and is m times continuously differentiable, then

lim inf
n→∞

P

{

‖û∗n,M‖Br
p,q

≤ ‖u‖Br
p,q

; ∀u ∈ Br
p,q

}

≥ 1− α .
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Proof. By using the characterization of the cycle spinning estimator in Lemma 4.5
and the cardinality computed in Lemma 4.6, the proof follows the lines of the proof of
Theorem 4.4. Again, one simply uses the fact that the discrete inner products coincide
with continuous ones of functions forming an infinite dimensional frame. However,
notice the change of the normalization sequences in Item (a) which is also used for the
threshold Tn,M (αn). As easy to verify we have the asymptotic relation

a (χ, n) z + bM (χ, n) =
√

2 logn+
2z − log logn− log π + 2 log log2 (M)

2
√
2 logn

= a (χ, |Dn,M |) z + b (χ, |Dn,M |) + o
(

1/
√

2 logn
)

.

From basic extreme value theory it follows that we can replace the sequence a(χ, |Dn,M |)z+
b(χ, |Dn,M |) by the one considered in Item (a) and for the threshold Tn,M (αn).

Remark 4.8. This alternative form (4.6) for the EVTs for cycle spinning denoising has

been introduced to allow a better comparison with the EVTs used in the basis case.

It fact, it can be seen that the extreme value thresholds TM
(

αn, n
)

for the redundant

wavelet frame Dn,M simply increase by the additive constant (log log2M) /
√
2 logn when

compared to the extreme value threshold T (αn, n) for the non-redundant wavelet frame.

The sharp confidence regions of Theorem 4.7 require M to be a fixed number. In the
fully translation invariant transform, to be discussed next, one takes M = n dependent
on the discretization level. This effects a strong dependence of large scale coefficients
and that the distributional limit of Item (a) in Theorem 4.7 will not longer hold true.

4.1.4 Fully Translation Invariant Denoising

Translation invariant wavelet denoising introduced in [18, 43, 48, 50] is similar to
cycle spinning denoising. However, now one takes the whole range of M = n integer
shifts instead of taking it as a fixed number independent on n. That is, the translation
invariant wavelet estimator is defined by

ûn,n :=
1

n

n−1
∑

m=0

T−mW
∗
n ◦ S (WnTmVn, T ) . (4.7)

Lemma 4.5 implies that ûn,n equals the soft-thresholding estimator W
+
n,nS

(

Wn,nVn, T
)

where Wn,n denotes the analysis operator corresponding to the translation invariant
wavelet frame

Dn,n =
(

Tmψ
n
j,k : (j, k) ∈ Ωn and m ∈ {0, . . . , n− 1}

)

.

Equation (4.5) shows that the translation invariant wavelet frame contains n log2 n dif-
ferent elements. Further, from the proof of this Lemma it follows that Dn,n is a tight
frame with frame bound equals n. After removing multiple elements in Dn,n, the re-
sulting frame is non-tight but still has upper frame bounds bn = n tending to infinity
as n → ∞. One concludes that Condition (ii) fails to hold for the translation invari-
ant wavelet transform. The increasing frame bounds somehow reflect the increasing
redundancy and dependency of the coarse scale wavelets with increasing n.

One might conjecture that still the distribution result of Theorem 4.7 holds true with
M replaced by n. However, we shall show that this is not the case. Intuitively, the
increasing correlation of the coarse scale wavelets with increasing n causes the maxi-
mum ‖Wn,nǫn‖∞ to be in probability smaller than the maximum of n log2 n independent
coefficients. Although the sets if Theorem 4.7 are still confidence regions (as follows
from Sidak’s Lemma A.9), they are no longer sharp and the considered thresholds
are unnecessarily large. The following theorem gives a much smaller radius for these
confidence regions; in particular this significantly improves [3, Theorem 4.4].
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Theorem 4.9 (Translation invariant soft-thresholding). Assume that the mother wavelet

ψ is continuously differentiable, which implies that (ψ̄ ∗ψ)(t) = 1− c2t2/2+ o(t2) for some

constant c. (Here ∗ denotes the circular convolution and ψ̄ (s) := ψ (−s).) Further denote

by Wn,n the corresponding discrete translation invariant wavelet transform.

Then, the following assertions hold true:

(a) Distribution: Let (ǫn)n∈N be a sequence of noise vectors in R
In with independent

N
(

0, σ2
)

-distributed entries. Then, for every z ∈ R,

lim inf
n→∞

P

{

∥

∥Wn,nǫn
∥

∥

∞
≤
√

2 logn+
z + log (c/π)√

2 logn

}

≥ exp
(

−e−z
)

. (4.8)

(b) Confidence regions: Let αn ∈ (0, 1) be a sequence converging to some α ∈ [0, 1).
Then, we have

lim inf
n→∞

P
{∥

∥Wn,n

(

un − Vn
)∥

∥

∞
≤ Tn

(

αn

)

; ∀un ∈ R
In
}

≥ 1− α ,

when using the thresholds Tn
(

αn

)

:= σ
√
2 logn + σ (2 logn)−1/2 log log(1/(1 − αn)) +

log (c/π).

(c) Smoothness: Let û∗n,n denote the soft-thresholding estimator using the threshold

Tn(αn) defined in Item (b). If the considered mother wavelet has m > r vanishing

moments and is m times continuously differentiable, then

lim inf
n→∞

P

{

‖û∗n,n‖Br
p,q

≤ ‖u‖Br
p,q

; ∀u ∈ Br
p,q

}

≥ 1− α .

Proof. The key to all results is the distribution bound given Item (a). Its proof is
somehow technical and is presented in Section B.2. The other claims follow from
Item (a) combined with the results of the previous sections (namely Theorems 1.3, 3.6
and 3.8), and are verified as the corresponding statements in the proof of Theorem 4.4.

Remark 4.10. Consider a sequence of standardized normal vectors ηn each of them

having Mn (logn)
r

independent entries, where M is some fixed integer and r ≥ 0 some

fixed nonnegative number. From Proposition A.5 we know that ‖ηn‖∞ is of Gumbel type

with normalization sequences a (χ,Mn (log n)
r
) and b (χ,Mn (logn)

r
). One easily verifies

that

a (χ,Mn (logn)r) z + b (χ,Mn (logn)r)

=
√

2 logn+
(−1/2 + r) log logn+ log

(

M/
√
π
)

√
2 logn

+ o
(

1/
√

2 logn
)

. (4.9)

This allows to compare the bound in (4.8) with the asymptotic distribution of a certain

number of independent random variables. Indeed, comparing (4.8) with (4.9) we can

conclude, that Wn,nǫn less or equal in probability than the maximum of Mn
√
logn inde-

pendent normally distributed random variables with M := [c
√
π]. Hence (4.8) improves

the primitive bound obtained from the distribution of n logn independent coefficients by

a factor
√
logn/c.

Remark 4.11. It is a difficult task to compute the asymptotic distribution of the transla-

tion invariant wavelet coefficients exactly. This is due to the fact that for coarse scales

the coefficients get increasingly correlated, whereas on the fine scales the correlations

remain bounded away from σ2. No appropriate tools for asymptotic extreme value anal-

ysis of such mixed type random fields seem to exist. Nevertheless, we believe that the

maxima of the translation invariant wavelet coefficients are of Gumbel type but with

even smaller normalization constants than the ones used in (4.8). In particular, it may

even turn out that the threshold σ
√
2 logn provides the denoising property for the trans-

lation invariant system.
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4.2 Curvelet Thresholding

Second generation curvelets (introduced in [10, 11, 12]) are functions ψj,ℓ,k in R
2 de-

pending on a scale index j ∈ N, an orientation parameter ℓ ∈ {0, . . . , 4·2⌈j/2⌉−1} and a lo-
cation parameter k ∈ Z

2. They are known to provide an almost optimal sparse approxi-
mation of piecewise C2 functions with piecewise C2 boundaries (as shown in [10]); this
class of functions usually serves as accurate cartoon model for natural images. The
main curvelet property yielding this approximation result is the increasing anisotropy
at finer scales. This feature also distinguishes them from standard wavelets in higher
dimension.

There exists other related function systems with similar properties. The cone adapted
shearlet frame (introduced in [31, 33, 42]) is very similar to the curvelet frame and
shares its optimality when approximating piecewise C2 images with piecewise C2

boundaries, see [32]. Yet another closely related function system are the contourlets
introduced by Do and Vetterli [23, 24]. For simplicity we focus on the curvelets; similar
statements could be made for the shearlet and contourlet frames.

4.2.1 Discrete Curvelet Frames

The discrete curvelet transform computes inner products of un ∈ R
n×n with discrete

curvelets ψn
j,ℓ,k ∈ R

n×n. As for the wavelet transform, the elements ψn
j,ℓ,k are not com-

puted explicitly and defined implicitly by the transform algorithm. Different imple-
mentations of the continuous curvelet transform give rise to different discrete frame
elements ψn

j,ℓ,k. Current implementations of the curvelet transform are computed in
the Fourier domain. Below we shall focus on the wrapping based implementation of
the curvelet transform introduced in [9]. This transform is an isometry which makes
the computation of its pseudo-inverse particularly simple.

Let n = 2J be an integer power of two with J denoting the maximal scale index. The
discrete curvelets and the discrete curvelet transform are composed of the following
ingredients:

• First, define Λn as the set of all pairs (j, ℓ) satisfying j ∈ {0, . . . , log2 n− 2} and
ℓ ∈ {0, . . . , 4 · 2⌈j/2⌉ − 1}. The index sets of the discrete curvelets is defined by

Ωn :=
(

(j, ℓ, k) : (j, ℓ) ∈ Λn and k ∈ Dj,ℓ

)

.

where Dj,ℓ = {0, . . . ,Kj,ℓ;1−1}×{0, . . . ,Kj,ℓ;2−1} for certain given numbers Kj,ℓ;1 ∼
2j and Kj,ℓ;2 ∼ 2j/2. One refers to j as scale index, ℓ as the orientation index, and
k the location index.

• Next, one constructs smooth nonnegative window functions wj,ℓ : R
2 → R satisfy-

ing the identity

(

∀z ∈ R
2
)

J−2
∑

j=0

4·2⌈j/2⌉−1
∑

ℓ=0

|wj,ℓ(z)|2 = 1 .

The functions wj,ℓ are essentially obtained by anisotropic scaling and shearing a
single window function; see [9] for a detailed construction.

• For any index triple (j, ℓ, k) ∈ Ωn the discrete curvelet at scale j, having orientation
ℓ/2⌈j/2⌉ and location k = (k1/Kj,ℓ;1, k2/Kj,ℓ;2) is defined by its Fourier representa-
tion

(

Fnψ
n
j,ℓ,k

)

(m) =
wj,ℓ (m)

cj,ℓ
e−2πi(m1k1/Kj,ℓ;1−m2k2/Kj,ℓ;2) . (4.10)

Here the coefficients cj,ℓ are chosen in such a way that ‖ψn
j,ℓ,k‖ = 1 and Fn denotes

the discrete Fourier transform.
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• Finally, one defines the curvelet frame Dn =
(

ψn
j,ℓ,k : (j, ℓ, k) ∈ Ωn

)

and denotes

by Cn : R
n×n → R

Ωn the corresponding analysis operator, which has been named
digital curvelet transform via wrapping in [9]. In the following we will refer to Cn

simply as discrete curvelet transform. We emphasize again that the implementa-
tion of the discrete curvelet transform does not require to compute the curvelets
ψn
j,ℓ,k explicitly.

Implementations of the discrete curvelet transform and its pseudoinverse using O(n2 logn)
operation counts are freely available at http://curvelet.org. Although this imple-
mentation does not use normalized frame elements, the constants cj,ℓ can easily be
computed after the actual curvelet transformation and applied for normalizing the
curvelet coefficients prior to denoising. The denoising demo fdct_wrapping_demo_denoise.m
included in the curvelet software package in fact computes the norms of the discrete
curvelets and uses them for proper scaling of the chosen thresholds.

4.2.2 Curvelet Denoising

We now consider our denoising problem (1.1), which, after taking the discrete curvelet
transform, simply reads Yn = xn +Cnǫn. As usual, the estimator we consider is soft-
thresholding x̂n = S (Yn, T ) of the curvelet coefficients.

Similar to the wavelet case, we measure smoothness in terms of the weighted (p, q)-
norms, depending on certain norm parameters p, q ≥ 1 and a parameter r ≥ 0 describ-
ing the degree of smoothness. More precisely, we define

‖xn‖p,q,r := q

√

∑

j,ℓ

2jsq ‖xn(j, ℓ, ·)‖qp with s = r +
3

2

(

1

2
− 1

p

)

.

These types of norms applied to the continuous domain curvelet coefficients have
been defined and studied in [4]. In that paper also relations between these norms and
classical Besov norms have been derived.

Theorem 4.12 (Curvelet soft-thresholding). The discrete curvelet frames Dn =
(

ψn
j,ℓ,k :

(j, ℓ, k) ∈ Ωn

)

defined by Equation (4.10) are asymptotically stable. In particular, the

following assertions hold true:

(a) Distribution: Let ǫn be a sequence of noise vectors in R
In with independent

N
(

0, σ2
)

-distributed entries. Then, for every z ∈ R,

lim
n→∞

P

{

‖Cnǫn‖∞ ≤ σ
√

2 log |Ωn|+ σ
2z − log log |Ωn| − log π

2
√

2 log |Ωn|

}

= exp
(

−e−z
)

.

(b) Confidence regions: Let αn ∈ (0, 1) be a sequence of significance levels converging

to some α ∈ [0, 1) and let T
(

αn, |Ωn|
)

denote the corresponding EVTs defined in (3.9).

Then,

lim
n→∞

P
{

‖Cn (un − Vn)‖∞ ≤ T (αn, |Ωn|) ;un ∈ R
In
}

= 1− α ,

(c) Smoothness: Let x̂n denote the soft-thresholding estimate using the extreme value

threshold T
(

αn, |Ωn|
)

. Then, with any of the norms defined above, we have

lim inf
n→∞

P
{

‖x̂n‖p,q,r ≤ ‖Cnun‖p,q,r ;un ∈ R
In
}

≥ 1− α .

Proof. All frame elements are normalized due to the chosen scaling. Moreover, as
shown in [9, Proposition 6.1], the discrete curvelet frame Dn is faithful to an under-
lying infinite dimensional curvelet frame obtained by periodizing the curvelets on the
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continuous domain R
2. This immediately yields Condition (ii). Moreover, along the

lines of [11] (which uses a slightly different curvelet system) one easily shows that the
inner products satisfy

〈

ψn
j,ℓ,k, ψ

n
j′,ℓ′,k′

〉

≤ ρ < 1 .

for some constant ρ < 1 independent on n and all indices. This obviously implies
Condition (i). All claims in Items (a)–(c) then follow from Theorems 1.3, 3.6 and 3.8
derived in the previous section.
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A Extremes of Normal Random Vectors

Let (Ωn)n∈N be a sequence of finite index sets with monotonically increasing cardinali-
ties |Ωn| satisfying limn→∞ |Ωn| = ∞. Moreover, for every n ∈ N, let ξn := (ξn(ω) : ω ∈ Ωn)
be given standardized normal random vectors, which means that ξn(ω) ∼ N

(

0, 1
)

for
every n ∈ N and ω ∈ Ωn. We are mainly interested in random vectors with dependent
entries, in which case Cov(ξn (ω) , ξn (ω

′)) 6= 0 for at least some pairs (ω, ω′) ∈ Ω2
n with

ω 6= ω′.

As the main result of this section we derive the asymptotic distribution of ‖ξn‖∞ for a
sequence ξn of dependent normal vectors whose covariances satisfy a certain summa-
bility condition (see Theorem A.8). Whereas similar results are known for max

(

ξn
)

, to
the best of our knowledge, such kind of results are new for ‖ξn‖∞. Since |ξn(ω)|2 ∼ χ2 is
chi-squared distributed with one degree of freedom, our results can also be interpreted
as new results for the asymptotic extreme value theory of dependent χ2-distributed
random vectors.

A.1 Maxima of Normal Vectors

We will start by reviewing and slightly refining the main results from statistical extreme
value theory for maxima of normal vectors as we require them in this paper.

The most basic extreme value result deals with the case where the components of ξn
are independent. In this case it is well known, that, after rescaling, max

(

ξn
)

converges
to the Gumbel distribution as n→ ∞.

Proposition A.1. Let
(

ξn
)

n∈N
be a sequence of standardized normal random vectors

in R
Ωn with independent entries. Then the maxima max

(

ξn
)

are of Gumbel type (see

Definition 1.4) with normalization sequences a(|Ωn|, n), b(|Ωn|, n) defined by (3.3), (3.4).

Proof. See, [44, Theorem 1.5.3].

If the entries of ξn are dependent, then the result of Proposition A.1 does not necessar-
ily hold true. There is, however, a simple and sufficient criterion on the covariances
Cov

(

ξn(ω), ξn(ω
′)
)

of a sequence of dependent normal vectors such that the maxima
still are of Gumbel type with the same normalization sequences. This criterion is an
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immediate consequence of the so called normal comparison Lemma or Berman’s in-
equality (see [44, Theorem 4.2.1]). For later purpose, where we study ‖ξn‖∞ instead
of max

(

ξn
)

, we require a quite recent improvement of this important inequality which
is due to Li and Shao [45]. The standard form of the normal comparison Lemma [44,
Theorem 4.2.1] has already been applied for redundant wavelet systems in [3, 49],
which however, only yields results for maxima of ξn without taking absolute values.
We stress again, that taking absolute values slightly change the constants in contrast
to relations (1.5).

Lemma A.2. Let ηn, ξn be standardized normal random vectors in R
Ωn , denote its co-

variances by κηn(ω, ω
′) := Cov

(

ηn(ω), ηn(ω
′)
)

, κξn(ω, ω
′) := Cov

(

ξn (ω) , ξn(ω
′)
)

, and set

ρn(ω, ω
′) := max

{

|κηn(ω, ω
′)|, |κξn(ω, ω′)|

}

. Then, for all Tn ∈ R,

P
{

max
(

ηn
)

≤ Tn
}

−P
{

max
(

ξn
)

≤ Tn
}

≤
1

4π

∑

ω 6=ω′

(

arcsin
(

κηn(ω, ω
′)
)

− arcsin
(

κξn(ω, ω
′)
)

)

+
exp

( −T 2
n

1 + ρn(ω, ω′)

)

.

Here z+ = max {z, 0} denotes the positive part of some real number z ∈ R and arcsin
denotes the inverse mapping of sin: [−π/2, π/2] → [−1, 1].

Proof. See [45, Theorem 2.1].

In the special case where ηn has independent entries, Lemma A.2 has the following
immediate consequence given in Lemma A.3. This allows to extend Proposition A.1 to
certain sequences of dependent random vectors by comparing them with independent
ones.

Lemma A.3. Let ηn, ξn be standardized normal random vectors in R
Ωn . Assume that the

entries of ηn are independent, and let κn denote the covariance matrix of ξn defined by

κn(ω, ω
′) := Cov

(

ξn (ω) , ξn (ω
′)
)

. Then, for all Tn ∈ R,

∣

∣P
{

max
(

ηn
)

≤ Tn
}

−P
{

max
(

ξn
)

≤ Tn
}∣

∣

≤ 1

8

∑

ω 6=ω′

∣

∣κn
(

ω, ω′
)
∣

∣ exp

(

− T 2
n

1 + |κn(ω, ω′)|

)

. (A.1)

Proof. See [45, Corollary 2.2].

Lemmas A.2 and A.3 are significant improvements of the standard versions of the
normal comparison Lemma [44, Section 4] due to the absence of a singular factor
(

1 − |ρn(ω, ω′)|2
)−1/2

that is contained in earlier versions. It is in fact the absence
of this singular term that we require for deriving an inequality similar to the one in
Lemma A.3 that compares the distributions of ‖ηn‖∞ and ‖ξn‖∞ for two normal vectors
ηn and ξn.

Theorem A.4. Let
(

ξn
)

n∈N
be a sequence of standardized normal random vectors in R

Ωn

having covariance matrices κn ∈ R
Ωn×Ωn satisfying

lim
n→∞

∑

ω 6=ω′

∣

∣κn
(

ω, ω′
)
∣

∣

(

log |Ωn|
|Ωn|2

)1/(1+|κn(ω,ω′)|)

= 0 . (A.2)

Then, the maxima max
(

ξn
)

are of Gumbel type (see Definition 1.4) with normalization

constants a (N, |Ωn|), b (N, |Ωn|) defined by (3.3), (3.4).
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Proof. Fix some z ∈ R and define Tn := a(N, |Ωn|)z + b(N, |Ωn|). Then, the definitions
of the normalization sequences a(N, |Ωn|) and b(N, |Ωn|) imply that T 2

n = 2 log |Ωn| −
log log |Ωn| + O (1) as n → ∞. Hence there is some constant C > 0 and some index
n0 ∈ N, such that for all n ≥ n0, we have

exp

(

− T 2
n

1 + |κn(ω, ω′)|

)

≤ C exp

(

− log
(

|Ωn|2 / log |Ωn|
)

1 + |κn(ω, ω′)|

)

= C

(

log |Ωn|
|Ωn|2

)1/(1+|κn(ω,ω′)|)

.

Now let Equation (A.2) be satisfied and let (ηn)n∈N be a sequence of standardized nor-
mal vectors with independent entries. Then, the triangle inequality, Lemma A.3, and
the estimate just established imply

∣

∣P
{

max
(

ξn
)

≤ Tn
}∣

∣ ≤
∣

∣P {max (ηn) ≤ Tn}
∣

∣+
C

8

∑

ω 6=ω′

|κn(ω, ω′)|
(

log |Ωn|
|Ωn|2

)1/(1+|κn(ω,ω′)|)

.

Hence the claim follows from Proposition A.1 and Assumption (A.2).

A.2 Maxima of Absolute Values

In the following we derive results similar to Proposition A.1 and Theorem A.4 for ‖ξn‖∞
in place of max

(

ξn
)

. The first auxiliary result, Proposition A.5, deals with the inde-
pendent case. It is easy to establish but nevertheless seems to be much less known
than the corresponding result in the normal case. We include a short proof based on
the known extreme value distribution of independent χ2-distributed random variables.
The second and main result in this section, Theorem A.8, deals with the dependent
case. It is a new contribution and based on a novel inequality for comparing the
distributions of ‖ηn‖∞ and ‖ξn‖∞ (given in Lemma A.7).

Proposition A.5. Let
(

ξn
)

n∈N
be a sequence of standardized normal vectors in R

Ωn

having independent entries. Then ‖ξn‖∞ is of Gumbel type (see Definition 1.4) with

normalization sequences a (χ, |Ωn|), b (χ, |Ωn|) defined by (1.9), (1.10).

Proof. Since ξn(ω) is standard normally distributed for any ω ∈ Ωn, the random vari-
ables |ξn(ω)|2 are χ2-distributed with one degree of freedom. The χ2-distribution is in
turn a member of the family of Gamma distributions Fβ,γ corresponding to β = γ = 1/2.
The asymptotic extreme value distribution of the Gamma distribution Fβ,γ is known
(see [29, page 156]) and implies

lim
n→∞

P
{

‖ξn‖2∞ ≤ 2z + 2 log |Ωn| − log log |Ωn| − log π
}

= exp
(

−e−z
)

. (A.3)

Moreover, a Taylor series approximation shows

√

2z + 2 log |Ωn| − log log |Ωn| − log π

= a
(

χ, |Ωn|
)

z + b
(

χ, |Ωn|
)

+ o
(

a
(

χ, |Ωn|
))

as n→ ∞ . (A.4)

Any o
(

a
(

χ, |Ωn|
))

-term can be omitted when computing extreme value distributions (see
[44, Theorem 1.2.3]), and hence Equations (A.3) and (A.4) imply the desired result.

Remark A.6. The sequence b
(

χ, |Ωn|
)

used for normalizing the maximum ‖ξn‖∞ in Propo-

sition A.5 is different from the sequence b
(

N, |Ωn|
)

used for the normalization of max
(

ξn
)

in Proposition A.1. Indeed, as easily verified,

b
(

N, 2 |Ωn|
)

= b
(

χ, |Ωn|
)

+ o
(

a
(

N, 2 |Ωn|
))

.
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Again, the o
(

a
(

N, 2 |Ωn|
))

term can be omitted in the extreme value distribution and hence

‖ξn‖∞ behaves equal to the maximum of 2 |Ωn| (opposed to |Ωn|) independent standard

normally distributed random variables. Using different arguments, this has already

been observed in [39, Section 8.3].

If the entries of ξn are not independent, then the result of Proposition A.5 does not
necessarily hold true. If, however, the correlations of ξn are sufficiently small, then, as
in the normal case, we will show that the same Gumbel law still holds. This result fol-
lows again from a comparison inequality, now between the distributions of ‖ξn‖∞ and
‖ηn‖∞ with some reference normal vector ηn, to be derived in the following Lemma A.7.
For the sake of simplicity we assume that the vector ηn has independent entries; in
an analogous manner a similar result could be derived for comparing two dependent
random vectors.

Lemma A.7. Let ηn, ξn be standardized normal random vectors in R
Ωn . Assume that the

entries of ηn are independent and denote by κn ∈ R
Ωn×Ωn the covariance matrix of ξn,

having entries κn(ω, ω
′) := Cov

(

ξn (ω) , ξn (ω′)
)

. Then, for all Tn ∈ R,

|P {‖ηn‖∞ ≤ Tn} −P {‖ξn‖∞ ≤ Tn}| ≤
1

4

∑

ω 6=ω′

|κn(ω, ω′)| exp
(

− T 2
n

1 + |κn(ω, ω′)|

)

. (A.5)

Proof. The proof uses the normal comparison Lemma A.2 of Li and Shao applied to
the strongly dependent random vectors Yn :=

(

ηn,−ηn
)

and Xn :=
(

ξn,−ξn
)

in place

of ηn and ξn. To that end, we first note that obviously
{

|ξn| ≤ Tn
}

=
{

Xn < Tn
}

and
{

|ηn| ≤ Tn
}

=
{

Yn < Tn
}

. Moreover, the covariance matrices of Yn and Xn are block
matrices of the form

Cov(Yn) =

(

In −In

−In In

)

and Cov(Xn) =

(

κn −κn
−κn κn

)

,

where κn = Cov
(

ξn
)

denotes the covariance matrix of ξn and In = Cov
(

Yn
)

is the
identity matrix in R

Ωn×Ωn . Now applying Lemma A.2 with Yn and Xn in place of ηn and
ξn yields

P {‖ηn‖∞ ≤ Tn} −P {‖ξn‖∞ ≤ Tn}
=P {max (ηn,−ηn) ≤ Tn} −P {max (ξn,−ξn) ≤ Tn}

≤ 1

2π

∑

ω 6=ω′

((− arcsin(κn(ω, ω
′)))+ + (arcsin(κn(ω, ω

′)))+) exp

(

− T 2
n

1 + |κn(ω, ω′)|

)

=
1

2π

∑

ω 6=ω′

|arcsin(−κn(ω, ω′))| exp
(

− T 2
n

1 + |κn(ω, ω′)|

)

.

Here for the first estimate we used that the two sums over the diagonal blocks give the
same value, that the same is the case for the two off-diagonal blocks, that all terms
having ω = ω′ cancel and that Cov(Xn) (ω, ω

′) = 0 for ω 6= ω′. Interchanging the roles
of ξn and ηn yields the same estimate for P

{

‖ξn‖∞ ≤ Tn
}

− P
{

‖ηn‖∞ ≤ Tn
}

and hence
implies

|P {‖ηn‖∞ ≤ Tn} −P {‖ξn‖∞ ≤ Tn}|

≤ 1

2π

∑

ω 6=ω′

∣

∣arcsin(κn(ω, ω
′))
∣

∣ exp

(

− T 2
n

1 + |κn(ω, ω′)|

)

. (A.6)

Finally, the estimate |arcsin y| ≤ |y| · π/2 for y ∈ [−1, 1] and inequality (A.6) imply the
claimed inequality (A.5).
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The following theorem is the main result of this section and the key for most results
established in this paper.

Theorem A.8. Let
(

ξn
)

n∈N
be a sequence of standardized normal vectors in R

Ωn having

covariance matrices κn ∈ R
Ωn×Ωn satisfying Equation (A.2). Then ‖ξn‖∞ is of Gumbel

type (see Definition 1.4) with normalization constants a (χ, |Ωn|), b (χ, |Ωn|) defined by

(1.9), (1.10).

Proof. This is analogous to the proof of Theorem A.4. Instead of Proposition A.1 and
Lemma A.3 one now uses Proposition A.5 and Lemma A.7.

Equation (A.2) provides a sufficient condition for the extreme value results of Theo-
rems A.4 and A.8 to hold. However, given a sequence

(

ξn
)

n∈N
of normal vectors with

covariance matrices κn, it is not completely obvious whether or not (A.2) is satisfied.
In Section 3 we verified that (A.2) indeed holds in the case where ξn = 〈φnω , ǫn〉 are co-
efficients of standardized normal random vectors ǫn having independent entries with
respect to an asymptotically stable family of frames

(

φnω : ω ∈ Ωn

)

.

Occasionally we will make use of the following classical result due to Sidak [51] for
bounding the maximum of the magnitudes of dependent random vectors by the maxi-
mum of the magnitudes of independent ones.

Lemma A.9 (Sidak’s Inequality). Let ηn, ξn be standardized normal random vectors in

R
Ωn and assume that the entries of ηn are independent. Then,

(∀T ∈ R) P {‖ξn‖∞ ≤ T } ≥ P {‖ηn‖∞ ≤ T } . (A.7)

Proof. See [51, Corollary 1].

Note that a similar result also holds for the maxima without the absolute values, which
bounds the probability P

{

max
(

ξn
)

≤ T
}

of dependent standardized normal vectors

from below by the probability P
{

max(ηn) ≤ T
}

of independent ones. This one-sided
estimate, however, requires the covariances of ξn being nonnegative. It is known as
Slepian’s Lemma and has first been derived in [52]. Interestingly, Slepian’s Lemma
immediately follows from the normal comparison Lemma A.2, whereas this seems not
to be the case for Sidak’s two sided inequality.

B Remaining Proofs

B.1 Proof of Proposition 3.10

As already noted in [46, page 558], for the universal thresholds σ
√

2 log |Ωn| this result
easily follows by adapting the original proof of [26] (see also [39, Section 8.3] and [46,
Theorem 11.7]) from the orthonormal case to the frame case. Indeed, as shown below
a similar proof can be made for the extreme value thresholds Tn = T

(

αn, |Ωn|
)

defined
by Equation (3.9).

After rescaling we may assume without loss of generality that σ = 1. Recall that
the dual frame

(

φ̃nω : ω ∈ Ωn

)

has upper frame bound 1/an, that Φ
+
nΦn = Id is the

identity on R
In , and that ΦnΦ

+
n = PRan(Φn) equals the orthogonal projection onto the

range Ran(Φn) ⊂ R
Ωn of the analysis operator Φn : R

In → R
Ωn . Moreover, we define the
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parameter xn = Φnun and the data Yn = ΦnVn as in (2.4). Then we can estimate

E

(

∥

∥un −Φ
+
n ◦ S

(

ΦnVn, T
(

αn, |Ωn|
))∥

∥

2
)

= E

(

∥

∥Φ
+
nxn −Φ

+
n ◦ S

(

ΦnVn, T
(

αn, |Ωn|
))∥

∥

2
)

= E

(

∥

∥Φ
+
nΦnΦ

+
n

(

xn − S
(

Yn, T
(

αn, |Ωn|
)))
∥

∥

2
)

≤ 1

an
E

(

∥

∥PRan(Φn)

(

xn − S
(

Yn, T
(

αn, |Ωn|
)))
∥

∥

2
)

=
1

an

∑

ω∈Ωn

E

(

∣

∣xn(ω)− S
(

Yn(ω), T
(

αn, |Ωn|
))∣

∣

2
)

.

Now we can proceed similar to [26] (see also [39, 46]) to estimate the mean square
errors E

(

|xn(ω)− S
(

Yn(ω), T
(

αn, |Ωn|
))

|2
)

of one-dimensional soft-thresholding.

To that end we use the risk estimate of [39, Section 2.7] for one-dimensional soft-
thresholding, which states the following: If y ∼ N (µ, 1) is a normal random variable
with mean µ ∈ R and unit variance, then

(∀T > 0) E

(

|µ− S (y, T )|2
)

≤ e−T 2/2 +min
{

1 + T 2, µ2
}

. (B.1)

For our purpose we apply the risk estimate (B.1) with threshold T = T
(

αn, |Ωn|
)

. The

definition of the threshold T
(

αn, |Ωn|
)

in (3.9) immediately yields the estimate

T
(

αn, |Ωn|
)2

2
≥ log |Ωn| − log log

(

1/(1− αn)
)

− log log |Ωn|+ log π

2
.

Inserting these estimates in (B.1) applied with the random variables y = Yn(ω) having
mean values µ = xn(ω) and using the assumption T

(

αn, |Ωn|
)

≤
√

2 log |Ωn| yields

E

(

∣

∣xn(ω)− S
(

Yn(ω), T
(

αn, |Ωn|
))
∣

∣

2
)

≤ log (1/(1− αn))
√

π log |Ωn|
|Ωn|

+ (1 + 2 log |Ωn|)min
{

1, |xn(ω)|2
}

.

Finally, summing over all ω ∈ Ωn shows (3.15).

B.2 Proof of Theorem 4.9

Let η = (η(t) : t ∈ [0, 1]) denote a white noise process on [0, 1] and consider the periodic
continuous domain wavelets ψj,b(t) = 2j/2ψ

(

2j (t− b)
)

. We then define the random
vectors Xn as inner products

(∀j = 0, . . . , logn− 1)(∀ℓ = 0, . . . , 2jn− 1) Xn(j, ℓ) :=
〈

ψj,2jℓ/n, η
〉

.

Hence the random variables Xn(j, ℓ) are coefficients of the white noise process η with
respect to a discrete wavelet transform, that is oversampled by factor n at every scale.
Comparing this with the definition of the translation invariant wavelet transform we
see that the translation invariant wavelet coefficients Wn,nǫn are a subset of the ele-
ments of Xn. Hence we have

(∀T > 0) P {‖Wn,nǫn‖∞ ≤ T } ≥ P {‖Xn‖∞ ≤ T } . (B.2)

We proceed by computing the correlations of Xn(j, ℓ) for some fixed scale index. Since
η is a white noise process, the definition of Xn and some elementary manipulations
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shows that, for all j ∈ {0, . . . , logn− 1} and all indices ℓ, ℓ′ ∈ {0, . . . , 2jn− 1}, we have

Cov
(

Xn(j, ℓ), Xn(j, ℓ
′)
)

=
〈

ψj,ℓ, ψj,ℓ′
〉

= 2j
∫

R

ψ(2jt− ℓ/n)ψ(2jt− ℓ′/n)dt

= 2j
∫

R

ψ(2jt)ψ(2jt− (ℓ′ − ℓ)/n)dt =

∫

R

ψ(−t)ψ((ℓ − ℓ′)/n− t)dt = (ψ̄ ∗ ψ)((ℓ − ℓ′)/n) .

Next we construct a random vector Yn with the same index set and pointwise smaller
correlations. To that end, for every given j, we group the index set {0, . . . 2jn − 1} into
2j blocks Bj,k = {kn, . . . , (k + 1)n − 1} for any k ∈ {0, . . . , 2j − 1}. We denote κ := ψ̄ ∗ ψ
and define the matrix

κ̄n((j, ℓ), (j
′, ℓ′)) :=

{

κ ((ℓ− ℓ′)/n) if j = j′ and (ℓ, ℓ′) ∈ ⋃kBj,k ×Bj,k

0 otherwise .

Hence we have κ̄n ((j, ℓ), (j
′, ℓ′)) = Cov

(

Xn(j, ℓ), Xn(j
′, ℓ′)

)

if j = j′ and the indices ℓ, ℓ′

are in the same block Bj,k, and the correlations of κ̄n are zero otherwise. Moreover κ̄n
is obviously symmetric and positive semi-definite and hence there exists a standard-
ized normal random vector Yn whose covariance matrix is given by κ̄n. By construc-
tion of κ̄n, the covariances |Cov(Xn(j, ℓ), Xn(j, ℓ

′))| pointwise dominate the covariances
∣

∣κ̄n((j, ℓ), (j
′, ℓ′))

∣

∣. Hence, Lemma A.9 implies

(∀T > 0) P {‖Xn‖∞ ≤ T } ≥ P {‖Yn‖∞ ≤ T } . (B.3)

Inspecting Equations (B.2) and (B.3) shows that it remains to compute the asymptotic
distribution of ‖Yn‖∞.

To that end recall that Cov (Xn(j, ℓ), Xn(j, ℓ
′)) = κ ((ℓ− ℓ′)/n) are densely sampled val-

ues of the autocorrelation function of the mother wavelet. This in particular implies
that any block in Yn has the same distribution. Moreover, due to the independence of
the blocks this yields

P {‖Yn‖∞ ≤ T } = P {max |Yn(0, ℓ) : ℓ = 0, . . . , n− 1| ≤ T}n

= (1−P {max |Yn(0, ℓ) : ℓ = 0, . . . , n− 1| > T })n

=
(

1−P
{

max |〈ψ0,ℓ/n, η〉| : ℓ = 0, . . . , n− 1
}

> T
)n

= (1−P {max |X(ℓ/n)| : ℓ = 0, . . . , n− 1} > T )
n
.

Here X = {X(t) : t ∈ [0, 1]} is defined by X(t) := 〈ψ0,t, η〉. One easily verifies that X is a
mean square differentiable normal process having covariance function κ(t). Moreover
the vector Yn(0, ℓ) = X(ℓ/n) consist of n equidistant values of that process inside the
unit interval. Hence for any sequence of thresholds Tn that tends to infinity as n→ ∞
in a sufficiently slowly manner, one has the asymptotic relations (which follow from
standard result of continuous extreme value theory [44])

P {max {|X(ℓ/n)| : ℓ = 0, . . . , n− 1} > Tn} ∼ P {max {|X(t)| : t ∈ [0, 1]} > Tn}
P {max {|X(t)| : t ∈ [0, 1]} > Tn} ∼ 2P {max {X(t) : t ∈ [0, 1]} > Tn}
P {max {X(t) : t ∈ [0, 1]} > Tn} ∼ c/(2π) exp

(

−T 2
n/2
)

.

Now fix any z ∈ R and define the sequence Tn :=
(

2(logn+ z + 2 log(c/π))
)1/2

. Then the

definition of Tn immediately yields exp
(

− T 2
n/2

)

= π/ (cn) exp(−z). Consequently, by
collecting the above estimates, we have

lim
n→∞

P {‖Yn‖∞ ≤ Tn} = lim
n→∞

(

1− c

π
e−T 2

n/2
)n

= lim
n→∞

(

1− e−z

n

)n

= exp
(

−e−z
)

.

35

Standarduser
am_pp_logo_01



Finally, a simple Taylor series approximation of the square root shows the asymptotic
relation

Tn =
√

2 logn+
x+ log (c/π)√

2 logn
+ o

(

1/
√

2 logn
)

.

Recalling, for the last time, that o
(

1/an
)

terms can be omitted in the rescaling of
extreme value distributions finally shows

P

{

‖Yn‖∞ ≤
√

2 logn+
x+ log (c/π)√

2 logn

}

→ exp
(

−e−z
)

,

and concludes the proof.
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